JP3057859B2 - Production method and furnace wall structure of silica brick for coke oven. - Google Patents

Production method and furnace wall structure of silica brick for coke oven.

Info

Publication number
JP3057859B2
JP3057859B2 JP3323456A JP32345691A JP3057859B2 JP 3057859 B2 JP3057859 B2 JP 3057859B2 JP 3323456 A JP3323456 A JP 3323456A JP 32345691 A JP32345691 A JP 32345691A JP 3057859 B2 JP3057859 B2 JP 3057859B2
Authority
JP
Japan
Prior art keywords
silica brick
coke oven
brick
silica
impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3323456A
Other languages
Japanese (ja)
Other versions
JPH05156257A (en
Inventor
雄司 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3323456A priority Critical patent/JP3057859B2/en
Publication of JPH05156257A publication Critical patent/JPH05156257A/en
Application granted granted Critical
Publication of JP3057859B2 publication Critical patent/JP3057859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、コークス炉の炉本体に使用する
珪石れんがの製造方法とこれを用いたコークス炉の炉壁
構造に関するものである。より詳しくは、既存れんがに
二次処理を施すことにより、珪石れんがの性能向上を図
り、コークス炉の炉壁構造を強化したコークス炉用珪石
れんがの製造方法と炉壁構造に関する。
[0001] The present invention relates to a method for producing silica brick used for a furnace body of a coke oven and a furnace wall structure of a coke oven using the same. More specifically, the present invention relates to a method for manufacturing a silica brick for a coke oven and a furnace wall structure in which the performance of the silica brick is improved by performing a secondary treatment on the existing brick, and the furnace wall structure of the coke oven is strengthened.

【0002】[0002]

【従来の技術】珪石れんがは、無水珪酸塩を主成分とし
た原料を用いた酸性耐火れんがで、高温での機械的強度
が大きく、耐火度はSK31〜33で高くはないもの
の、溶融温度近くまで大きな荷重に耐えるという性質を
有する。また、760 ℃以上の熱膨張係数が極めて小さ
く、この温度域では良好な容積安定性を示す。このよう
な特性を生かし、珪石れんがは一般窯炉の天井部に使用
されているが、特に長時間の使用で収縮しないことか
ら、コークス炉の炉本体にも広く使用されている。
2. Description of the Related Art Silica brick is an acidic refractory brick made of a raw material containing anhydrous silicate as a main component, and has a high mechanical strength at a high temperature. It has the property of withstanding large loads. Further, the coefficient of thermal expansion at 760 ° C. or higher is extremely small, and shows good volume stability in this temperature range. Taking advantage of these characteristics, silica brick is used for ceilings of general kilns. However, since it does not shrink particularly after long use, it is also widely used for furnace bodies of coke ovens.

【0003】近年、鉄鋼製造設備の大型化に伴ってコー
クス炉も大型化され、生産性向上を図っているが、さら
に省エネルギーやNOx 低減の観点から乾留時間の短縮
を図るため炭化室炉壁の厚さを薄くする傾向があり、緻
密で熱伝導性の高い珪石れんがが要求されている。一
方、操業中のコークス炉では、炉の内壁面に乾留ガス起
源のカーボンが付着し、強固なカーボン付着層を形成す
るので、放置すれば窯入れ、窯出し時のトラブルの原因
となるので、カーボンの付着しにくい緻密なれんがが要
求されている。このような状況に対し、従来より緻密な
れんがの製造方法、れんがを緻密化する処理方法、或い
はれんが表面の清浄性を維持する方法について種々の提
案がなされてきた。
Recently, coke oven along with the size of the steel manufacturing facilities are large, but the aim of improving productivity, carbonization chamber furnace walls order to further shorten the carbonization time in terms of energy saving and NO x reduction Therefore, there is a demand for a dense and high thermal conductive silica brick. On the other hand, in the operating coke oven, carbon from the carbonization gas adheres to the inner wall surface of the oven and forms a strong carbon adhesion layer. There is a demand for dense bricks to which carbon does not easily adhere. In order to cope with such a situation, various proposals have conventionally been made on a method for producing a dense brick, a treatment method for densifying the brick, or a method for maintaining the cleanness of the brick surface.

【0004】珪石れんがの製造面では、CaO 、TiO2、Mg
O などの酸化物系原料を添加する方法、或いはSiC 、Si
N などの非酸化物を配合し、焼成段階で酸化を促す方法
などがある。しかし、これらの方法では焼成での焼きむ
らが生じ易く、緻密化を達成できても、耐火度や荷重軟
化点の低下を伴うので、十分な性能を維持できない。ま
た、この方法では気孔分布の調整も不十分である。
In the production of silica bricks, CaO, TiO 2 , Mg
A method of adding an oxide material such as O, or SiC, Si
There is a method of blending a non-oxide such as N to promote oxidation at the firing stage. However, in these methods, unevenness in firing tends to occur, and even if densification can be achieved, sufficient performance cannot be maintained because the fire resistance and the softening point under load are reduced. In addition, the adjustment of the pore distribution is insufficient with this method.

【0005】珪石れんがを緻密化する処理方法として
は、れんが表面域の気孔を密閉化するために塗布処理す
る方法とれんが中の気孔に含浸する方法がある。前者の
方法としては、例えば、特公昭57−27873 号公報に記載
のフライアッシュを主成分とする塗布材で処理する方
法、あるいは特開昭59−174585号公報に記載の結晶性ガ
ラスからなる釉層を設ける方法がある。これらの表面処
理材はいずれも、アルカリ、ZnO 、CaO 等を含む低融物
であるので、母材珪石れんがの耐火性を悪化させる。そ
の上、表面層は液相を含むため、逆にカーボンの付着を
助長し、しかも窯出し時のコークスケーキとの摩擦で摩
耗し、一過性の効果しか期待できない。
[0005] As a treatment method for densifying the silica brick, there are a coating method for sealing pores in the surface area of the brick and a method of impregnating pores in the brick. As the former method, for example, a method of treating with a coating material containing fly ash as a main component described in JP-B-57-27873, or a glaze made of crystalline glass described in JP-A-59-174585. There is a method of providing a layer. Each of these surface treatment materials is a low melt containing alkali, ZnO 2, CaO 2 and the like, and thus deteriorates the fire resistance of the base silica brick. In addition, since the surface layer contains a liquid phase, it promotes the adhesion of carbon, and wears due to friction with the coke cake when it is discharged from the kiln, so that only a transient effect can be expected.

【0006】後者の含浸方法としては、溶液の浸漬が考
えられる。例えば、マグネシア・ドロマイトれんがで
は、吸湿防止のためにワックスを含浸する場合がある。
また、耐食性向上の観点からコールタールを含浸するこ
とも周知の方法である。また、コロイダルシリカ (シリ
カゾル) を含浸し、気孔中にSiO2を残存させるように熱
処理する方法も知られている。しかし、その含有量は20
重量%程度で、溶液の浸透量に比べて充填量が少なく、
十分な効果は得られないのが実情である。
[0006] As the latter impregnation method, immersion of a solution can be considered. For example, magnesia dolomite bricks may be impregnated with wax to prevent moisture absorption.
It is also a well-known method to impregnate coal tar from the viewpoint of improving corrosion resistance. There is also known a method of impregnating with colloidal silica (silica sol) and performing heat treatment so that SiO 2 remains in pores. However, its content is 20
At about weight%, the filling amount is smaller than the permeation amount of the solution,
The fact is that sufficient effects cannot be obtained.

【0007】別の可能なカーボン付着防止方法として、
カーボンの除去方法がある。例えば、特開昭61−231088
号公報には、特殊なノズルでカーボンを燃焼剥離する方
法が開示されている。また、研掃機で削り落とす方法も
ある。しかし、これらは、付着カーボンそのものには有
効であるが、二次的には母材れんがの損傷を併発し、長
期的には炉の堅牢性を損なうものである。
As another possible method for preventing carbon deposition,
There is a method of removing carbon. For example, JP-A-61-231088
Japanese Patent Application Publication No. JP-A-2005-115122 discloses a method of burning and separating carbon by using a special nozzle. There is also a method of shaving off with a sandblaster. However, although these are effective for the adhering carbon itself, they secondarily cause damage to the base material brick and impair the robustness of the furnace in the long term.

【0008】一般に、気孔に酸化物を充填し、緻密化す
ることは、耐スポーリング性を損ない、強度向上とは相
反する処理である。しかし、気孔分布を細孔化する方法
に組織構成を変えられれば、緻密化と耐スポーリング性
を同時に満足し、かつ付着カーボンの生成しにくい状態
が得られる。また、含浸物質に離型作用を付与できれ
ば、炉壁れんがとして半永久的に使用でき、経済性は著
しく向上するが、現在そのような方法は確立していな
い。
In general, filling the pores with an oxide and densifying the pores is a process that impairs spalling resistance and is incompatible with improving strength. However, if the microstructure can be changed to a method of making the pore distribution fine, a state in which the densification and the spalling resistance are satisfied at the same time and the generation of attached carbon is difficult can be obtained. In addition, if the impregnating substance can be given a releasing action, it can be used semi-permanently as furnace wall brick, and the economic efficiency is remarkably improved. However, such a method has not been established at present.

【0009】[0009]

【発明が解決しようとする課題】従来の珪石れんがによ
る炉壁構造の問題点を整理すると次のようになる。 添加材の配合による緻密化は、耐火性など他の特性の
劣化を招き、気孔分布の調整も不十分である。 れんが表面を塗布で封孔する方法は、効果が一過性
で、二次的弊害も大きい。 気孔を含浸処理で封孔する方法は、残留成分量が少な
く、所要の気孔減少が達成できない。
The problems of the furnace wall structure caused by the conventional silica brick are summarized as follows. Densification by the addition of additives causes deterioration of other properties such as fire resistance, and insufficient adjustment of pore distribution. The method of sealing the brick surface by coating has a temporary effect and has a large secondary adverse effect. In the method in which pores are sealed by impregnation, the amount of residual components is small, and the required pore reduction cannot be achieved.

【0010】本発明の目的は、乾留に対する伝熱特性が
よく、操業中のカーボン付着が抑制され、かつ高強度で
堅牢な、コークス炉の主として炭化室内壁面を構成する
ための、緻密化されたコークス炉用珪石れんがの製造方
法、ならびにこれから構成された炉壁構造を提供するこ
とである。
An object of the present invention is to provide a high-strength and robust carbon dioxide coke oven which has good heat transfer characteristics to dry distillation, suppresses carbon deposition during operation, and has a high density. An object of the present invention is to provide a method for producing a silica brick for a coke oven, and an oven wall structure constituted therefrom.

【0011】[0011]

【発明が解決しようとする課題】本発明者らは、既存の
珪石れんがの気孔中にセラミック系微粒子を含浸させて
緻密化することにより、上記目的を達成することがで
き、操業トラブルの少ない堅牢な炉壁構造を得ることが
できることを見出した。
DISCLOSURE OF THE INVENTION The present inventors have achieved the above object by impregnating the pores of an existing silica brick with ceramic fine particles and densifying the same, thereby achieving robustness with less operation trouble. It has been found that a simple furnace wall structure can be obtained.

【0012】ここに、本発明の要旨は、平均粒径0.05〜
10μmの酸化クロム粉および炭酸カルシウム粉の1種も
しくは2種7〜60重量部を、有機系または珪素系の少な
くとも1種の液状バインダー93〜40重量部に分散させた
含浸液を、見掛け気孔率16〜25%の珪石れんがに減圧下
で含浸させた後、乾燥することを特徴とする、コークス
炉用珪石れんがの製造方法、ならびに、炭化室内壁面の
少なくとも一部が、上記方法で製造された珪石れんがで
構成されていることを特徴とする、コークス炉の炉壁構
造にある。
Here, the gist of the present invention is that the average particle size is 0.05 to
An impregnating liquid obtained by dispersing 7 to 60 parts by weight of one or two kinds of 10 μm chromium oxide powder and calcium carbonate powder in 93 to 40 parts by weight of at least one organic or silicon-based liquid binder is used. A method for producing a silica brick for a coke oven, characterized in that the silica brick of 16 to 25% is impregnated under reduced pressure and then dried, and at least a part of the wall surface of the carbonization chamber is produced by the above method. A furnace wall structure of a coke oven characterized by being composed of silica brick.

【0013】[0013]

【作用】本発明においては、従来のシリカゾルのみによ
る液体含浸ではなく、特定範囲内に粒度調整された酸化
クロム(Cr2O3) および炭酸カルシウム(CaCO3) の1種も
しくは2種の微粒子粉末を分散させた液体を含浸させる
ことにより、耐火性を損なうことなく、気孔を効率的に
密閉化することができる。また、含浸に使用した液体や
炭酸カルシウム粉が、コークス炉の操業開始時の昇温に
より熱分解して微細な気孔が形成されるため、気孔分布
の細孔径化も同時に達成でき、見掛け気孔率以上に熱衝
撃抵抗性、従って耐スポーリング性が良好に維持され
る。
According to the present invention, one or two kinds of fine particles of chromium oxide (Cr 2 O 3 ) and calcium carbonate (CaCO 3 ) having a particle size adjusted to a specific range are used instead of the conventional liquid impregnation with only silica sol. By impregnating with a liquid in which is dispersed, pores can be efficiently sealed without impairing fire resistance. In addition, since the liquid and calcium carbonate powder used for the impregnation are thermally decomposed by increasing the temperature at the start of the operation of the coke oven to form fine pores, the pore size of the pore distribution can be simultaneously increased, and the apparent porosity can be achieved. As described above, the thermal shock resistance, and thus the spalling resistance, is maintained favorably.

【0014】本発明の珪石れんがの製造方法について、
以下に詳しく説明する。本発明で母材として用いる珪石
れんがは、組成は特に限定されないが、見掛け気孔率が
16〜25%のものを使用する。見掛け気孔率が16%未満で
は、本発明の方法で含浸処理しても、耐スポーリング性
が低下する。また、見掛け気孔率が25%を超えると、含
浸効率が低下し、所望の効果が十分に得られない。
The method for producing a silica brick of the present invention comprises:
This will be described in detail below. The silica brick used as the base material in the present invention is not particularly limited in composition, but has an apparent porosity.
Use 16-25%. When the apparent porosity is less than 16%, the spalling resistance is reduced even if the impregnation is performed by the method of the present invention. On the other hand, if the apparent porosity exceeds 25%, the impregnation efficiency is reduced, and the desired effect cannot be sufficiently obtained.

【0015】この珪石れんがを、酸化クロム粉および炭
酸カルシウム粉から選ばれた1種または2種からなる微
粒子を、有機系または珪素系の少なくとも1種の液状バ
インダーに分散させた含浸液で含浸する。
The silica brick is impregnated with an impregnating liquid in which fine particles of one or two selected from chromium oxide powder and calcium carbonate powder are dispersed in at least one organic or silicon liquid binder. .

【0016】含浸液中に分散させる微粒子としては、酸
化クロム粉末か炭酸カルシウム粉末を単独で、またはこ
れらの混合粉末を使用する。クロムイオンは、珪石れん
が中のSiO2と反応しても高粘度の融液を生成するので、
荷重軟化性への悪影響は少ない。また、カルシウムイオ
ンは、SiO2との反応ではSiO2をトリジマイト化する性質
を有し、急熱・急冷に対する抵抗性を増すという作用を
示す。この微粒子の粒度は、平均粒径で0.05〜10μmの
範囲内とする。平均粒径が10μmより大きいと、珪石れ
んがの気孔中に円滑に侵入することが困難となり、ごく
表層のみの浸透に終始し、径が30μm以下の気孔には侵
入できない。平均粒径が0.05μmより小さいと、分散さ
せた時の凝集が激しく、バインダー液中に効率的に分散
させることができない。また、この微粒子を存在させず
に、従来の例えばシリカゾル (分散質の平均粒径が1〜
100 nm) のみを珪石れんがに含浸させた場合には、液の
含浸にすぎず、粒子による実質的な充填は起こらない。
As the fine particles to be dispersed in the impregnation liquid, chromium oxide powder or calcium carbonate powder alone or a mixed powder thereof is used. Chromium ions form a high-viscosity melt even when they react with SiO 2 in silica brick,
The adverse effect on load softening is small. Also, calcium ions, shows the effect of the reaction of the SiO 2 has a property of tridymite the SiO 2, increased resistance to rapid heating-rapid cooling. The particle size of the fine particles is in the range of 0.05 to 10 μm in average particle size. When the average particle size is larger than 10 μm, it is difficult to smoothly penetrate into the pores of the silica brick, and only the surface layer is completely penetrated, and cannot penetrate pores having a diameter of 30 μm or less. When the average particle size is smaller than 0.05 μm, the particles are agglomerated when dispersed, and cannot be efficiently dispersed in the binder liquid. Further, without the presence of these fine particles, conventional silica sol (the average particle size of
When only 100 nm) is impregnated into silica brick, it is only impregnation of the liquid, and no substantial packing by particles occurs.

【0017】この微粒子を分散させる分散媒としては、
有機系または珪素系の液状バインダーを使用する。有機
系液状バインダーとしては、アクリル樹脂、フェノール
樹脂等の樹脂を必要に応じて適当な有機溶剤 (例、イソ
プロパノール) で希釈した液、ならびに多価アルコール
(例、グリセリン)といった粘稠液状の有機化合物を使
用することができる。珪素系液状バインダーは、Siを補
うことができ、また、シロキサン結合を形成して緻密化
に寄与する。有用な珪素系液状バインダーの例は、シリ
コーン油 (必要により有機溶剤で希釈) 、シリカゾル、
および珪酸ナトリウム水溶液 (例、水ガラス) である。
シリカゾルや珪酸ナトリウム水溶液といった水系の液体
は、水の蒸気圧が高く、また水分蒸発過程で結晶水や付
着水が形成されるので、次の乾燥工程で水分が完全に除
去されるように注意を要する。液状バインダーは、常温
での粘度が50cp以下の範囲内のものが好ましい。粘度が
高すぎる時は、適当な希釈剤 (有機溶剤、水) で希釈し
て粘度を低下させる。
As a dispersion medium for dispersing the fine particles,
An organic or silicon-based liquid binder is used. Examples of the organic liquid binder include a liquid obtained by diluting a resin such as an acrylic resin or a phenol resin with an appropriate organic solvent (eg, isopropanol) as required, or a viscous liquid organic compound such as a polyhydric alcohol (eg, glycerin). Can be used. The silicon-based liquid binder can supplement Si and form a siloxane bond to contribute to densification. Examples of useful silicon-based liquid binders include silicone oil (diluted with an organic solvent if necessary), silica sol,
And aqueous solutions of sodium silicate (eg, water glass).
Water-based liquids such as silica sol and sodium silicate aqueous solution have a high vapor pressure, and crystal water and attached water are formed during the water evaporation process, so care must be taken to completely remove water in the next drying step. It costs. The liquid binder preferably has a viscosity at room temperature of 50 cp or less. If the viscosity is too high, dilute it with an appropriate diluent (organic solvent, water) to reduce the viscosity.

【0018】上記微粒子と液状バインダー(希釈した場
合には希釈後のもの)との混合比は、この両者の合計量
を100 重量部として、微粒子7〜60重量部に対して、液
状バインダー93〜40重量部の範囲内とする。微粒子が7
重量部未満では、微粒子の含浸効果が不明確で、所要の
性能向上が達成できない。微粒子が60重量部を超える
と、調合された含浸液自体の粘度が増大し、十分な量の
含浸を行うことが困難となる。
The mixing ratio between the fine particles and the liquid binder (after dilution, if diluted) is defined as 100 parts by weight of the total amount of both, and 7 to 60 parts by weight of the fine particles and 93 to 50 parts by weight of the liquid binder. It should be within the range of 40 parts by weight. 7 particles
If the amount is less than part by weight, the effect of impregnation of the fine particles is unclear, and the required performance improvement cannot be achieved. When the amount of the fine particles exceeds 60 parts by weight, the viscosity of the prepared impregnating liquid itself increases, and it becomes difficult to perform a sufficient amount of impregnation.

【0019】この含浸液には、所望により、少量の他の
成分を存在させてもよい。添加しうる他成分の例として
は、有機系分散剤がある。
If desired, small amounts of other components may be present in the impregnating liquid. Examples of other components that can be added include organic dispersants.

【0020】こうして調製した含浸液を真空下で珪石れ
んがに含浸させる。この含浸処理は、例えば、含浸液と
珪石れんがとを真空槽に装入し、真空ポンプで脱気する
ことにより、或いは予め珪石れんがを装入した真空槽を
脱気してから、真空度を維持しながら含浸液を投入する
ことにより実施することができる。含浸中の真空度は、
3 Torr 以下程度とすることが好ましい。この含浸は、
珪石れんがの少なくとも表層から10mm以上に含浸液が浸
透するように行う。含浸温度は常温で十分であるが、所
望により加熱してもよい。含浸時間は通常は1時間以上
であり、温度や処理する珪石れんがの寸法によって調整
する。
The impregnating liquid thus prepared is impregnated into silica brick under vacuum. In this impregnation, for example, the impregnation liquid and the silica brick are charged into a vacuum chamber and deaerated by a vacuum pump, or the vacuum chamber in which the silica brick is previously charged is degassed, and then the degree of vacuum is reduced. It can be carried out by introducing the impregnating liquid while maintaining. The degree of vacuum during impregnation is
It is preferable that the pressure be about 3 Torr or less. This impregnation
The impregnation liquid is permeated into at least 10 mm or more from the surface layer of the silica brick. Normal temperature is sufficient for the impregnation temperature, but heating may be performed if desired. The impregnation time is usually one hour or more, and is adjusted according to the temperature and the size of the silica brick to be treated.

【0021】含浸処理後、珪石れんがを真空槽から取り
出して、乾燥し、含浸液中の溶剤などの揮発性成分を除
去する。乾燥は、加熱乾燥が望ましいが、溶剤の種類に
よっては常温乾燥も可能である。
After the impregnation, the silica brick is taken out of the vacuum chamber and dried to remove volatile components such as a solvent in the impregnation liquid. Drying is desirably heat drying, but drying at room temperature is also possible depending on the type of solvent.

【0022】本発明の方法により含浸処理して製造され
た珪石れんがは、緻密化され、熱的および機械的性質が
未処理の珪石れんがに比べて著しく向上するので、これ
をもってコークス炉の炭化室内の炉壁構造を構成するこ
とにより、カーボンの付着が少なく、熱伝導率が高く、
堅牢なコークス炉の炭化室炉壁構造を形成することがで
きる。さらに、含浸したバインダーや炭酸カルシウム粉
は、コークス炉操業開始時の昇温によって熱分解して微
細な気孔を形成するので、熱衝撃抵抗性が良好に保た
れ、耐スポーリング性の低下が起こらない。従って、コ
ークス炉炭化室の炉壁構造の少なくとも一部(例えば、
炭化室炉壁面中段域)、好ましくは全部を本発明の方法
で選ばれた珪石れんがで構成することにより、熱伝導性
が良好でトラブルが少なく、寿命が従来より大幅に延長
され、付着カーボンの除去処理の不要なコークス炉炉壁
構造が構築される。
The silica brick produced by impregnation according to the method of the present invention is densified and has significantly improved thermal and mechanical properties as compared with untreated silica brick. By constructing the furnace wall structure, the adhesion of carbon is small, the thermal conductivity is high,
A robust coke oven wall structure for a coke oven can be formed. Furthermore, since the impregnated binder and calcium carbonate powder are thermally decomposed to form fine pores by raising the temperature at the start of the coke oven operation, the thermal shock resistance is kept good, and the spalling resistance is lowered. Absent. Therefore, at least a part of the furnace wall structure of the coke oven carbonization chamber (for example,
By forming the siliceous brick selected by the method of the present invention from the middle part of the furnace wall of the coking chamber, preferably, the whole is made of silica brick. A coke oven wall structure that does not require removal processing is constructed.

【0023】[0023]

【実施例】次に実施例により本発明をさらに説明する
が、本発明はこれらの実施例により制限されるものでは
ない。
EXAMPLES The present invention will be further described with reference to the following examples, but the present invention is not limited to these examples.

【0024】〔実施例1〕平均粒径0.1 μmの炭酸カル
シウム粉と、平均粒径1.4 μmの酸化クロム粉とを1:
1の重量比で均一混合し、この混合粉末25重量部を、表
1に示す液状バインダー75重量部と混合し、超音波振動
で十分に撹拌して粉末を均一に分散させ、含浸液を調合
した。表1において、アクリル樹脂はそれぞれイソプロ
パノール(IPA) でカッコ内の濃度まで希釈して使用し
た。比重および粘度の値は希釈後の値である。
Example 1 Calcium carbonate powder having an average particle size of 0.1 μm and chromium oxide powder having an average particle size of 1.4 μm
Mix uniformly at a weight ratio of 1 and mix 25 parts by weight of this mixed powder with 75 parts by weight of the liquid binder shown in Table 1 and sufficiently stir with ultrasonic vibration to uniformly disperse the powder and prepare the impregnating liquid. did. In Table 1, the acrylic resins were each diluted with isopropanol (IPA) to the concentration in parentheses before use. The values of specific gravity and viscosity are values after dilution.

【0025】[0025]

【表1】 [Table 1]

【0026】見掛け気孔率21%の珪石れんがより、直径
50mm×長さ50mmの円柱体と25mm×25mm×140 mmの角棒体
の2種類の形状の試験片を切り出し、この両方の試験片
を真空槽中に装入しておいた上記含浸液に投入し、10-3
Torr の真空度で常温において3時間含浸処理して、れ
んが全体の気孔中に含浸液を浸透させた。その後、含浸
液から珪石れんがを取り出し、温風乾燥して、含浸処理
材を得た。
From a silica brick having an apparent porosity of 21%, the diameter is
Two types of test pieces were cut out: a 50 mm x 50 mm length cylindrical body and a 25 mm x 25 mm x 140 mm square rod, and these two test pieces were placed in the impregnating liquid charged in a vacuum chamber. Throw in, 10 -3
The impregnation treatment was performed at room temperature for 3 hours at a vacuum of Torr, so that the impregnation liquid permeated all pores of the brick. Thereafter, the silica brick was taken out of the impregnating liquid and dried with hot air to obtain an impregnated material.

【0027】こうして得た含浸処理材を、試験のために
さらに乾燥機内で100 ℃で10時間乾燥してから、水銀圧
入法による気孔径分布と、1000℃での熱間曲げ強度とを
それぞれ測定した。測定結果を表2にまとめて示す。
The impregnated material thus obtained was further dried in a dryer at 100 ° C. for 10 hours for testing, and then the pore size distribution by the mercury intrusion method and the hot bending strength at 1000 ° C. were measured. did. Table 2 summarizes the measurement results.

【0028】[0028]

【表2】 [Table 2]

【0029】表2からわかるように、本発明により酸化
クロムと炭酸カルシウムの微粒子を分散させた含浸液で
珪石れんがを含浸処理すると、バインダー樹脂が有機系
か珪素系かにかかわらず、未処理の珪石れんがに比べ
て、見掛け気孔率、ミクロポア量、平均気孔径のいずれ
も大幅に低下し、組織の緻密化と細孔化が達成された。
同時に、曲げ強さが著しく向上し、強化された。
As can be seen from Table 2, when the silica brick is impregnated with the impregnating liquid in which the fine particles of chromium oxide and calcium carbonate are dispersed according to the present invention, the untreated irrespective of whether the binder resin is organic or silicon-based. The apparent porosity, the amount of micropores, and the average pore diameter were all significantly lower than those of silica brick, and the structure was densified and pored.
At the same time, the bending strength was significantly improved and strengthened.

【0030】〔実施例2〕実施例1に示した本発明方法
Bによる珪石れんが処理材 (シリコーン油をバインダー
とする含浸処理材、但し、酸化クロム粉と炭酸カルシウ
ム粉との混合比率は重量比で3:2) と、市販の緻密質
珪石れんが (見掛け気孔率16.0%) とについて、熱サイ
クル試験を行った。この両者の試験材の気孔分布を図1
に示す。試験は、温度がそれぞれ900 ℃と400 ℃に保持
された二つの上下に連結された円筒形電気炉内で、円筒
系のれんが試験片を上下に往復させ、熱衝撃を与えた。
10サイクル熱衝撃を与えた後の試験片の表面を割れの有
無について目視観察した結果を、次の表3に示す。な
お、比較のために、特開昭59−174585号公報に開示の方
法に従って、低膨張性結晶性ガラスからなる釉層で珪石
れんがの表面を被覆した試験材についての結果も併せて
示す。
Example 2 A silica brick treated material according to the method B of the present invention shown in Example 1 (impregnated material using silicone oil as a binder, but the mixing ratio of chromium oxide powder and calcium carbonate powder is weight ratio (3: 2) and a commercially available dense silica brick (apparent porosity 16.0%) were subjected to a heat cycle test. Figure 1 shows the pore distribution of both test materials.
Shown in In the test, a cylindrical brick test piece was reciprocated up and down in two vertically connected cylindrical electric furnaces maintained at temperatures of 900 ° C. and 400 ° C., respectively, and subjected to thermal shock.
Table 3 shows the results of visual observation of the surface of the test piece after 10 cycles of thermal shock for cracks. For comparison, the results of a test material in which the surface of a silica brick is coated with a glaze layer made of a low-expansion crystalline glass according to the method disclosed in JP-A-59-174585 are also shown.

【0031】[0031]

【表3】 [Table 3]

【0032】未処理の従来例では熱衝撃により割れが生
じたのに対し、本発明の方法により含浸処理したもの
は、熱衝撃に耐え、割れを生じなかった。従って、本発
明の方法により耐熱衝撃性に優れた珪石れんがが製造さ
れることがわかる。比較例の低膨張性釉層で表面被覆し
たものは、熱衝撃で被覆が剥離し、被覆の役目を果たし
得ないことが判明した。
In the untreated conventional example, cracks were generated by thermal shock, whereas those impregnated by the method of the present invention were resistant to thermal shock and did not crack. Therefore, it can be seen that the method of the present invention produces silica brick having excellent thermal shock resistance. It was found that the coating of the surface coated with the low-expansion glaze layer of the comparative example was peeled off by the thermal shock and could not serve as the coating.

【0033】〔実施例3〕負荷率115 %で操業中のコー
クス炉A(炉容積48.5 m3 、50門) では、コークス側の
端フリュー底の補修のため、約1m2の広さで炉壁の珪石
れんがを切り開き、補修後に別個のれんがを差し替えて
炉壁を修復している。この時の差し替え用れんがとし
て、本発明の方法により含浸処理した珪石れんが (バイ
ンダーとしてアクリル樹脂を使用した、実施例1の処理
材A)を適用し、空窯点検時に壁面状況を割れとカーボ
ンの付着について観察評価した。結果を、従来の未処理
の珪石れんが (見掛け気孔率 18 %) で差し替えた場合
と共に、表4に示す。
[Example 3] In a coke oven A (a furnace volume of 48.5 m 3 , 50 units) operating at a load factor of 115%, the furnace was about 1 m 2 in size to repair the end flue bottom on the coke side. The bricks on the wall are cut open, and after repair, a separate brick is replaced to repair the furnace wall. As the replacement brick at this time, a silica brick impregnated by the method of the present invention (the treatment material A of Example 1 using an acrylic resin as a binder) was applied, and when the empty kiln was inspected, the wall condition was broken and carbon was removed. The adhesion was observed and evaluated. The results are shown in Table 4 together with the case where the conventional untreated silica brick was replaced with an apparent porosity of 18%.

【0034】[0034]

【表4】 [Table 4]

【0035】上の結果から明らかなように、本発明によ
り含浸処理したものは、従来の珪石れんがに比べて、カ
ーボンの付着が少なく、また操業時の割れも少ないこと
が判明した。
As is clear from the above results, it was found that the impregnated steel according to the present invention had less carbon adhesion and less cracking during operation than the conventional silica brick.

【0036】[0036]

【発明の効果】本発明の方法により含浸処理すること
で、未処理の珪石れんがに比べて、見掛け気孔率が低く
著しく緻密化され、しかも高温強度の高い強化された珪
石れんがを製造することができる。しかも、得られた珪
石れんがは、含浸処理により気孔径が小さくなるため、
含浸処理を施したにもかかわらず、耐熱衝撃性が未処理
品に比べて高まり、耐スポーリング性が向上する。従っ
て、本発明により、緻密でカーボン付着が少なく、熱伝
導性がよく、高強度で長寿命であり、耐スポーリング性
に優れた、コークス炉炭化室の炉壁を構成するための珪
石れんがを簡単に製造することができる。その結果、コ
ークス炉の操業効率が大幅に改善され、長期に安定した
コークス炉操業が可能となる。
By the impregnation treatment according to the method of the present invention, it is possible to produce a reinforced silica brick having an apparent porosity lower than that of an untreated silica brick, significantly densified, and having a high high-temperature strength. it can. Moreover, the resulting silica brick has a reduced pore diameter due to the impregnation process,
Despite the impregnation treatment, the thermal shock resistance is higher than that of the untreated product, and the spalling resistance is improved. Therefore, according to the present invention, a silica brick for forming a furnace wall of a coke oven carbonization chamber, which is dense, has low carbon adhesion, has good thermal conductivity, has high strength and long life, and has excellent spalling resistance. It can be easily manufactured. As a result, the operating efficiency of the coke oven is greatly improved, and the coke oven can be operated stably for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた、本発明の方法で得られた珪石
れんが (本発明品) と未処理の市販緻密質珪石れんが
(市販品) の気孔分布を示すグラフである。
FIG. 1 shows a silica brick obtained by the method of the present invention (product of the present invention) and an untreated commercial dense silica brick used in the examples.
3 is a graph showing the pore distribution of (commercially available product).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−174585(JP,A) 特開 平2−160896(JP,A) 特開 昭55−131086(JP,A) 特開 昭58−99179(JP,A) 特開 昭59−73473(JP,A) 特開 昭62−197371(JP,A) 実開 昭54−19243(JP,U) 特公 昭57−27873(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C10B 29/02 C04B 41/45 C04B 41/81 F27D 1/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-174585 (JP, A) JP-A-2-160896 (JP, A) JP-A-53-131086 (JP, A) JP-A-58-178 99179 (JP, A) JP-A-59-73473 (JP, A) JP-A-62-197371 (JP, A) JP-A-54-19243 (JP, U) JP-B-57-27873 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C10B 29/02 C04B 41/45 C04B 41/81 F27D 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径0.05〜10μmの酸化クロム粉お
よび炭酸カルシウム粉の1種もしくは2種7〜60重量部
を、有機系または珪素系の少なくとも1種の液状バイン
ダー93〜40重量部に分散させた含浸液を、見掛け気孔率
16〜25%の珪石れんがに減圧下で含浸させた後、乾燥す
ることを特徴とする、コークス炉用珪石れんがの製造方
法。
1. One or two or more 7 to 60 parts by weight of chromium oxide powder and calcium carbonate powder having an average particle size of 0.05 to 10 μm are added to 93 to 40 parts by weight of at least one organic or silicon-based liquid binder. Dispersed impregnating liquid has an apparent porosity
A method for producing silica brick for a coke oven, comprising impregnating 16 to 25% of silica brick under reduced pressure and drying.
【請求項2】炭化室内壁面の少なくとも一部が、請求項
1記載の方法で製造された珪石れんがで構成されている
ことを特徴とする、コークス炉の炉壁構造。
2. A furnace wall structure for a coke oven, wherein at least a part of the wall surface of the carbonization chamber is made of silica brick produced by the method according to claim 1.
JP3323456A 1991-12-06 1991-12-06 Production method and furnace wall structure of silica brick for coke oven. Expired - Lifetime JP3057859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323456A JP3057859B2 (en) 1991-12-06 1991-12-06 Production method and furnace wall structure of silica brick for coke oven.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323456A JP3057859B2 (en) 1991-12-06 1991-12-06 Production method and furnace wall structure of silica brick for coke oven.

Publications (2)

Publication Number Publication Date
JPH05156257A JPH05156257A (en) 1993-06-22
JP3057859B2 true JP3057859B2 (en) 2000-07-04

Family

ID=18154881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323456A Expired - Lifetime JP3057859B2 (en) 1991-12-06 1991-12-06 Production method and furnace wall structure of silica brick for coke oven.

Country Status (1)

Country Link
JP (1) JP3057859B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238965A (en) * 2002-02-22 2003-08-27 Jfe Steel Kk Furnace floor-covering agent for carbonization chamber of coke oven and method for operating coke oven
JP4808571B2 (en) * 2006-08-31 2011-11-02 新日本製鐵株式会社 Insulating brick, method for producing insulating brick, and fireproof structure
CN109553403A (en) * 2018-12-10 2019-04-02 新沂北美高科耐火材料有限公司 A kind of novel silica brick and its production technology of high thermal shock

Also Published As

Publication number Publication date
JPH05156257A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JP2011522099A (en) Method for forming a self-healing layer on a part made from a C / C composite material
JP2007076980A (en) Magnesia carbon brick
US7993571B2 (en) Silicon carbide ceramic components having oxide layer
JP5709007B2 (en) Heat storage body for heat storage type burner and method for manufacturing heat storage body for heat storage type burner
JP3057859B2 (en) Production method and furnace wall structure of silica brick for coke oven.
US6074699A (en) Surface hardness of articles by reactive phosphate treatment
JP2842174B2 (en) Brick for coke oven, method for producing the same, and furnace wall structure of coke oven
KR20140007009A (en) Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si
KR101152656B1 (en) Unshaped Refractory Composition Added with Alumina Sol Binder
JP2001158659A (en) Lining material for molten aluminum bath
JP3155217B2 (en) Carbon-containing refractory and production method thereof
JP3315887B2 (en) Method for producing carbon-containing refractories
JP4125980B2 (en) Silica brick for coke oven and its manufacturing method
JPH06345528A (en) Dense silica brick
JP4583788B2 (en) Thermal insulation structure
JP4630111B2 (en) Refractory, manufacturing method thereof, and heating furnace
JP2020001942A (en) Heat insulation material, and method of producing the same
JPH0987067A (en) Oxidation resistant carbon material and its production
JPS5899179A (en) Coating mixture for coke oven brick lining
JP3687274B2 (en) Coke oven carbonization chamber surface treatment method
CN115403393B (en) Zirconium mullite brick for high-salt incinerator and preparation method thereof
JP2748328B2 (en) Glaze for hot application to coke oven refractories and method of forming glaze layer
JP3128213B2 (en) Glaze for forming glassy glaze layer on refractory surface in furnace and method for forming glassy glaze layer
JP2002285040A (en) Aqueous inorganic coating agent
JPH10183134A (en) Coke furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321