JPH08294695A - Water treatment apparatus - Google Patents

Water treatment apparatus

Info

Publication number
JPH08294695A
JPH08294695A JP7101892A JP10189295A JPH08294695A JP H08294695 A JPH08294695 A JP H08294695A JP 7101892 A JP7101892 A JP 7101892A JP 10189295 A JP10189295 A JP 10189295A JP H08294695 A JPH08294695 A JP H08294695A
Authority
JP
Japan
Prior art keywords
ozone
tank
activated carbon
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7101892A
Other languages
Japanese (ja)
Inventor
Tetsuro Haga
鉄郎 芳賀
Masayoshi Kubota
昌良 久保田
Shoji Watanabe
昭二 渡辺
Koji Kageyama
晃治 陰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7101892A priority Critical patent/JPH08294695A/en
Publication of JPH08294695A publication Critical patent/JPH08294695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE: To improve the quality of treated water by holding bacteria to a highly active state by arranging a catalyst bed of which the height is made less than that of the activated carbon bed of a biological activated carbon tank on the downstream side of an ozone contact tank and passing treated water through a catalyst bed to decompose dissolved ozone before introducing the same into the biological activated carbon tank. CONSTITUTION: An ozone stagnation tank 9 is arranged on the downstream side of an ozone contact tank 8 and a biological activated carbon tank 18 is further arranged on the downstream side thereof. A catalyst 23 for decomposing dissolved ozone is arranged to the inner peripheral surface of the ozone stagnation tank 9. As the catalyst 23, activated carbon is pref. used and the height h0 of the catalyst bed 24 of the tank 9 is set less than the height (h) of the activated carbon bed 20 of the biological activated carbon tank 18. Water w0 to be treated is treated with ozone introduced from an air pipe 11 in the ozone contact tank 8. The water TW in which ozone is dissolved is passed through the catalyst 23 to decompose dissolved ozone. Next, the treated water is introduced into the biological activated carbon tank 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浄水場または下水処理場
等において、被処理水をオゾン処理し、更に、生物活性
炭処理する水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment device for treating water to be treated with ozone and further treating it with biological activated carbon in a water purification plant or a sewage treatment plant.

【0002】[0002]

【従来の技術】河川水及び湖沼水等の取水源の水質低下
に伴い、例えば、浄水場では現行の急速ろ過法に代わ
り、凝集沈殿処理後の沈殿水または砂ろ過後のろ過水を
オゾン処理し、更に生物活性炭処理を行う、いわゆる、
高度浄水処理法を採用する傾向にある。この種の高度浄
水処理法は特開平2−149397号公報,特開平6−63571 号
公報及び特開平4−281893 号公報等に開示されている。
2. Description of the Related Art With the deterioration of water quality of water sources such as river water and lake water, for example, in a water treatment plant, instead of the current rapid filtration method, the precipitated water after coagulating sedimentation or the filtered water after sand filtration is subjected to ozone treatment. In addition, so-called biological activated carbon treatment,
There is a tendency to adopt advanced water treatment methods. This type of advanced water purification method is disclosed in JP-A-2-149397, JP-A-6-63571 and JP-A-4-281893.

【0003】この方法は、取水した河川等からの原水を
凝集沈殿処理した後、被処理水となる沈殿水(または砂
ろ過水)をオゾン接触槽に導入して、ここで、水中の有
機物等を脱色,脱臭,酸化処理または変性させるもので
ある。その後、オゾン処理された処理水を生物活性炭槽
に導入して、活性炭の表面または内部に繁殖した微生物
の働きにより、オゾン処理では除去できないアンモニア
性窒素を硝化除去すると共に溶存有機物を代謝除去す
る。
In this method, raw water from a river or the like that has been taken in is subjected to coagulation-sedimentation treatment, and then precipitation water (or sand filtration water) to be treated is introduced into an ozone contact tank, where organic matter in the water, etc. Decolorize, deodorize, oxidize or modify. After that, the treated water that has been subjected to ozone treatment is introduced into a biological activated carbon tank, and by the action of microorganisms propagated on the surface or inside of activated carbon, ammonia nitrogen that cannot be removed by ozone treatment is nitrified and removed, and dissolved organic substances are metabolically removed.

【0004】[0004]

【発明が解決しようとする課題】この種の高度浄水処理
法において、被処理水にオゾンを注入した場合、全ての
オゾンは溶解せず、一部は排オゾンとして気相に排出さ
れ、溶解したオゾンは注入オゾン量と排出オゾン量の差
分となる。一方、溶解オゾンは被処理水中の有機物等に
よって消費され、残留オゾン、すなわち、溶存オゾンは
溶解オゾン量と液相でのオゾン消費量との差分となる。
In this type of advanced water purification method, when ozone is injected into the water to be treated, not all ozone is dissolved, but part is discharged as ozone in the gas phase and dissolved. Ozone is the difference between the amount of injected ozone and the amount of discharged ozone. On the other hand, dissolved ozone is consumed by organic substances in the water to be treated, and residual ozone, that is, dissolved ozone, is the difference between the dissolved ozone amount and the ozone consumption amount in the liquid phase.

【0005】ここで、溶解オゾン量よりも有機物等によ
るオゾン消費量が上回るようなことがあると、溶存オゾ
ン濃度は不検出となり、オゾン処理によって処理されな
い有機物量が増加し処理水質が低下する。このため、被
処理水には有機物等によって消費されるオゾン消費量を
上回るようにオゾンが注入される。しかし、溶解オゾン
の全てが消費されないため、オゾン注入後の処理水中に
は溶存オゾンが存在し、この溶存オゾンを含有した処理
水が、オゾン接触槽の下流側に配設されたオゾン滞留槽
を経て生物活性炭槽に導入されることになる。
Here, if the amount of ozone consumed by organic substances or the like exceeds the amount of dissolved ozone, the dissolved ozone concentration becomes undetected, and the amount of organic substances not treated by ozone treatment increases and the quality of treated water deteriorates. Therefore, ozone is injected into the water to be treated so as to exceed the amount of ozone consumed by organic substances and the like. However, since not all of the dissolved ozone is consumed, there is dissolved ozone in the treated water after the ozone injection, and the treated water containing this dissolved ozone flows through the ozone retention tank located downstream of the ozone contact tank. After that, it will be introduced into the biological activated carbon tank.

【0006】生物活性炭槽内には担体としての活性炭が
充填され、この活性炭の表面または内部には馴養されて
繁殖した微生物が存在する。この微生物は時間経過と共
に増殖していくが、微生物の増殖に伴い活性炭層内の目
詰りが進行し、活性炭層の出入口間の圧力損失が大きく
なる。この結果、生物活性炭槽からの処理水量が減少す
るため、所定の圧力損失に達した時点で、この活性炭層
の出口側から逆洗水が導入されて活性炭層の逆洗が行わ
れる。
The biological activated carbon tank is filled with activated carbon as a carrier, and acclimated and propagated microorganisms are present on the surface or inside of the activated carbon. This microorganism grows with the passage of time, but as the microorganism grows, the clogging in the activated carbon layer proceeds, and the pressure loss between the inlet and outlet of the activated carbon layer increases. As a result, the amount of treated water from the biological activated carbon tank decreases, so that when a predetermined pressure loss is reached, backwash water is introduced from the outlet side of the activated carbon layer to backwash the activated carbon layer.

【0007】この場合、逆洗によって活性炭層は流動化
されて混合されるため、逆洗前後での活性炭表層部に位
置する活性炭は異なり、内部等に位置していた活性炭が
新たな活性炭表層部となり、逆洗の都度変化する。
In this case, since the activated carbon layer is fluidized and mixed by the backwashing, the activated carbons located in the surface layer portion of the activated carbon before and after the backwashing are different, and the activated carbon located in the inside or the like is a new activated carbon surface layer portion. And changes every time it is backwashed.

【0008】ところで、生物活性炭槽には前述の如く溶
存オゾンを含有した処理水が導入されるが、逆洗によっ
て新たな表層部に位置した活性炭表面等の微生物は、処
理水中の溶存オゾンの影響を受けて壊死または損傷を受
ける。特に内部に位置する微生物よりも溶存オゾンの影
響を強く受けるため、壊死または損傷を受けた微生物は
生物活性炭槽からの生物漏洩の原因となり、生物活性炭
槽からの処理水中に微生物が混入する恐れがある。この
生物漏洩は逆洗終了後、処理水を通水した当初に発生し
やすく、かつ逆洗終了の都度発生する。
By the way, the treated water containing dissolved ozone is introduced into the biological activated carbon tank as described above, but the microorganisms such as the activated carbon surface located on the new surface layer by backwashing are affected by the dissolved ozone in the treated water. Receive necrosis or damage. In particular, since it is more strongly affected by dissolved ozone than microorganisms located inside, necrotic or damaged microorganisms cause biological leakage from the biological activated carbon tank, and there is a risk that microorganisms will mix into the treated water from the biological activated carbon tank. is there. This biological leakage is likely to occur at the beginning when the treated water is passed after the backwashing is completed, and occurs every time the backwashing is completed.

【0009】一方、被処理のオゾン処理において、高い
有機物等の除去と共に、オゾン注入処理後の処理水質が
安定していることが要求される。更に、オゾナイザのオ
ゾン発生効率が低く、かつ電力原単位が約20kWh/
kg・O3 と高いことから、必要最小限のオゾン注入量で
被処理水を効率的に処理することが要求される。一般に
水質変動が比較的少ない原水を取水源として被処理水を
オゾン処理する場合においては、水量に比例した一定の
注入率でオゾンを注入する水量比例制御が行われてい。
しかし、被処理水の水質が大きく変動すると、前述した
水量比例制御法ではオゾンが過剰または過少に注入さ
れ、オゾン注入処理後の水質が安定しない。そして、オ
ゾン注入量が過少であると被処理水中の有機物等の処理
量が減少して水質低下を招く。一方、オゾンが過剰に注
入されると、オゾンの電力原単位が高いため、オゾン注
入処理に要するランニングコストが高くなる。前述した
種々の不都合の解決手段として、例えば浄水場における
オゾン処理では、オゾン注入後にオゾン接触槽から気相
に排出される排オゾン濃度、または液相の溶存オゾン濃
度を検出して、このオゾン濃度が一定値になるようにオ
ゾン注入量を制御する方式が採られている。
On the other hand, in the ozone treatment to be treated, it is required that the treated water quality after the ozone injection treatment is stable, as well as the high removal of organic substances. Furthermore, the ozone generation efficiency of the ozonizer is low, and the power consumption rate is about 20 kWh /
Since it is as high as kg · O 3 , it is required to efficiently treat the water to be treated with the minimum required ozone injection amount. Generally, when the treated water is subjected to ozone treatment using raw water whose water quality fluctuation is relatively small as a water source, water amount proportional control is performed in which ozone is injected at a constant injection rate proportional to the water amount.
However, if the water quality of the water to be treated fluctuates greatly, ozone is injected excessively or insufficiently in the above-described water amount proportional control method, and the water quality after ozone injection treatment is not stable. If the amount of injected ozone is too small, the amount of treated organic matter and the like in the water to be treated decreases, resulting in deterioration of water quality. On the other hand, if ozone is excessively injected, the electricity consumption rate of ozone is high, and thus the running cost required for ozone injection processing becomes high. As means for solving the various inconveniences described above, for example, in ozone treatment at a water purification plant, the concentration of exhaust ozone discharged from the ozone contact tank to the gas phase after injection of ozone, or the dissolved ozone concentration in the liquid phase is detected, and this ozone concentration is detected. A method is adopted in which the ozone injection amount is controlled so that is a constant value.

【0010】しかし、オゾンの水への溶解度及び液中で
のオゾンの自己分解等は被処理水の水温,pH及び接触
時間の影響を受けて変化する。このため、被処理水中の
有機物濃度等及びその組成が一定であっても、水温,p
H等が変化すると排オゾン濃度または溶存オゾン濃度が
変化し、恰も有機物濃度の変化のようにとらえられる。
例えば、溶存オゾン濃度が低下すると、有機物濃度の増
加に伴いオゾン消費量が増加し、その結果として溶存オ
ゾン濃度が低下したものとして必要量以上のオゾンが注
入されることになる。この結果、被処理水の水質とその
変化に対応した制御制度の高いオゾン注入制御が困難
で、一般に運用上の安全性を配慮して過剰にオゾンが注
入される。このため、オゾン処理に要するランニングコ
ストの低減が困難となる。
However, the solubility of ozone in water, the self-decomposition of ozone in a liquid, etc. change under the influence of the water temperature, pH and contact time of the water to be treated. Therefore, even if the concentration of organic matter in the water to be treated and its composition are constant, the water temperature, p
When H or the like changes, the concentration of exhausted ozone or the concentration of dissolved ozone changes, and the change is perceived as a change in the concentration of organic matter.
For example, when the dissolved ozone concentration decreases, the ozone consumption increases as the organic matter concentration increases, and as a result, the dissolved ozone concentration decreases and more ozone than necessary is injected. As a result, it is difficult to control ozone injection with a high control system that corresponds to the quality of treated water and its changes, and in general, excessive ozone is injected in consideration of operational safety. Therefore, it is difficult to reduce the running cost required for ozone treatment.

【0011】本発明はオゾン注入処理と、その後に生物
活性炭処理を行う場合の水処理装置における上述した不
都合を解消するためになされたもので、その目的とする
ところは、溶存オゾンによる微生物の損傷を抑制して微
生物を高活性状態に維持し、処理水質の向上が図れ、注
入オゾン量の低減が図れる簡素化された水処理装置を提
供することにある。
The present invention has been made in order to eliminate the above-mentioned inconvenience in a water treatment apparatus in the case of performing ozone injection treatment and then biological activated carbon treatment. The purpose is to damage microorganisms by dissolved ozone. The present invention aims to provide a simplified water treatment device capable of suppressing microorganisms and maintaining microorganisms in a highly active state, improving the quality of treated water, and reducing the amount of injected ozone.

【0012】[0012]

【課題を解決するための手段】上述した目的を達成する
ため、本発明者らは生物活性炭層に流入する処理水中の
溶存オゾン濃度と生物活性炭層の各層高における溶存オ
ゾン濃度の分布について調べた。上述の流入溶存オゾン
濃度と各層高における溶存オゾン濃度の関係は次の条件
により求めた。
In order to achieve the above-mentioned object, the present inventors investigated the dissolved ozone concentration in the treated water flowing into the bioactive carbon layer and the distribution of the dissolved ozone concentration at each height of the bioactive carbon layer. . The relationship between the inflowing dissolved ozone concentration and the dissolved ozone concentration at each layer height was obtained under the following conditions.

【0013】活性炭充填層高:50cm、通水時間:60
分(各濃度に対し)、LV:6.5m/h、通水方法:
低溶存オゾン濃度から高溶存オゾン濃度へ連続通水。溶
存オゾン濃度測定点:表層、表層から10,20,30
及び50cm。
Activated carbon packed bed height: 50 cm, water passage time: 60
Minute (for each concentration), LV: 6.5 m / h, water flow method:
Continuous water flow from low dissolved ozone concentration to high dissolved ozone concentration. Dissolved ozone concentration measurement point: Surface layer, 10, 20, 30 from surface layer
And 50 cm.

【0014】この結果、図4に活性炭層高に対する溶存
オゾン濃度の状態を示すように、活性炭表層より10cm
の測定点で溶存オゾン濃度は不検出となり、活性炭層に
流入する溶存オゾン濃度の影響を受けないで同位置での
溶存オゾンは不検出となる。これらの結果から、活性炭
層に流入する処理水中の溶存オゾンは活性炭の触媒作用
により分解され、活性炭層の表層より10cm以下の主と
して表層部において溶存オゾンが分解されていることを
究明した。
As a result, as shown in FIG. 4, which shows the state of dissolved ozone concentration with respect to the height of the activated carbon layer, it is 10 cm from the surface layer of the activated carbon.
The dissolved ozone concentration becomes undetectable at the measurement point of, and the dissolved ozone at the same position becomes undetectable without being affected by the dissolved ozone concentration flowing into the activated carbon layer. From these results, it was clarified that the dissolved ozone in the treated water flowing into the activated carbon layer was decomposed by the catalytic action of the activated carbon, and the dissolved ozone was decomposed mainly in the surface layer portion 10 cm or less from the surface layer of the activated carbon layer.

【0015】したがって、前述の如く逆洗終了後、新た
な表層部となる生物活性炭の微生物を溶存オゾンの影響
から保護するためには、生物活性炭層とは別にオゾン接
触槽の下流側に処理水中の溶存オゾンを分解する触媒層
を配置すればよく、溶存オゾンが前記の如く表層部で分
解されるから、生物活性炭層と独立して配置する触媒層
の層高は、少なくとも生物活性炭槽に充填される活性炭
の層高よりも低い層高に設定できることを見出した。
Therefore, after backwashing as described above, in order to protect the microorganisms of the bioactive carbon, which is a new surface layer, from the influence of dissolved ozone, the treated water is provided downstream of the ozone contact tank separately from the bioactive carbon layer. The catalyst layer for decomposing the dissolved ozone may be arranged. Since the dissolved ozone is decomposed in the surface layer portion as described above, the height of the catalyst layer arranged independently of the biological activated carbon layer should be at least filled in the biological activated carbon tank. It was found that the bed height can be set lower than that of activated carbon.

【0016】前記した点から、本発明の特徴とするとこ
ろは、被処理水が導入されてオゾンが注入されるオゾン
接触槽と前記オゾン注入後の処理水が導入される生物活
性炭槽とを備えた水処理装置において、前記生物活性炭
槽に充填された活性炭の層高よりも低い層高に設定され
た触媒層を前記オゾン接触槽の下流側に配置して、前記
処理水中の溶存オゾンを前記触媒層を通過させて分解
し、前記触媒層を通過した処理水を前記生物活性炭槽内
の活性炭槽に導入するようにしたことにある。
From the above point, the feature of the present invention is that it comprises an ozone contact tank into which water to be treated is introduced and ozone is injected, and a biological activated carbon tank into which treated water after the ozone injection is introduced. In the water treatment apparatus, a catalyst layer having a bed height lower than the bed height of the activated carbon filled in the biological activated carbon tank is arranged on the downstream side of the ozone contact tank, and dissolved ozone in the treated water is This is because the treated water that has passed through the catalyst layer and decomposed and passed through the catalyst layer is introduced into the activated carbon tank in the biological activated carbon tank.

【0017】次に、前記のようにオゾン接触槽の下流側
に触媒層を配置する場合、触媒の種類について検討し
た。触媒は担体に活性成分を含有する溶液に含侵し、そ
の後、乾燥,焼成して調製されるが、溶存オゾンを含有
する処理水中にて長期間使用すると、担持活性成分の種
類にもよるが、活性成分の溶解または担体脆性に伴う担
体破片の混入等によって逆に処理水質が低下する恐れが
ある。
Next, when the catalyst layer is arranged on the downstream side of the ozone contact tank as described above, the kind of the catalyst was examined. The catalyst is prepared by impregnating a solution containing an active ingredient in a carrier, then drying and calcining, but when used for a long time in treated water containing dissolved ozone, it depends on the kind of the supported active ingredient, On the contrary, the quality of the treated water may be deteriorated due to dissolution of the active ingredient or inclusion of carrier fragments accompanying carrier brittleness.

【0018】前記した点に関し、活性炭は前記の如く、
担体としての活性炭自身が触媒作用を有し、担持活性成
分を有していない点から処理水中への活性成分の溶解が
なく、処理水質の低下を招くことがなく好適である。
With respect to the above points, the activated carbon is as described above.
Since the activated carbon itself as a carrier has a catalytic action and does not have a supported active component, the active component is not dissolved in the treated water and the quality of the treated water is not deteriorated, which is preferable.

【0019】したがって、本発明における好ましい実施
態様として、オゾン接触槽の下流側に配置する触媒を活
性炭としたことを特徴とする。
Therefore, a preferred embodiment of the present invention is characterized in that the catalyst disposed downstream of the ozone contact tank is activated carbon.

【0020】前述のように、処理水中の溶存オゾンを分
解する触媒層をオゾン接触槽の下流側に配置することに
よって、生物活性炭槽内の微生物を溶存オゾンの影響か
ら保護することができる。一方、微生物の保護とは別に
オゾン注入処理によって処理水質の向上を図る必要性が
ある。
As described above, by disposing the catalyst layer for decomposing dissolved ozone in the treated water on the downstream side of the ozone contact tank, the microorganisms in the biological activated carbon tank can be protected from the influence of dissolved ozone. On the other hand, in addition to the protection of microorganisms, it is necessary to improve the quality of treated water by ozone injection treatment.

【0021】ここで、処理水中の溶存オゾンは触媒によ
って分解されるが、分解の過程でヒドロペルオキシラジ
カル(HO2 ・)やヒドロキシルラジカル(OH・)が
生成する。これら生成OH,HO2 ラジカルは被酸化物
質となる有機物等に対して選択性を有せず酸化反応性が
高い。一方、オゾン分子のみによる有機物等の酸化反応
は、被酸化物質の分子構造に対し選択性を有し、その反
応が比較的遅い。したがって、処理水中の溶存オゾンを
触媒によって分解し、この分解に伴い生成する上記ラジ
カルによって被処理水中の有機物等の酸化を加速するこ
とができ、オゾン注入処理による処理水質の向上が望め
る。
Here, the dissolved ozone in the treated water is decomposed by the catalyst, and hydroperoxy radicals (HO 2. ) And hydroxyl radicals (OH.) Are generated in the process of decomposition. These generated OH and HO 2 radicals do not have selectivity with respect to an organic substance or the like as an oxidizable substance, and have high oxidation reactivity. On the other hand, the oxidation reaction of an organic substance or the like by only ozone molecules has selectivity with respect to the molecular structure of the substance to be oxidized, and the reaction is relatively slow. Therefore, the dissolved ozone in the treated water is decomposed by the catalyst, and the radicals generated in association with the decomposition can accelerate the oxidation of the organic matter in the water to be treated, so that the quality of the treated water can be improved by the ozone injection treatment.

【0022】この場合、溶存オゾンの分解に伴って生成
したラジカルによって被処理水中の有機物を効率的に処
理し、かつ、処理水質の向上を図るには、触媒層を適正
位置に配置して、触媒層通過後の処理水が生物活性炭層
に流入するまでの滞留時間を充分確保し、その滞留時間
で反応を促進することが重要である。ここで、被処理水
をオゾン注入処理するプロセスの中で、前述の条件につ
いて検討すると、被処理水はオゾン接触槽でオゾン注入
処理され、その後、溶存オゾンを含有する処理水はオゾ
ン接触槽の下流側に配設されたオゾン滞留槽に導入され
る。この場合、このオゾン滞留槽はオゾンと有機物等と
の反応を進行させ、かつ、処理水中の溶存オゾンの自己
分解を進行させて溶存オゾンの低減を図るため、充分な
滞留時間が確保されている。
In this case, in order to efficiently treat the organic matter in the water to be treated by the radicals generated by the decomposition of the dissolved ozone and to improve the quality of the treated water, the catalyst layer is arranged at an appropriate position. It is important to secure a sufficient retention time for the treated water after passing through the catalyst layer to flow into the biological activated carbon layer, and to accelerate the reaction by the retention time. Here, in the process of ozone injecting the water to be treated, considering the above-mentioned conditions, the water to be treated is subjected to the ozone injecting treatment in the ozone contact tank, and thereafter the treated water containing dissolved ozone is treated in the ozone contact tank. It is introduced into the ozone retention tank arranged on the downstream side. In this case, in this ozone retention tank, a sufficient retention time is secured in order to promote the reaction between ozone and organic substances, and to promote the self-decomposition of dissolved ozone in the treated water to reduce the dissolved ozone. .

【0023】したがって、このオゾン滞留槽内に触媒層
を配置すれば、触媒層通過後の処理水が生物活性炭層内
に流入するまでの滞留時間を充分確保することができ、
その滞留時間で触媒による溶存オゾンの分解に伴って生
成したラジカルと有機物等の反応を促進することができ
る。すなわち、処理水中の溶存オゾンを分解する触媒を
オゾン滞留槽内に配置することが好適な実施態様とな
る。
Therefore, by disposing the catalyst layer in this ozone retention tank, it is possible to secure a sufficient retention time until the treated water after passing through the catalyst layer flows into the biological activated carbon layer.
The residence time can accelerate the reaction of radicals and organic substances generated by the decomposition of dissolved ozone by the catalyst. That is, it is a preferred embodiment that a catalyst that decomposes dissolved ozone in the treated water is arranged in the ozone retention tank.

【0024】前述した点から、本発明の他の特徴とする
ところは、被処理水が導入されてオゾンが注入されるオ
ゾン接触槽とこのオゾン接触槽の下流側に配設されて前
記オゾン接触槽からの処理水が導入されるオゾン滞留槽
及び前記オゾン滞留槽の下流側に位置して前記オゾン滞
留槽からの処理水が導入される生物活性炭槽とを備え、
前記生物活性炭槽に充填された活性炭の層高よりも低い
層高に設定された触媒層を前記オゾン滞留槽内に配置し
て、前記処理水中の溶存オゾンを前記触媒槽を通過させ
て分解し、前記触媒層を通過した処理水を前記生物活性
炭槽内の活性炭層に導入するようにしたことにある。
From the above-mentioned point, another feature of the present invention is that an ozone contact tank into which water to be treated is introduced and ozone is injected, and the ozone contact tank is provided downstream of the ozone contact tank. An ozone retention tank into which treated water from the tank is introduced, and a biological activated carbon tank located downstream of the ozone retention tank and into which treated water from the ozone retention tank is introduced,
A catalyst layer having a bed height lower than that of the activated carbon filled in the biological activated carbon tank is disposed in the ozone retention tank, and dissolved ozone in the treated water is decomposed by passing through the catalyst tank. The treated water that has passed through the catalyst layer is introduced into the activated carbon layer in the biological activated carbon tank.

【0025】また、前記のようにオゾン滞留槽内に触媒
層を配置する場合、触媒種としてはこの明細書の先でも
説明したように活性炭が好適な実施態様となる。
When the catalyst layer is arranged in the ozone retention tank as described above, activated carbon is a preferred embodiment as the catalyst species as described earlier in this specification.

【0026】[0026]

【作用】上述したように、オゾン接触槽の下流側に処理
水中の溶存オゾンを分解する触媒層を配置して、この触
媒層を通過した後の処理水を生物活性炭層に導入するよ
うにし、かつ、この触媒層の層高を生物活性炭槽に充填
される活性炭の層高よりも低く設定しているので、溶存
オゾンの影響による微生物の壊死または損傷を少ない触
媒の充填量で抑制することができる。
As described above, the catalyst layer for decomposing dissolved ozone in the treated water is arranged on the downstream side of the ozone contact tank, and the treated water after passing through the catalyst layer is introduced into the biological activated carbon layer, Moreover, since the layer height of this catalyst layer is set lower than the layer height of the activated carbon filled in the biological activated carbon tank, it is possible to suppress the necrosis or damage of microorganisms due to the influence of dissolved ozone with a small catalyst filling amount. it can.

【0027】すなわち、生物活性炭槽の逆洗に伴い活性
炭層の表層には内部等に位置していた活性炭と入れ代わ
り新たな微生物が存在する。この場合、活性炭層の上流
側に配置された触媒層によって溶存オゾンが分解された
後の処理水が活性炭層に導入されるので、活性炭層の表
層側に位置する微生物は溶存オゾンの影響を受けて壊死
または損傷を受けることがない。この結果、溶存オゾン
の影響に伴う微生物の生物活性炭槽からの漏洩を抑制す
ることができる。しかして、この明細書の先でも説明し
たように、処理水中の溶存オゾンは触媒作用を有する活
性炭層の表層部において分解され、活性炭層の内部まで
至らないない。このため、処理水中の溶存オゾンを分解
するための触媒として、その層高は生物活性炭層の層高
よりも低く設定でき、少ない触媒の充填量で効果的に処
理水中の溶存オゾンを分解することができる。
That is, with the backwashing of the biological activated carbon tank, new microorganisms are present in the surface layer of the activated carbon layer in place of the activated carbon located inside. In this case, since the treated water after the dissolved ozone is decomposed by the catalyst layer arranged on the upstream side of the activated carbon layer is introduced into the activated carbon layer, the microorganisms located on the surface side of the activated carbon layer are not affected by the dissolved ozone. Not be necrosed or damaged. As a result, it is possible to suppress the leakage of microorganisms from the biological activated carbon tank due to the influence of dissolved ozone. However, as explained earlier in this specification, the dissolved ozone in the treated water is decomposed in the surface layer of the activated carbon layer having a catalytic action and does not reach the inside of the activated carbon layer. Therefore, as a catalyst for decomposing the dissolved ozone in the treated water, its bed height can be set lower than that of the biological activated carbon layer, and the dissolved ozone in the treated water can be decomposed effectively with a small catalyst filling amount. You can

【0028】一方、生物活性炭槽内における微生物は時
間経過と共に増殖していくが、微生物の増殖が進行し過
ぎると、微生物の増殖に伴う酸素摂取量も増加する。こ
のため、生物活性炭槽内における溶存酸素濃度が低下
し、嫌気化が進行する一方、微生物の活性が低下し、生
物活性炭槽からの処理水質が低下する恐れが生じる。し
かし、処理水中の溶存オゾンを触媒によって分解した場
合、溶存オゾンは酸素になり、これが溶存酸素となるこ
とから、触媒層を通過して生物活性炭層に流入する処理
水中の溶存酸素は高い濃度状態に維持される。このた
め、微生物の増殖に伴い酸素摂取量が増加しても、高濃
度の溶存酸素を含む処理水が生物活性炭槽に流入するこ
とになるので、槽内の嫌気化を抑制することができる。
On the other hand, although the microorganisms in the biological activated carbon tank grow over time, if the microorganisms grow too much, the oxygen uptake accompanying the growth of the microorganisms also increases. For this reason, the dissolved oxygen concentration in the biological activated carbon tank decreases and anaerobic progresses, while the activity of microorganisms decreases and the quality of treated water from the biological activated carbon tank may decrease. However, when the dissolved ozone in the treated water is decomposed by a catalyst, the dissolved ozone becomes oxygen, which becomes dissolved oxygen.Therefore, the dissolved oxygen in the treated water flowing through the catalyst layer into the biological activated carbon layer is in a high concentration state. Maintained at. Therefore, even if the oxygen uptake increases with the growth of microorganisms, the treated water containing a high concentration of dissolved oxygen flows into the biological activated carbon tank, so that anaerobicization in the tank can be suppressed.

【0029】さらに、触媒によって処理水中の溶存オゾ
ンが分解される場合、分解の過程でOH,HO2 ラジカ
ルが生成し、これらラジカルは被酸化性成分となる有機
物等に対して選択性を有せず高い酸化反応性を有する。
オゾン分子のみによる有機物等の酸化反応は、被酸化物
質の分子構造に対し選択性を有し、その反応が比較的遅
い。したがって、処理水中の溶存オゾンを分解するのみ
でなく、触媒よってラジカルの生成量を加速することに
よって、高い酸化反応性を有するラジカルと有機物等と
の酸化反応を支配的とし、有機物等の処理効率を高める
ことができる。この結果、ラジカルの生成量を加速しな
い場合、オゾン注入量を多くしないと処理水質の向上が
望めず、注入オゾン量の低減が困難である。これに対
し、溶存オゾンを触媒によって分解し、生成ラジカル量
を増加させると、オゾン注入量を増加させなくとも、酸
化反応性の高いラジカルによって有機物等を処理するこ
とができ、注入オゾン量の低減が可能となる。
Furthermore, when the dissolved ozone in the treated water is decomposed by the catalyst, OH and HO 2 radicals are generated in the process of decomposition, and these radicals have a selectivity with respect to an organic substance which is an oxidizable component. It has high oxidation reactivity.
Oxidation reaction of organic substances or the like by only ozone molecules has selectivity with respect to the molecular structure of the substance to be oxidized, and the reaction is relatively slow. Therefore, not only the dissolved ozone in the treated water is decomposed, but also the amount of radicals produced by the catalyst is accelerated, thereby predominantly effecting the oxidation reaction between the radicals having a high oxidation reactivity and the organic substances, thereby improving the treatment efficiency of the organic substances. Can be increased. As a result, unless the production amount of radicals is accelerated, the treated water quality cannot be improved unless the ozone injection amount is increased, and it is difficult to reduce the injected ozone amount. On the other hand, if dissolved ozone is decomposed by a catalyst and the amount of generated radicals is increased, it is possible to treat organic substances and the like with radicals having high oxidation reactivity without increasing the amount of injected ozone, and the amount of injected ozone is reduced. Is possible.

【0030】したがって、生物活性炭槽に充填された活
性炭の層高よりも低い層高に設定された触媒層をオゾン
接触槽の下流側に配置して、処理水中の溶存オゾンを触
媒層を通過させて分解し、触媒層を通過した処理水を生
物活性炭槽内に導入すれば、微生物を高活性状態に維持
して処理水質の向上が図れ、かつ、注入オゾン量の低減
が図れる簡素化された水処理装置を提供することができ
る。
Therefore, a catalyst layer whose bed height is set lower than the bed height of the activated carbon filled in the biological activated carbon tank is arranged on the downstream side of the ozone contact tank to allow dissolved ozone in the treated water to pass through the catalyst layer. If the treated water that has been decomposed and passed through the catalyst layer is introduced into the biological activated carbon tank, the microorganisms can be maintained in a highly active state and the treated water quality can be improved, and the amount of injected ozone can be reduced. A water treatment device can be provided.

【0031】次に、前述の如くオゾン接触槽の下流側に
触媒層を配置する場合、触媒種として活性炭を配置する
ようにした場合、活性成分が担持されていなくとも、活
性炭自身の触媒作用により溶存オゾンを分解するので、
処理水中への活性成分の溶解がなく、活性成分の溶解に
伴う処理水質の低下を防止することができる。
Next, when the catalyst layer is arranged on the downstream side of the ozone contact tank as described above, when activated carbon is arranged as a catalyst species, even if no active component is supported, the activated carbon itself is liable to catalyze. Since it decomposes dissolved ozone,
Since the active ingredient is not dissolved in the treated water, it is possible to prevent deterioration of the treated water quality due to the dissolution of the active ingredient.

【0032】さらに、触媒層の配置個所として、触媒層
をオゾン接触槽の下流側に位置するオゾン滞留槽内に配
置するようにした場合、この種水処理プロセス内で処理
水が触媒層を通過してから生物活性炭槽内に流入するま
での滞留時間を長く確保することができる。この結果、
触媒による溶存オゾンの分解に伴って生成した反応性の
高いラジカルと被処理水中の有機物等との反応を長い滞
留時間をかけて促進することができ、処理水質の向上が
図れる。
Further, when the catalyst layer is arranged in the ozone retention tank located on the downstream side of the ozone contact tank, the treated water passes through the catalyst layer in this seed water treatment process. It is possible to secure a long residence time from the start to the flow into the biological activated carbon tank. As a result,
The reaction between the highly reactive radicals generated by the decomposition of dissolved ozone by the catalyst and the organic matter in the water to be treated can be promoted over a long residence time, and the quality of the treated water can be improved.

【0033】以上のことから、オゾン滞留槽内に触媒層
を配置する場合、触媒種としては処理水中への活性成分
の溶解がない活性炭が好ましい実施態様となり、触媒の
活性成分の溶解に伴う処理水質の低下を抑制することが
できる。
From the above, when arranging the catalyst layer in the ozone retention tank, activated carbon, which does not dissolve the active ingredient in the treated water, is the preferred embodiment as the catalyst species, and the treatment accompanying the dissolution of the active ingredient of the catalyst The deterioration of water quality can be suppressed.

【0034】[0034]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1に示す被処理水をオゾン注入処理し、その
後、生物活性炭処理する例としての浄水場のシステムフ
ローにおいて、河川等から取水された原水RWは導水管
(図示せず)を経て沈砂池(図示せず)に至り、ここで
粒径の大きな砂等が除去された後、着水井1に導かれ
る。原水RWは、その後薬品混和池2に導かれ、ここ
で、硫酸バンドまたはPAC(ポリ塩化アルミニウム)
等の凝集剤3または凝集補助剤となるアルカリ剤が注入
され急速混和される。その後、フロック形成池5に送ら
れる。
An embodiment of the present invention will be described below with reference to the drawings. In the system flow of a water treatment plant as an example in which the water to be treated shown in FIG. 1 is subjected to ozone injection treatment and then to biological activated carbon treatment, raw water RW taken from a river or the like passes through a water conduit (not shown) to a sand basin ( (Not shown), where sand or the like having a large particle size is removed, and then the water is guided to the landing well 1. The raw water RW is then led to the chemical mixing pond 2 where the sulfuric acid band or PAC (polyaluminum chloride) is used.
The coagulant 3 or the like or an alkaline agent serving as a coagulation aid is injected and rapidly mixed. After that, it is sent to the flock formation pond 5.

【0035】フロック形成池5では原水中の微粒子が凝
集してマイクロフロックの成長が促進される。6はマイ
クロフロックを撹拌するフロッキュレータを示す。その
後、粒径が大きく成長したフロックを含有する凝集水は
沈殿池7に導かれ、ここで、フロックの沈降分離が行わ
れる。
In the floc formation pond 5, fine particles in the raw water are aggregated to promote the growth of microflocs. Reference numeral 6 denotes a flocculator that agitates micro flocs. After that, the flocculated water containing flocs having a large particle size is guided to the settling tank 7, where the flocs are separated by sedimentation.

【0036】前記のようなプロセスを経てフロックが沈
降分離された沈殿水SWは、その後オゾン注入処理の対
象となる被処理水Woとしてオゾン接触槽8に導入され
る。なお、本発明の一実施例では、オゾン接触槽8は前
段槽8Aと後段槽8Bとから構成されているが、槽数が
特に限定されるものではない。さらに、本発明の実施例
では、沈殿池7からの沈殿水SWを被処理水Woとして
オゾン注入処理している。この場合、沈殿池7の下流側
に砂ろ過池(図示せず)が配設されている場合は、砂ろ
過池からのろ過水を被処理水Woとしてオゾン注入処理
してもよいことは勿論であり、オゾン注入処理の対象が
沈殿水SWのみに限定されるものではない。
The settling water SW from which flocs are settled and separated through the above-described process is then introduced into the ozone contact tank 8 as the water to be treated Wo to be subjected to the ozone injection treatment. In addition, in one Example of this invention, although the ozone contact tank 8 is comprised from the front | former stage tank 8A and the back | latter stage tank 8B, the number of tanks is not specifically limited. Further, in the embodiment of the present invention, the ozone injection treatment is performed by using the settling water SW from the settling tank 7 as the water to be treated Wo. In this case, if a sand filter (not shown) is provided on the downstream side of the sedimentation tank 7, it is needless to say that the filtered water from the sand filter may be subjected to ozone injection treatment as treated water Wo. However, the target of the ozone injection process is not limited to the precipitation water SW.

【0037】9はオゾン滞留槽で、この滞留槽は前記し
たオゾン接触槽8の下流側に配設されている。前記オゾ
ン接触槽8にはオゾナイザ10から通気管11を介して
オゾンガスOGが注入される。さらに詳述すると、原料
ガスRG(空気または酸素)がオゾナイザ10に供給さ
れ、ここで、無声放電により酸素はオゾンとなり、この
オゾンがオゾン接触槽8内に配設されて多数の小孔(図
示せず)を有する散気管11Aを介して注入される。こ
こで、被処理水Woはオゾン接触槽8に注入されるオゾ
ンガスOGに対して対向流となって流下し、前段槽8A
でオゾンガスが注入された被処理水Woは後段槽8Aに
流入し、前段槽と同様にオゾンガスOGが注入される。
Reference numeral 9 denotes an ozone retention tank, which is disposed downstream of the ozone contact tank 8. Ozone gas OG is injected into the ozone contact tank 8 from an ozonizer 10 through a ventilation pipe 11. More specifically, the source gas RG (air or oxygen) is supplied to the ozonizer 10, where the oxygen becomes ozone due to the silent discharge, and this ozone is disposed in the ozone contact tank 8 and has a large number of small holes (see FIG. It is injected through the air diffuser 11A (not shown). Here, the water Wo to be treated flows countercurrently to the ozone gas OG injected into the ozone contact tank 8 and flows down to the front tank 8A.
The treated water Wo into which the ozone gas has been injected flows into the rear tank 8A, and ozone gas OG is injected in the same manner as in the former tank.

【0038】前記のオゾンガスOGがオゾン接触槽8に
注入される場合、被処理水Woへのオゾン注入量は被処
理水Woの流量及び被処理水Wo中の有機物濃度等に応
じて任意に設定され、オペレータ等によって設定され
る。
When the ozone gas OG is injected into the ozone contact tank 8, the amount of ozone injected into the water to be treated Wo is arbitrarily set according to the flow rate of the water to be treated Wo and the concentration of organic substances in the water to be treated Wo. And set by an operator or the like.

【0039】12はオゾン接触槽8から気相に排出され
る排オゾンガスEG中の水分を除去するミストセパレー
タで、このミストセパレータの下流側にはオゾン分解処
理手段となるオゾン分解処理槽13が配設されている。
14は前記のオゾン分解処理槽13内に充填されたオゾ
ン分解触媒で、一般には粒状またはハニカム状のMnO2
媒が充填される。他には、活性炭及びNi,Fe等の少
なくとも一種の元素,酸化物または複合酸化物等の触媒
が充填されるが、使用触媒の種類及び形状等が特に限定
されるものではない。また、本発明の一実施例では、触
媒を用いて排オゾンガスEGを分解しているが、例えば
350℃程度でオゾンを熱分解する方法または紫外線を
照射して分解する方法でもよく、排オゾンガスEGの分
解手段が特に限定されない。
Reference numeral 12 is a mist separator for removing the water in the exhaust ozone gas EG discharged from the ozone contact tank 8 to the gas phase, and an ozone decomposition treatment tank 13 serving as ozone decomposition treatment means is disposed downstream of this mist separator. It is set up.
Reference numeral 14 denotes an ozone decomposition catalyst filled in the ozone decomposition treatment tank 13, which is generally filled with a granular or honeycomb MnO 2 catalyst. In addition, activated carbon and at least one element such as Ni and Fe, a catalyst such as an oxide or a composite oxide are filled, but the type and shape of the catalyst used are not particularly limited. Further, in one embodiment of the present invention, the exhaust ozone gas EG is decomposed using a catalyst. However, for example, a method of thermally decomposing ozone at about 350 ° C. or a method of decomposing it by irradiating ultraviolet rays may be used. The decomposing means is not particularly limited.

【0040】オゾン分解処理手段として触媒を用いた場
合、オゾン分解処理槽13内に充填された触媒14の反
応温度は前記処理槽13の入口側または槽内に配設され
る加熱手段15により適温に維持される。触媒として、
MnO2 触媒を用いた場合、触媒反応温度は40℃から
50℃程度に保持される。
When a catalyst is used as the ozone decomposition treatment means, the reaction temperature of the catalyst 14 filled in the ozone decomposition treatment tank 13 is adjusted to an appropriate temperature by the heating means 15 provided on the inlet side of the treatment tank 13 or inside the tank. Maintained at. As a catalyst
When the MnO 2 catalyst is used, the catalytic reaction temperature is maintained at about 40 ° C to 50 ° C.

【0041】17はオゾン接触槽8からの排オゾンガス
EGを吸引するブロワーで、このブロワーはオゾン分解
処理槽13の出口側に配設されている。
A blower 17 sucks the exhaust ozone gas EG from the ozone contact tank 8. This blower is arranged on the outlet side of the ozone decomposition treatment tank 13.

【0042】18は被処理水WoにオゾンガスOGが注
入された後の処理水TWが導入される生物活性炭槽で、
この生物活性炭槽はオゾン滞留槽9の下流側に配設され
る。この生物活性炭槽18に流入する処理水TWは槽1
8上部から下部に流下する。前記生物活性炭槽18内に
は、微生物の担体となる活性炭19が充填され、これが
活性炭層20となる。活性炭19を充填して通水を開始
した当初は、この活性炭19の表面または内部に存在す
る微生物は少ないが、時間経過と共に活性炭19の表面
または内部には馴養されて繁殖した微生物が存在する。
微生物の優占種としては、Pseudomonas 等が上げられ
る。
Reference numeral 18 denotes a biological activated carbon tank into which treated water TW after ozone gas OG is injected into treated water Wo is introduced.
This biological activated carbon tank is arranged on the downstream side of the ozone retention tank 9. The treated water TW flowing into the biological activated carbon tank 18 is the tank 1
8 Run down from the top. The biological activated carbon tank 18 is filled with activated carbon 19 serving as a carrier of microorganisms, and this forms an activated carbon layer 20. Initially, when activated water 19 is filled and water flow is started, few microorganisms are present on the surface or inside of this activated carbon 19, but with the passage of time, microorganisms acclimatized and propagated are present on the surface or inside of activated carbon 19.
Pseudomonas and the like are mentioned as the dominant species of microorganisms.

【0043】オゾン注入処理後の処理水TWは、ここ
で、前記した微生物の働きにより、オゾン処理では除去
困難なアンモニア性窒素が硝化除去されると共にオゾン
処理で低分子化され易分解性有機物等の代謝除去が行わ
れる。このようにして処理された生物活性炭槽18から
の処理水AWは、その後配水池(図示せず)等に送られ
る。
In the treated water TW after the ozone injection treatment, the ammoniacal nitrogen, which is difficult to remove by the ozone treatment, is nitrified and removed by the action of the above-mentioned microorganisms, and at the same time, the ozone treatment reduces the molecular weight to easily decompose organic compounds and the like. Metabolism is removed. The treated water AW from the biological activated carbon tank 18 thus treated is then sent to a distribution reservoir (not shown) or the like.

【0044】21は生物活性炭槽18を必要に応じて逆
洗する場合、逆洗水BWが槽18内に導入される逆洗水
管を示す。逆洗水BWは生物活性炭槽18の下部から上
部に向けて流入し、活性炭層20を洗浄した排水は生物
活性炭槽18の上部に配設された排水管22を介して槽
18外に排出される。
Reference numeral 21 denotes a backwash water pipe into which the backwash water BW is introduced into the tank 18 when backwashing the biological activated carbon tank 18 as necessary. The backwash water BW flows from the lower part of the biological activated carbon tank 18 toward the upper part, and the wastewater that has washed the activated carbon layer 20 is discharged to the outside of the tank 18 via the drain pipe 22 arranged at the upper part of the biological activated carbon tank 18. It

【0045】23は被処理水Woにオゾン注入後の処理
水TW中の溶存オゾンを分解する触媒で、この触媒はオ
ゾン接触槽8の下流側に配置される。本発明の実施例で
はオゾン接触槽8の下流側に位置するオゾン滞留槽9内
に配置している。前記触媒23種としては、処理水TW
への担持活性成分の溶解がない活性炭が好ましく、活性
炭によって構成される触媒層24の層高hoは、生物活
性炭槽18内に充填される活性炭層20の層高hよりも
低く設定される。すなわち、この明細書の先でも説明し
たように、処理水TW中の溶存オゾンは活性炭層20の
表層より10cm以下の表層部において分解される。した
がって、活性炭層20を溶存オゾンの影響から保護する
この触媒層24は、少なくとも前記表層部に相当する層
高を有すればよく、各層高の関係はh>hoとなる。
Reference numeral 23 is a catalyst for decomposing dissolved ozone in the treated water TW after the ozone has been injected into the treated water Wo, and this catalyst is arranged on the downstream side of the ozone contact tank 8. In the embodiment of the present invention, it is arranged in the ozone retention tank 9 located downstream of the ozone contact tank 8. As the 23 kinds of catalysts, treated water TW is used.
Activated carbon in which supported active components are not dissolved in is preferable, and the bed height ho of the catalyst layer 24 made of activated carbon is set lower than the bed height h of the activated carbon layer 20 filled in the biological activated carbon tank 18. That is, as described earlier in this specification, the dissolved ozone in the treated water TW is decomposed in the surface layer portion 10 cm or less from the surface layer of the activated carbon layer 20. Therefore, the catalyst layer 24 that protects the activated carbon layer 20 from the influence of dissolved ozone has at least a layer height corresponding to the surface layer portion, and the relationship between the layer heights is h> ho.

【0046】前述のように構成されている場合、次に係
る構成の動作について説明するに、被処理水Woはオゾ
ン接触槽8に導入され、ここでオゾナイザ10側からオ
ゾンOGが注入される。この場合、被処理水Woに注入
したオゾンは液相中に全て溶解せず、一部は気相に排出
され、排オゾンガスEGはオゾン分解触媒14にて酸素
に転化(分解)された後、系外に排出される。
In the case of the above-mentioned structure, the water Wo to be treated is introduced into the ozone contact tank 8 where the ozone OG is injected from the ozonizer 10 side, in order to explain the operation of the following structure. In this case, the ozone injected into the water Wo to be treated is not completely dissolved in the liquid phase, and a part thereof is discharged to the gas phase, and the exhaust ozone gas EG is converted (decomposed) into oxygen by the ozone decomposition catalyst 14, It is discharged outside the system.

【0047】一方、液相に溶解したオゾンは被処理水W
o中で有機物等のオゾン消費成分によって消費され、有
機物等によって消費されない残留オゾンは溶存オゾンと
して処理水TW中に存在する。
On the other hand, ozone dissolved in the liquid phase is treated water W.
The residual ozone that is consumed by the ozone consuming components such as organic matter in o and is not consumed by the organic matter exists in the treated water TW as dissolved ozone.

【0048】この場合、被処理水Woにオゾン注入後の
処理水TWは、この溶存オゾンを含有した状態でオゾン
滞留槽9を流下し、その後生物活性炭槽18に導入され
ることになる。ここで、生物活性炭槽18の逆洗が行わ
れ、生物活性炭層の表層部が新たに入れ代わると、表層
部に位置する微生物は処理水TW中の溶存オゾンの影響
を受けて壊死または損傷する恐れがある。微生物が壊死
または損傷を受けると、この微生物は担体の活性炭から
剥離して流下し、生物活性炭槽9からの処理水AW中に
混入し処理水質低下の原因となる。
In this case, the treated water TW after the ozone has been injected into the water to be treated Wo flows down the ozone retention tank 9 containing the dissolved ozone, and is then introduced into the biological activated carbon tank 18. Here, when the biological activated carbon tank 18 is backwashed and the surface layer of the biological activated carbon layer is newly replaced, the microorganisms located in the surface layer may be necrotic or damaged due to the influence of dissolved ozone in the treated water TW. There is. When the microorganism is necrosed or damaged, the microorganism separates from the activated carbon of the carrier and flows down, and is mixed into the treated water AW from the biological activated carbon tank 9 to cause deterioration of the treated water quality.

【0049】しかし、処理水TW中の溶存オゾンは、オ
ゾン接触槽8の下流側に配置された触媒層24によって
生物活性炭槽18流入前の段階で分解される。しかし
て、溶存オゾンが分解された処理水TWが生物活性炭槽
18の活性炭層20に流入することになるので、活性炭
層20、特にこの活性炭層の表層部に位置する微生物が
溶存オゾンの影響を受けて壊死または損傷するのを抑制
することができる。
However, the dissolved ozone in the treated water TW is decomposed by the catalyst layer 24 arranged on the downstream side of the ozone contact tank 8 before the inflow of the biological activated carbon tank 18. Then, since the treated water TW in which the dissolved ozone is decomposed flows into the activated carbon layer 20 of the biological activated carbon tank 18, the activated carbon layer 20, particularly the microorganisms located in the surface layer portion of the activated carbon layer, are affected by the dissolved ozone. It can be prevented from receiving necrosis or damage.

【0050】一方、前記のように処理水TW中の溶存オ
ゾンを触媒によって分解する場合、溶存オゾンは触媒層
24の表層部において分解されることから、この触媒層
の層高hoは少なくとも活性炭層20の層高hより低く
でき、少ない充填量の触媒で効率的に溶存オゾンを分解
することができる。この結果、生物活性炭層の微生物を
溶存オゾンの影響から保護する手段は簡素化される。
On the other hand, when the dissolved ozone in the treated water TW is decomposed by the catalyst as described above, since the dissolved ozone is decomposed in the surface layer portion of the catalyst layer 24, the bed height ho of this catalyst layer is at least the activated carbon layer. The layer height h of 20 can be made lower, and dissolved ozone can be decomposed efficiently with a small amount of catalyst. As a result, the means for protecting the microorganisms of the bioactive carbon layer from the influence of dissolved ozone is simplified.

【0051】また、溶存オゾンは触媒によって分解され
た後、酸素となり、この酸素は溶存酸素となることか
ら、触媒層24を通過して生物活性炭槽18に流入する
処理水TW中の溶存酸素は高濃度状態に維持される。こ
のため、微生物の増殖に伴い酸素摂取量が増加しても高
濃度の溶存酸素を含む処理水TWが生物活性炭槽18に
流入することになるので、微生物を高活性状態に維持で
きる。
Further, the dissolved ozone becomes oxygen after being decomposed by the catalyst, and this oxygen becomes dissolved oxygen. Therefore, the dissolved oxygen in the treated water TW flowing through the catalyst layer 24 into the biological activated carbon tank 18 is Maintained at high concentration. Therefore, even if the oxygen uptake increases with the growth of the microorganisms, the treated water TW containing a high concentration of dissolved oxygen flows into the biological activated carbon tank 18, so that the microorganisms can be maintained in a highly active state.

【0052】さらに、オゾン接触槽8の下流側に配置さ
れた触媒によって溶存オゾンが分解される場合、分解に
伴い生成する反応性の高いラジカルによって被処理水W
o中の有機物等の酸化反応が促進され、触媒を配置しな
いときの処理水質よりも水質の向上が図れる。特に、本
発明の一実施例のように、触媒層24を滞留時間の長い
オゾン滞留槽に配置すると、触媒による溶存オゾンの分
解に伴って生成したラジカル(OH・等)と被処理水W
o中の有機物等との反応を長い滞留時間をかけて促進す
ることができ、処理水質の向上と共に反応の促進によっ
て被処理水Woへのオゾン注入量を低減することが可能
となり、オゾン注入処理に要するランニングコストが削
減できる。
Further, when the dissolved ozone is decomposed by the catalyst arranged on the downstream side of the ozone contact tank 8, the treated water W is generated by the highly reactive radicals generated by the decomposition.
Oxidation reaction of organic substances and the like in o is promoted and the quality of treated water can be improved over the quality of treated water when a catalyst is not arranged. In particular, when the catalyst layer 24 is arranged in an ozone retention tank having a long retention time as in one embodiment of the present invention, the radicals (OH, etc.) generated along with the decomposition of dissolved ozone by the catalyst and the water W to be treated.
It is possible to accelerate the reaction with the organic substances in o over a long residence time, and it is possible to improve the quality of the treated water and reduce the amount of ozone injected into the water to be treated Wo by promoting the reaction. The running cost required for can be reduced.

【0053】[0053]

【発明の効果】本発明によれば、溶存オゾンによる微生
物の損傷を抑制して微生物を高活性状態に維持し、処理
水質の向上が図れる簡素化された水処理装置を提供する
ことができる。
According to the present invention, it is possible to provide a simplified water treatment apparatus capable of suppressing the damage of microorganisms due to dissolved ozone to maintain the microorganisms in a highly active state and improving the quality of treated water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す水処理装置のシステム
フロー図。
FIG. 1 is a system flow diagram of a water treatment device showing an embodiment of the present invention.

【図2】図1に示すシステムフロー図の部分拡大詳細
図。
FIG. 2 is a partially enlarged detailed view of the system flow diagram shown in FIG.

【図3】本発明による溶存オゾンの分解特性図。FIG. 3 is a decomposition characteristic diagram of dissolved ozone according to the present invention.

【符号の説明】[Explanation of symbols]

1…着水井、2…薬品混和池、5…フロック形成池、7
…沈殿池、8…オゾン接触槽、9…オゾン滞留槽、10
…オゾナイザ、11…通気管、12…ミストセパレー
タ、13…オゾン分解処理槽、14…オゾン分解触媒、
17…ブロワー、18…生物活性炭槽、19…活性炭、
20…活性炭層、21…逆洗水管、23…触媒、24…
触媒層。
1 ... landing well, 2 ... chemical mixing pond, 5 ... floc formation pond, 7
... sedimentation tank, 8 ... ozone contact tank, 9 ... ozone retention tank, 10
... Ozonizer, 11 ... Vent pipe, 12 ... Mist separator, 13 ... Ozone decomposition treatment tank, 14 ... Ozone decomposition catalyst,
17 ... Blower, 18 ... Biological activated carbon tank, 19 ... Activated carbon,
20 ... Activated carbon layer, 21 ... Backwash water pipe, 23 ... Catalyst, 24 ...
Catalyst layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 503 C02F 9/00 503A 504 504A 504E (72)発明者 陰山 晃治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 9/00 503 C02F 9/00 503A 504 504A 504E (72) Inventor Koji Ojiyama Omikami, Hitachi City, Ibaraki Prefecture 7-1-1, Machi, Hitachi Co., Ltd. Hitachi Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理水を導入してオゾンと接触させるオ
ゾン接触槽と該オゾン接触槽で処理された処理水を導入
して生物活性炭処理を行う生物活性炭槽とを備えた水処
理装置において、前記生物活性炭槽に充填された活性炭
の層高よりも低い層高に設定された触媒層を前記オゾン
接触槽の下流側に設置し、前記オゾン接触槽で処理され
た水中に含まれる溶存オゾンを該触媒層を通過させて分
解してから前記生物活性炭槽に導入するようにしたこと
を特徴とする水処理装置。
1. A water treatment apparatus comprising an ozone contact tank for introducing treated water into contact with ozone and a biological activated carbon tank for introducing treated water treated in the ozone contact tank to perform biological activated carbon treatment. , A catalyst layer having a bed height lower than that of the activated carbon filled in the biological activated carbon tank is installed on the downstream side of the ozone contact tank, and dissolved ozone contained in water treated in the ozone contact tank Is passed through the catalyst layer for decomposition and then introduced into the biological activated carbon tank.
【請求項2】前記触媒層に充填される触媒が活性炭より
なることを特徴とする請求項1記載の水処理装置。
2. The water treatment device according to claim 1, wherein the catalyst filled in the catalyst layer is made of activated carbon.
【請求項3】被処理水を導入してオゾンと接触させるオ
ゾン接触槽と、該オゾン接触槽の下流側に配設されて該
オゾン接触槽からのオゾン処理水が導入されるオゾン滞
留槽と、該オゾン滞留槽の下流側に配置されて該オゾン
滞留槽からの処理水が導入される生物活性炭槽とを備
え、該生物活性炭槽に充填された活性炭の層高よりも低
い層高に設定された触媒層を前記オゾン滞留槽内に配置
して、該オゾン滞留槽内の処理水中の溶存オゾンを該触
媒層を通過させて分解するようにしたことを特徴とする
水処理装置。
3. An ozone contact tank for introducing water to be treated into contact with ozone, and an ozone retention tank disposed downstream of the ozone contact tank for introducing ozone-treated water from the ozone contact tank. A biological activated carbon tank disposed downstream of the ozone retention tank and into which treated water from the ozone retention tank is introduced, and the bed height is set lower than the bed height of the activated carbon filled in the biological activated carbon tank. The treated catalyst layer is disposed in the ozone retention tank, and dissolved ozone in the treated water in the ozone retention tank is passed through the catalyst layer to be decomposed.
【請求項4】前記オゾン滞留槽内に配置された触媒層に
充填される触媒が活性炭よりなることを特徴とする請求
項3記載の水処理装置。
4. The water treatment apparatus according to claim 3, wherein the catalyst filled in the catalyst layer arranged in the ozone retention tank is made of activated carbon.
JP7101892A 1995-04-26 1995-04-26 Water treatment apparatus Pending JPH08294695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7101892A JPH08294695A (en) 1995-04-26 1995-04-26 Water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101892A JPH08294695A (en) 1995-04-26 1995-04-26 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH08294695A true JPH08294695A (en) 1996-11-12

Family

ID=14312584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101892A Pending JPH08294695A (en) 1995-04-26 1995-04-26 Water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH08294695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534620A (en) * 2019-01-03 2019-03-29 清华大学 Catalytic ozonation and aerated biological activated carbon filter tank sewage water advanced treatment apparatus
CN110590062A (en) * 2019-09-10 2019-12-20 武汉科技大学 Method for advanced treatment of salt-containing oil refining wastewater
WO2021258515A1 (en) * 2020-06-22 2021-12-30 苏州大学 Application of pomelo peel biochar in catalytic ozonation degradation of organic pollutant in wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534620A (en) * 2019-01-03 2019-03-29 清华大学 Catalytic ozonation and aerated biological activated carbon filter tank sewage water advanced treatment apparatus
CN110590062A (en) * 2019-09-10 2019-12-20 武汉科技大学 Method for advanced treatment of salt-containing oil refining wastewater
WO2021258515A1 (en) * 2020-06-22 2021-12-30 苏州大学 Application of pomelo peel biochar in catalytic ozonation degradation of organic pollutant in wastewater

Similar Documents

Publication Publication Date Title
JPH0623379A (en) Method and device for purifying water
JPH10277568A (en) Treatment of organic matter-containing waste water
JP3575047B2 (en) Wastewater treatment method
JPH03137990A (en) High level treatment of sewage to be treated
JPH08294695A (en) Water treatment apparatus
JPH11253940A (en) Purified water treatment
JPH06134469A (en) Method for treating silicon cutting waste liquid
JPH11221584A (en) Pressurized ozone treating system and device
JPH07275900A (en) Method for treating wastewater containing organic substance
JPH0671273A (en) Ozone contact tank in advance purifying water system
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP3168757B2 (en) Advanced treatment method and equipment for purified water
JP3178975B2 (en) Water treatment method
JP3913843B2 (en) Coagulation sedimentation processing equipment
JPH08267077A (en) High degree treating method of waste water
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JP3491474B2 (en) Water treatment equipment
JPH09174093A (en) Drainage treatment and apparatus therefor
JP3782738B2 (en) Wastewater treatment method
JPH05277475A (en) Treatment method for water containing organic substance
JPH091157A (en) Method for oxidation ferrous ion contained in underground water
CN103833168B (en) Chemical microwave treatment method of industrial methyldiethanolamine wastewater
JPH0631283A (en) Purifying treatment of eutrophicated untreated water
JPH07275874A (en) Ozone treatment apparatus
JP3195514B2 (en) Coagulation settling equipment