JPH08294291A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH08294291A
JPH08294291A JP7096982A JP9698295A JPH08294291A JP H08294291 A JPH08294291 A JP H08294291A JP 7096982 A JP7096982 A JP 7096982A JP 9698295 A JP9698295 A JP 9698295A JP H08294291 A JPH08294291 A JP H08294291A
Authority
JP
Japan
Prior art keywords
moving body
vibrating body
ultrasonic motor
contact
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7096982A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Takahiro Nishikura
孝弘 西倉
Takashi Nojima
貴志 野島
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7096982A priority Critical patent/JPH08294291A/en
Publication of JPH08294291A publication Critical patent/JPH08294291A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a small size and highly efficient ultrasonic motor which is resistive to the influence of load variation, etc., and maintains uniform friction contact between a vibrating body and a moving body to reduce generation of noise. CONSTITUTION: A vibrating body 13 obtained by joining a piezoelectric body 12 to an elastic substrate 11 having a plurality of projections 11a is pressurized in contact with a moving body 16 and the moving body is driven through a friction force between the vibrating body and moving body by energizing the vibrating body with a travelling wave. The surface of a contact area 16b of the moving body 16 provided opposed to the projection 11a of the vibrating body 13 is inclined so that the internal circumference is projected from the external circumference and difference Δt of distances from the contact surface S of the projections of the internal and external circumferences as the inclination degree is set larger than the amplitude value of deflective vibration applied to the vibrating body and smaller than 10 times the amplitude value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数個の突起部を有す
る弾性基板に圧電セラミックなどの圧電体を結合してな
る振動体に移動体を加圧接触させ、圧電体により振動体
に撓み振動の進行波を励振することにより、振動体と移
動体との間の摩擦力を介して移動体を駆動するように構
成した超音波モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibrating body in which a piezoelectric body such as a piezoelectric ceramic is coupled to an elastic substrate having a plurality of protrusions, a moving body is brought into pressure contact with the vibrating body, and the vibrating body is bent by the piezoelectric body. The present invention relates to an ultrasonic motor configured to drive a moving body via a frictional force between the vibrating body and the moving body by exciting a traveling wave of vibration.

【0002】[0002]

【従来の技術】近年、圧電セラミック等の圧電体を用い
て構成した振動体に弾性振動を励振し、これを駆動力と
して移動体を駆動する超音波モータが注目されている。
以下、図面を参照しながら超音波モータの従来技術につ
いて説明する。
2. Description of the Related Art In recent years, attention has been paid to an ultrasonic motor that excites elastic vibration in a vibrating body formed of a piezoelectric body such as a piezoelectric ceramic and drives a moving body by using this as a driving force.
Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.

【0003】図3に従来の超音波モータの主要部の構成
を断面図で示す。複数個の突起部1aを有する弾性基板
1に圧電体2を貼り合わせて振動体3が構成されてい
る。出力取出部4を有する移動体7は、弾性体5に耐摩
耗性の摩擦材6を結合してなり、これが振動体3に加圧
接触して設置されれている。
FIG. 3 is a sectional view showing the structure of the main part of a conventional ultrasonic motor. The vibrating body 3 is configured by bonding the piezoelectric body 2 to the elastic substrate 1 having a plurality of protrusions 1a. The moving body 7 having the output take-out portion 4 is formed by coupling an abrasion resistant friction material 6 to the elastic body 5, and this is installed in pressure contact with the vibrating body 3.

【0004】次に、このように構成された超音波モータ
の動作について、図4に示す超音波モータの動作原理図
を参照しながら説明する。まず、圧電体2には2組の駆
動電極が設けられており、この駆動電極に所定の位相差
を有する2つの交流電圧をそれぞれ印加すると、圧電体
2に伸縮振動が発生する。弾性基板1は圧電体2の伸縮
に抵抗するように働くので、バイメタルと同様の作用に
より、撓み振動の進行波が振動体3に励振される。振動
体3の表面の任意の点は撓み振動の進行波により楕円軌
跡を描くように運動する。振動体の突起部(図3の1
a)は、この楕円軌跡の横方向の変位(図4のζ)を拡
大する。振動体3の突起部に加圧接触して設置された移
動体7は拡大された横方向の変位によって摩擦力を介し
て駆動され、回転する。
Next, the operation of the ultrasonic motor thus constructed will be described with reference to the operation principle diagram of the ultrasonic motor shown in FIG. First, the piezoelectric body 2 is provided with two sets of drive electrodes. When two AC voltages having a predetermined phase difference are applied to the drive electrodes, stretching vibration is generated in the piezoelectric body 2. Since the elastic substrate 1 acts to resist expansion and contraction of the piezoelectric body 2, the traveling wave of the flexural vibration is excited in the vibrating body 3 by the same action as that of the bimetal. An arbitrary point on the surface of the vibrating body 3 moves so as to draw an elliptical locus by the traveling wave of the flexural vibration. The protrusion of the vibrator (1 in Fig. 3)
In a), the lateral displacement (ζ in FIG. 4) of this elliptical locus is magnified. The moving body 7 placed in pressure contact with the protrusion of the vibrating body 3 is driven by frictional force due to the enlarged lateral displacement to rotate.

【0005】上記のような従来の超音波モータにあって
は、図5に振動体3と移動体7との接触状態を拡大断面
図で示すように、移動体7は摩擦材6を介して振動体3
の突起部(図3の1a)の接触面Sに接触し、しかも、
摩擦材6は突起部1aの接触面Sより狭いフラットな面
で接触面Sの中央部に接触するように構成されていた。
In the conventional ultrasonic motor as described above, as shown in the enlarged sectional view of the contact state between the vibrating body 3 and the moving body 7 in FIG. Vibrating body 3
Contacts the contact surface S of the protrusion (1a in FIG. 3) of
The friction material 6 is configured to contact the central portion of the contact surface S with a flat surface narrower than the contact surface S of the protrusion 1a.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の超
音波モータを小型化しようとする際に、振動体の外径寸
法を低減していくと、振動体に蓄えられる運動エネルギ
ーが小さくなると共に負荷の影響を受けやすくなる。こ
のため、振動体および移動体の加工精度に依存する両者
の接触面の平面精度に起因して振動体と移動体との加圧
接触が不均一になった場合、あるいは、振動体と移動体
との均一加圧を行った場合においても、超音波モータの
出力が移動体から出力取出部を介して外部へ取出される
際に、上記従来例のように振動体の突起中央部で移動体
の摩擦材がフラットな面で接触する構成では振動体と移
動体との不均一な加圧による負荷変動が生じやすい。さ
らに、超音波モータの軸方向(加圧方向)またはその直
角方向に外部負荷による力が掛かると、振動体の突起部
から弾性基板(突起部以外のベース部分)に応力がかか
り、撓み振動が擾乱を受ける。その結果、不要振動が生
じて移動体と振動体との接触状態が不均一となり、モー
タ効率が低下したり騒音が発生しやすくなる。
When attempting to downsize the conventional ultrasonic motor as described above, if the outer diameter of the vibrating body is reduced, the kinetic energy stored in the vibrating body becomes smaller. Along with that, it becomes more susceptible to the load. Therefore, when the pressure contact between the vibrating body and the moving body becomes uneven due to the plane accuracy of the contact surfaces of the vibrating body and the moving body, which depends on the processing accuracy of the vibrating body and the moving body, or Even when uniform pressure is applied to the moving body, when the output of the ultrasonic motor is taken out from the moving body to the outside through the output taking-out portion, the moving body is moved at the central portion of the protrusion of the vibrating body as in the conventional example. In the structure in which the friction material contacts with a flat surface, load fluctuation is likely to occur due to uneven pressure applied between the vibrating body and the moving body. Furthermore, when a force is applied by an external load in the axial direction (pressurizing direction) of the ultrasonic motor or in a direction perpendicular to the axial direction, stress is applied from the protrusion of the vibrating body to the elastic substrate (base portion other than the protrusion), and bending vibration is generated. Receive a disturbance. As a result, unnecessary vibration occurs, the contact state between the moving body and the vibrating body becomes non-uniform, and the motor efficiency decreases and noise is likely to occur.

【0007】そこで、本発明は上記のような従来技術の
問題点を解消し、振動体と移動体との均一な摩擦接触を
維持することにより騒音の発生を抑制し、しかも効率の
良い小型の超音波モータを提供することを目的とする。
Therefore, the present invention solves the problems of the prior art as described above, suppresses the generation of noise by maintaining a uniform frictional contact between the vibrating body and the moving body, and is small in size with high efficiency. An object is to provide an ultrasonic motor.

【0008】[0008]

【課題を解決するための手段】本発明による超音波モー
タの特徴は、複数個の突起部を有する弾性基板に圧電体
を結合してなる振動体に加圧接触する移動体の本体部
と、その外周から軸方向に突出して前記振動体の突起部
に対向する面を有する接触部とが一体に形成され、前記
突起部に対向する接触部の面が、前記突起部の接触面に
対して径方向に傾斜した面で構成されている点にある。
The ultrasonic motor according to the present invention is characterized by a main body of a moving body which comes into pressure contact with a vibrating body in which a piezoelectric body is coupled to an elastic substrate having a plurality of protrusions. A contact portion having a surface projecting from the outer circumference in the axial direction and facing the protrusion of the vibrating body is integrally formed, and the surface of the contact portion facing the protrusion has a surface with respect to the contact surface of the protrusion. The point is that the surface is inclined in the radial direction.

【0009】好ましくは、前記突起部に対向する接触部
の面は、外周側より内周側が突出するように径方向に傾
斜しており、その傾斜度合としての内周端と外周端との
前記接触面からの距離差が、振動体に励振される撓み振
動の振幅値より大きく、かつ、振幅値の10倍より小さ
く設定されている。
Preferably, the surface of the contact portion facing the protrusion is inclined in the radial direction so that the inner peripheral side projects from the outer peripheral side, and the inner peripheral end and the outer peripheral end as the degree of inclination are inclined. The distance difference from the contact surface is set to be larger than the amplitude value of the flexural vibration excited by the vibrating body and smaller than 10 times the amplitude value.

【0010】また、前記移動体は樹脂成形体によって形
成され、かつ、前記突起部に対向する接触部の面は、研
磨によって最大表面粗さが2μm以下に仕上げられてい
ることが好ましい。さらに、前記移動体は繊維強化樹
脂、特に炭素繊維強化樹脂によって形成されていること
が好ましい。この場合、炭素繊維の含有量は、移動体の
剛性及び接触部の耐磨耗性を向上させると共に成型性及
び機械的強度を維持する観点から、5〜50重量%の範
囲内にあることが好ましい。
Further, it is preferable that the movable body is formed of a resin molded body, and the surface of the contact portion facing the protrusion is finished by polishing to have a maximum surface roughness of 2 μm or less. Furthermore, it is preferable that the moving body is formed of a fiber reinforced resin, particularly a carbon fiber reinforced resin. In this case, the content of the carbon fibers may be in the range of 5 to 50% by weight from the viewpoint of improving the rigidity of the moving body and the wear resistance of the contact portion, and maintaining the moldability and mechanical strength. preferable.

【0011】[0011]

【作 用】本発明による超音波モータは、移動体の本体
部と、その外周から軸方向に突出して前記振動体の突起
部に対向する面を有する接触部とが樹脂成型体等より一
体に形成されており、しかも、突起部に対向する接触部
の面が、突起部の接触面に対して径方向に傾斜した面で
構成されているので、振動体の突起中央部において摩擦
材を介してフラットな面で振動体と移動体とを接触させ
ていた従来例の場合に比較して、振動体と移動体との接
触部分のうねりを吸収する効果(面補正効果)が高い。
従って、超音波モータの軸方向またはその直角方向に外
部負荷による力が加わった場合にも負荷変動の影響を移
動体接触部において低減することが可能となり、振動体
の対負荷特性が向上する。つまり、上記のような外部負
荷による力が加わった場合にも振動体と移動体との均一
な接触状態が維持される。
[Operation] In the ultrasonic motor according to the present invention, the main body portion of the moving body and the contact portion having the surface projecting from the outer periphery in the axial direction and facing the protruding portion of the vibrating body are integrally formed from a resin molded body or the like. In addition, since the surface of the contact portion facing the protrusion is formed by a surface inclined in the radial direction with respect to the contact surface of the protrusion, a friction material is interposed at the center of the protrusion of the vibrating body. Compared to the case of the conventional example in which the vibrating body and the moving body are in contact with each other on a flat surface, the effect of absorbing the undulation in the contact portion between the vibrating body and the moving body (surface correction effect) is higher.
Therefore, even when a force due to an external load is applied in the axial direction of the ultrasonic motor or in a direction perpendicular to the axial direction, the effect of load fluctuation can be reduced at the moving body contact portion, and the load-bearing characteristic of the vibrating body is improved. That is, the uniform contact state between the vibrating body and the moving body is maintained even when the above-mentioned force due to the external load is applied.

【0012】接触部の面の傾斜は、接触部の内周側又は
外周側の一方を他方より突出させるすることにより、あ
るいは、中央で突出させて内周側及び外周側になるほど
後退させることにより得られる。しかし、上記のような
作用を奏するためには、外周側より内周側が突出するよ
うにしたほうがよいこと、そしてその傾斜度合としての
内周端と外周端との突起部接触面からの距離差を、振動
体に励振される撓み振動の振幅値より大きく、かつ、振
幅値の10倍より小さく設定することが好ましいことが
後述の実験からわかっている。
The inclination of the surface of the contact portion is obtained by projecting one of the inner peripheral side and the outer peripheral side of the contact portion from the other, or by projecting at the center and retracting toward the inner peripheral side and outer peripheral side. can get. However, in order to achieve the above-mentioned effects, it is better to project the inner peripheral side from the outer peripheral side, and the difference in distance between the inner peripheral edge and the outer peripheral edge as the inclination degree from the projection contact surface. It has been found from an experiment to be described later that it is preferable to set a value larger than the amplitude value of the flexural vibration excited by the vibrating body and smaller than 10 times the amplitude value.

【0013】また、炭素繊維強化樹脂の成形によって一
体に形成された移動体の接触部の、突起部に対向する面
が研磨によって仕上げられ、さらに、その最大表面粗さ
が2μm以下に設定されていることにより、振動体と移
動体との接触状態の経時的な変化を少なくすることがで
きる。
Further, the surface of the contact portion of the moving body integrally formed by molding of the carbon fiber reinforced resin, facing the protrusion, is finished by polishing, and the maximum surface roughness thereof is set to 2 μm or less. By doing so, it is possible to reduce changes with time in the contact state between the vibrating body and the moving body.

【0014】[0014]

【実施例】以下、本発明を、具体的実施例を示す図面と
共に詳細に説明する。 (実施例1)図1に、本発明の実施例1による超音波モ
ータの主要部の構成を断面図で示す。複数個の突起部1
1aを有する弾性基板11の底面に、圧電セラミックな
どからなる圧電体12を貼り合わせて振動体13が構成
されている。また、移動体16は30重量%の炭素繊維
(短繊維)を含有するポリエーテルエーテルケトン(P
EEK)樹脂を射出成形して形成され、本体部16aと
接触部16bからなる。この移動体16は出力取出部1
4に圧入または接着等の方法により固定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing specific embodiments. (Embodiment 1) FIG. 1 is a sectional view showing a structure of a main part of an ultrasonic motor according to Embodiment 1 of the present invention. Multiple protrusions 1
A vibrating body 13 is configured by bonding a piezoelectric body 12 made of piezoelectric ceramic or the like to the bottom surface of an elastic substrate 11 having 1a. The moving body 16 is made of polyetheretherketone (P) containing 30% by weight of carbon fibers (short fibers).
EEK resin is formed by injection molding, and includes a main body portion 16a and a contact portion 16b. This moving body 16 is the output take-out section 1
It is fixed to 4 by a method such as press fitting or adhesion.

【0015】図2に、振動体13と移動体16との接触
部の拡大断面図を示す。移動体16の接触部16bの表
面(振動体13に対向する面)は径方向に傾斜し、外周
側より内周側が突出するように形成されている。このよ
うにして、振動体13の突起部11aの表面(即ち接触
面)で振動体13と移動体16とを加圧接触させてい
る。具体的な傾斜の度合、すなわち、接触部16bの内
周端と外周端との突起部接触面からの距離差(図中のΔ
t)を適切に設定するために以下のような実験をした。
FIG. 2 shows an enlarged sectional view of a contact portion between the vibrating body 13 and the moving body 16. The surface (the surface facing the vibrating body 13) of the contact portion 16b of the moving body 16 is formed so as to be inclined in the radial direction, and the inner peripheral side projects from the outer peripheral side. In this way, the vibrating body 13 and the moving body 16 are brought into pressure contact with each other on the surface (that is, the contact surface) of the protruding portion 11a of the vibrating body 13. The specific degree of inclination, that is, the difference in distance between the inner peripheral edge and the outer peripheral edge of the contact portion 16b from the contact surface of the protrusion (Δ in the figure
The following experiment was conducted to properly set t).

【0016】つまり、直径が10mmの小型超音波モー
タを傾斜度合Δtが異なる数種類について作製し、振動
体13に励振される撓み振動の振幅値を1μmに設定し
て、振動体13と移動体16との接触状態を評価した。
この評価は、振動体の振動を検出するためのセンサ電極
を圧電体の駆動電極部に設け、センサ電極出力の波形を
測定して、その変動率を評価することにより行った。そ
の結果を表1に示す。
That is, small ultrasonic motors having a diameter of 10 mm were produced for several types having different inclination degrees Δt, and the amplitude value of the flexural vibration excited by the vibrating body 13 was set to 1 μm, and the vibrating body 13 and the moving body 16 were set. The contact state with was evaluated.
This evaluation was performed by providing a sensor electrode for detecting the vibration of the vibrating body on the drive electrode portion of the piezoelectric body, measuring the waveform of the sensor electrode output, and evaluating the fluctuation rate. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】表1において、センサ電極出力波形の変動
率は、センサ電極出力波形のピーク値が上下に変動する
割合として定義されている。このセンサ電極出力波形の
変動率が大きいほど、振動体と移動体との接触状態が不
均一である度合いが大きいことを示している。
In Table 1, the fluctuation rate of the sensor electrode output waveform is defined as the rate at which the peak value of the sensor electrode output waveform fluctuates up and down. It is indicated that the greater the fluctuation rate of the sensor electrode output waveform, the greater the degree of non-uniformity of the contact state between the vibrating body and the moving body.

【0019】表1の結果に示されているように、移動体
接触部16bの面の傾斜度合Δtが撓み振動の振幅値
(1μm)と同じであるときは、Δt=0(フラット)
の場合に比べてセンサ電極出力波形の変動率は少し改善
されるものの依然大きく、振動体と移動体との接触状態
がまだ不均一であることがわかった。これは、傾斜度合
と振動体に励振される撓み振動の振幅値とが同程度の場
合は、振動体と移動体との加圧によって移動体接触部が
弾性変形してフラットな状態に近づくために、移動体の
接触部16bに傾斜を設けたことによる効果、つまり振
動体と移動体との接触を均一に保つ効果が充分に発揮さ
れないものと考えられる。
As shown in the results of Table 1, when the inclination degree Δt of the surface of the movable body contact portion 16b is the same as the flexural vibration amplitude value (1 μm), Δt = 0 (flat).
Although the fluctuation rate of the sensor electrode output waveform is slightly improved compared with the case of 1, the contact state between the vibrating body and the moving body is still non-uniform. This is because when the inclination degree and the amplitude value of the flexural vibration excited by the vibrating body are approximately the same, the moving body contact portion is elastically deformed by the pressurization of the vibrating body and the moving body and approaches a flat state. In addition, it is considered that the effect of providing the contact portion 16b of the moving body with an inclination, that is, the effect of uniformly maintaining the contact between the vibrating body and the moving body is not sufficiently exhibited.

【0020】移動体接触部の面の傾斜度合Δtを3μm
又は8μmまで大きくするとセンサ電極出力波形の変動
率が小さくなることが表1からわかる。しかし、傾斜度
合Δtをさらに大きくして、振動体に励振される撓み振
動の振幅値(1μm)の10倍以上(10μm,12μ
m)にすると、再びセンサ電極出力波形の変動率が大き
くなることが同様に表1からわかる。これは、以下の理
由によるものと考えられる。
The inclination degree Δt of the surface of the moving body contact portion is set to 3 μm.
It can be seen from Table 1 that the fluctuation rate of the output waveform of the sensor electrode becomes small when it is increased to 8 μm. However, if the inclination degree Δt is further increased, the amplitude value (1 μm) of the flexural vibration excited by the vibrating body is 10 times or more (10 μm, 12 μm).
Similarly, it can be seen from Table 1 that the variation rate of the output waveform of the sensor electrode increases again when m). This is considered to be due to the following reasons.

【0021】つまり、傾斜度合が撓み振動の振幅値の1
0倍程度になると、振動体と移動体との加圧により移動
体接触部に応力集中が起こり、移動体接触部の弾性変形
量が大きくなる。この変形量は振動体および移動体の平
面度に依存しており、振動体および移動体がサブミクロ
ン(0.1μm)オーダーで高精度に加工されている場
合には均一な変形を起こすが、実際のミクロンオーダー
の加工精度の平面度の場合は移動体接触部の変形が不均
一となる。このため、振動体の突起部より振動体の弾性
基板にかかる負荷が不均一となり、振動体の撓み振動が
擾乱を受けることによるものと考えられる。
That is, the degree of inclination is 1 of the amplitude value of the flexural vibration.
When it becomes about 0 times, stress is concentrated on the moving body contact portion due to the pressurization of the vibrating body and the moving body, and the elastic deformation amount of the moving body contact portion increases. This amount of deformation depends on the flatness of the vibrating body and the moving body, and when the vibrating body and the moving body are processed with high accuracy on the order of submicrons (0.1 μm), uniform deformation occurs, In the case of the flatness of the processing accuracy of the actual micron order, the deformation of the moving body contact portion becomes non-uniform. Therefore, it is considered that the load applied to the elastic substrate of the vibrating body from the protruding portion of the vibrating body becomes non-uniform, and the flexural vibration of the vibrating body is disturbed.

【0022】以上の実験結果から、移動体接触部の面の
傾斜度合Δtを、撓み振動の振幅値より大きく、かつ、
振幅値の10倍より小さくなるように設定すれば、振動
体と移動体との均一な接触状態を実現することができる
ことがわかる。
From the above experimental results, the inclination degree Δt of the surface of the moving body contact portion is larger than the amplitude value of the flexural vibration, and
It can be seen that a uniform contact state between the vibrating body and the moving body can be realized by setting the amplitude value to be smaller than 10 times.

【0023】次に、同じ小型超音波モータで、振動体に
励振される撓み振動の振幅値をやはり1μmに設定した
ときの騒音およびモータ(駆動)効率についても測定し
た。その結果を表2に示す。
Next, with the same small ultrasonic motor, the noise and the motor (driving) efficiency when the amplitude value of the flexural vibration excited by the vibrating body was also set to 1 μm were measured. The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2において、騒音は超音波モータから1
cm離れた位置で聴感特性に最も近いA特性(LA )に
て測定した。表2の結果より、傾斜度合Δtが振動体に
励振される撓み振動の振幅値(1μm)とが同じである
とき、又は10倍以上(10μm,12μm)のとき
は、騒音レベルが大きくモータ効率が低いことがわか
る。そして、Δt=3又は8のときに騒音レベルが小さ
くモータ効率が高い。したがって、移動体接触部16b
の傾斜度合Δtを、振動体に励振される撓み振動の振幅
値より大きく、かつ、振幅値の10倍より小さくなるよ
うに設定することによって、騒音が少なく効率の良い小
型超音波モータを実現できることがわかる。 (実施例2)次に、本願発明の実施例2による超音波モ
ータについて説明する。主要部の構成は図1及び2を用
いて説明した実施例1と同様であるが、本実施例では移
動体16が30重量%の炭素繊維を含むポリフェニレン
サルファイド(PPS)樹脂を射出成形して形成され
る。そして、移動体16の接触部16bは、実施例1と
同様に研磨によって、外周側より内周側が突出するよう
に形成されているが、その傾斜度合Δtは振動体に励振
される撓み振動の振幅値の3倍に設定されている。
In Table 2, the noise is 1 from the ultrasonic motor.
The measurement was performed with the A characteristic (L A ) closest to the auditory characteristic at a position separated by cm. From the results of Table 2, when the inclination degree Δt is the same as the amplitude value (1 μm) of the flexural vibration excited by the vibrating body, or when it is 10 times or more (10 μm, 12 μm), the noise level is large and the motor efficiency is high. It turns out that is low. When Δt = 3 or 8, the noise level is low and the motor efficiency is high. Therefore, the moving body contact portion 16b
By setting the inclination degree Δt of A to be larger than the amplitude value of the flexural vibration excited by the vibrating body and smaller than 10 times the amplitude value, it is possible to realize a small ultrasonic motor with low noise and good efficiency. I understand. (Second Embodiment) Next, an ultrasonic motor according to a second embodiment of the present invention will be described. The structure of the main part is the same as that of the example 1 described with reference to FIGS. 1 and 2, but in this example, the moving body 16 is formed by injection molding a polyphenylene sulfide (PPS) resin containing 30% by weight of carbon fiber. It is formed. The contact portion 16b of the moving body 16 is formed by polishing, as in the first embodiment, so that the inner peripheral side protrudes from the outer peripheral side. The inclination degree Δt of the contact portion 16b is equal to that of the flexural vibration excited by the vibrating body. It is set to three times the amplitude value.

【0026】直径が10mmの上記構成による小型超音
波モータを作製し、振動体13に励振される撓み振動の
振幅値を1μmに設定したときの振動体13と移動体1
6との接触状態を経時変化の観点から評価した。この評
価は、駆動回路を用いて1秒正転,1秒逆転,2秒停止
の動作を30万サイクル繰り返したときの超音波モータ
の回転数の変化を測定することによって行い、移動体接
触部の表面粗さを変えて実験した。その結果を表3に示
す。
A small ultrasonic motor having a diameter of 10 mm having the above-mentioned structure was produced, and when the amplitude value of the flexural vibration excited by the vibrating body 13 was set to 1 μm, the vibrating body 13 and the moving body 1 were moved.
The contact state with 6 was evaluated from the viewpoint of change with time. This evaluation is performed by measuring the change in the rotation speed of the ultrasonic motor when the operation of forward rotation for 1 second, reverse rotation for 1 second, and stop for 2 seconds is repeated 300,000 cycles using a drive circuit. Experiments were performed with different surface roughness. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】表3の結果からわかるように、移動体接触
部の表面粗さが2μmより大きい(3μm,4μm)場
合は回転数の経時変化が大きく、時間の経過と共に回転
数が上がっていった。これは、移動体接触部の面の表面
粗さが初期段階で粗い場合には、長時間駆動した後の振
動体と移動体との接触面と同様の均一性を有する接触状
態を、駆動の初期段階で実現することが困難であり、時
間の経過に従って振動体の突起部表面(接触面)と移動
体の接触部表面とが馴染むことにより、徐々に均一な接
触状態に変化していくことによるものと考えられる。
As can be seen from the results of Table 3, when the surface roughness of the moving body contact portion is larger than 2 μm (3 μm, 4 μm), the rotational speed changes greatly and the rotational speed increases with the passage of time. . This is because when the surface roughness of the surface of the moving body contact portion is rough at the initial stage, the contact state having the same uniformity as that of the contact surface between the vibrating body and the moving body after being driven for a long time is set to the driving state. It is difficult to achieve in the initial stage, and gradually changes to a uniform contact state due to the projection surface (contact surface) of the vibrating body and the surface of the contacting portion of the moving body becoming familiar with each other over time. It is thought to be due to.

【0029】従って、移動体接触部の面の最大表面粗さ
を2μm以下に設定することにより、初期状態から振動
体と移動体との均一な接触を実現することが可能であ
り、これによって長時間の駆動においてもモータ特性の
変化が少ない小型超音波モータを実現することができ
る。
Therefore, by setting the maximum surface roughness of the surface of the moving body contacting portion to 2 μm or less, it is possible to realize a uniform contact between the vibrating body and the moving body from the initial state, which makes it possible to achieve long contact. It is possible to realize a small-sized ultrasonic motor in which the change in motor characteristics is small even when driven for a long time.

【0030】以上、具体的な実施例について説明した
が、本発明を実施するに際して、これらの実施例に種々
の変更を加えて実施することが可能である。例えば、移
動体を射出成形によらず、樹脂ブロックから切削加工に
よって形成しても良い。また、移動体を構成する炭素繊
維強化樹脂の炭素繊維含有量は、超音波モータの加圧力
等に応じて調整可能である。
Although specific embodiments have been described above, it is possible to make various modifications to these embodiments when implementing the present invention. For example, the moving body may be formed by cutting from a resin block instead of injection molding. In addition, the carbon fiber content of the carbon fiber reinforced resin forming the moving body can be adjusted according to the pressure applied to the ultrasonic motor and the like.

【0031】なお、炭素繊維含有量が5重量%未満にな
ると、移動体の剛性を向上させる効果が不足すると共
に、移動体の接触部の耐摩耗性が不足する。一方、炭素
繊維含有量が50重量%を越えると、成形方法あるいは
樹脂の流動性によっても異なるが、成形が困難となると
共に成形した移動体の機械的強度が脆くなる。従って、
炭素繊維の含有量は5〜50重量%の範囲内にあること
が好ましい。さらに、移動体に必要とされる材料特性、
移動体の成形性、移動体のコスト等を総合的に判断する
と、15〜35重量%の範囲内にあることがより望まし
い。
When the carbon fiber content is less than 5% by weight, the effect of improving the rigidity of the moving body is insufficient, and the wear resistance of the contact portion of the moving body is insufficient. On the other hand, if the carbon fiber content exceeds 50% by weight, the molding becomes difficult and the mechanical strength of the molded moving body becomes brittle, although it depends on the molding method or the fluidity of the resin. Therefore,
The carbon fiber content is preferably in the range of 5 to 50% by weight. Furthermore, the material properties required for the moving body,
When comprehensively judging the moldability of the moving body, the cost of the moving body, etc., it is more preferable that it is within the range of 15 to 35% by weight.

【0032】また、炭素繊維強化樹脂に用いられる樹脂
としては、PEEK樹脂やPPS樹脂に限らず、ポリイ
ミドやポリアミド等を用いることも可能である。さら
に、炭素繊維強化樹脂に限らず、ガラス繊維や金属繊維
等による強化樹脂を用いて移動体を形成してもよい。
The resin used for the carbon fiber reinforced resin is not limited to PEEK resin or PPS resin, but polyimide, polyamide or the like can be used. Further, the moving body may be formed using not only carbon fiber reinforced resin but also reinforced resin such as glass fiber or metal fiber.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、移動体
の構成、特に、振動体の突起部に対向する接触部の面の
形状について工夫したことにより、外部負荷の影響を振
動体が受けにくく、振動体と移動体との均一な接触状態
を維持することができるようになり、その結果、騒音の
発生が抑制され、しかも効率の良い小型の超音波モータ
を提供することができる。さらに、接触部の面を研磨に
よって最大表面粗さ2μm以下に仕上ることにより、振
動体と移動体との接触状態の経時的な変化を少なくする
ことができる。
As described above, according to the present invention, by devising the structure of the moving body, in particular, the shape of the surface of the contact portion facing the protrusion of the vibrating body, the influence of the external load can be reduced. It is difficult to receive the vibration, and it is possible to maintain a uniform contact state between the vibrating body and the moving body. As a result, it is possible to provide a small ultrasonic motor that suppresses the generation of noise and is efficient. . Further, by polishing the surface of the contact portion to have a maximum surface roughness of 2 μm or less, it is possible to reduce a change with time in the contact state between the vibrating body and the moving body.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る超音波モータの主要部
の構成を示す断面図
FIG. 1 is a sectional view showing a configuration of a main part of an ultrasonic motor according to an embodiment of the present invention.

【図2】 図1の超音波モータの振動体と移動体との接
触状態を示す部分拡大断面図
FIG. 2 is a partially enlarged sectional view showing a contact state between a vibrating body and a moving body of the ultrasonic motor of FIG.

【図3】 従来例の超音波モータの主要部の構成を示す
断面図
FIG. 3 is a cross-sectional view showing a configuration of a main part of a conventional ultrasonic motor.

【図4】 超音波モータの動作原理を示す説明図FIG. 4 is an explanatory diagram showing the operation principle of the ultrasonic motor.

【図5】 図3の超音波モータの振動体と移動体との接
触状態を示す部分拡大断面図
5 is a partially enlarged cross-sectional view showing a contact state between a vibrating body and a moving body of the ultrasonic motor of FIG.

【符号の説明】[Explanation of symbols]

11 弾性基板 11a 突起部 12 圧電体 13 振動体 14 出力取出部 16 移動体 16a 本体部 16b 接触部 S 接触面 11 Elastic Substrate 11a Projection Part 12 Piezoelectric Body 13 Vibrating Body 14 Output Extraction Section 16 Moving Body 16a Main Body Section 16b Contact Section S Contact Surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kawasaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数個の突起部を有する弾性基板に圧電
体を結合してなる振動体に移動体を加圧接触させ、前記
振動体に撓み振動の進行波を励振することにより、前記
振動体と前記移動体との間の摩擦力を介して前記移動体
を駆動する超音波モータにおいて、前記移動体の本体部
と、その外周から軸方向に突出して前記振動体の突起部
に対向する面を有する接触部とが一体に形成され、前記
突起部に対向する接触部の面が、前記突起部の接触面に
対して径方向に傾斜した面で構成されていることを特徴
とする超音波モータ。
1. A vibrating body formed by coupling a piezoelectric body to an elastic substrate having a plurality of protrusions is brought into pressure contact with a moving body, and a traveling wave of flexural vibration is excited in the vibrating body, whereby the vibration is generated. In an ultrasonic motor for driving the moving body via a frictional force between the body and the moving body, the main body of the moving body and the protruding portion of the vibrating body projecting in the axial direction from the outer periphery of the main body. A contact portion having a surface is integrally formed, and a surface of the contact portion facing the protrusion is a surface inclined in a radial direction with respect to the contact surface of the protrusion. Sonic motor.
【請求項2】 前記突起部に対向する接触部の面は、外
周側より内周側が突出するように径方向に傾斜してお
り、その傾斜度合としての内周端と外周端との前記接触
面からの距離差が、振動体に励振される撓み振動の振幅
値より大きく、かつ、振幅値の10倍より小さく設定さ
れている請求項1記載の超音波モータ。
2. The surface of the contact portion facing the protrusion is inclined in the radial direction so that the inner peripheral side protrudes from the outer peripheral side, and the contact degree between the inner peripheral end and the outer peripheral end as the inclination degree thereof. The ultrasonic motor according to claim 1, wherein the distance difference from the surface is set to be larger than the amplitude value of the flexural vibration excited by the vibrating body and smaller than 10 times the amplitude value.
【請求項3】 前記移動体は樹脂成形体によって形成さ
れ、かつ、前記突起部に対向する接触部の面は、研磨に
よって最大表面粗さが2μm以下に仕上げられている請
求項1又は2記載の超音波モータ。
3. The moving body is formed of a resin molding, and the surface of the contact portion facing the protrusion is finished by polishing to have a maximum surface roughness of 2 μm or less. Ultrasonic motor.
【請求項4】 前記移動体は繊維強化樹脂によって形成
されている請求項3記載の超音波モータ。
4. The ultrasonic motor according to claim 3, wherein the moving body is made of fiber reinforced resin.
【請求項5】 前記移動体は炭素繊維強化樹脂によって
形成されている請求項4記載の超音波モータ。
5. The ultrasonic motor according to claim 4, wherein the moving body is made of carbon fiber reinforced resin.
【請求項6】 前記炭素繊維強化樹脂に含まれる炭素繊
維の含有量が、5〜50重量%の範囲内にある請求項5
記載の超音波モータ。
6. The carbon fiber content of the carbon fiber reinforced resin is in the range of 5 to 50% by weight.
The described ultrasonic motor.
JP7096982A 1995-04-21 1995-04-21 Ultrasonic motor Pending JPH08294291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096982A JPH08294291A (en) 1995-04-21 1995-04-21 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096982A JPH08294291A (en) 1995-04-21 1995-04-21 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH08294291A true JPH08294291A (en) 1996-11-05

Family

ID=14179427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096982A Pending JPH08294291A (en) 1995-04-21 1995-04-21 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH08294291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121679A (en) * 2005-10-28 2007-05-17 Konica Minolta Opto Inc Optical member drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121679A (en) * 2005-10-28 2007-05-17 Konica Minolta Opto Inc Optical member drive device

Similar Documents

Publication Publication Date Title
US6825592B2 (en) Vibratory motors and methods of making and using same
US7342347B2 (en) Piezomotor with a guide
EP1630879B1 (en) Vibratory motor and method of making and using same
JP5979817B2 (en) Vibration wave drive
US6114799A (en) Driving mechanism
US10541630B2 (en) Manufacturing method of vibrator
US20050127789A1 (en) Piezoelectric motors and methods for the production and operation thereof
US6323578B1 (en) Piezoelectric actuator, piezoelectric actuator driving method and computer readable storage medium stored with program for making computer execute piezoelectric actuator driving method
JPS59188381A (en) Improvement in rotor/movable element of surface wave motor
JPH08294291A (en) Ultrasonic motor
WO2011093307A1 (en) Frictional contact member for transducer in ultrasonic motor and transducer for ultrasonic motor
JP2574577B2 (en) Linear actuator
JP2000116158A (en) Ultrasonic motor
JPH05211783A (en) Ultrasonic motor
JPH1028387A (en) Vibration actuator
JP2003224987A (en) Vibration-type drive apparatus
JP2548253B2 (en) Ultrasonic motor
JP2022073581A5 (en)
JPH08298792A (en) Vibration wave drive device
JPH04334984A (en) Oscillatory wave motor
JPH06269181A (en) Ultrasonic motor
JP2005278336A (en) Oscillating body, slide face polishing device and slide face polishing method
JP2001314093A (en) Vibration actuator and stage using the same
JP2002354850A (en) Oscillatory wave drive unit and manufacturing method therefor
JPH03273881A (en) Ultrasonic motor