JP2005278336A - Oscillating body, slide face polishing device and slide face polishing method - Google Patents

Oscillating body, slide face polishing device and slide face polishing method Download PDF

Info

Publication number
JP2005278336A
JP2005278336A JP2004090022A JP2004090022A JP2005278336A JP 2005278336 A JP2005278336 A JP 2005278336A JP 2004090022 A JP2004090022 A JP 2004090022A JP 2004090022 A JP2004090022 A JP 2004090022A JP 2005278336 A JP2005278336 A JP 2005278336A
Authority
JP
Japan
Prior art keywords
sliding surface
polishing
curvature
vibrating body
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004090022A
Other languages
Japanese (ja)
Inventor
Takao Mori
敬夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004090022A priority Critical patent/JP2005278336A/en
Publication of JP2005278336A publication Critical patent/JP2005278336A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillating body of which the slide face is formed into an arc shape having a curvature at which stable drive is obtained. <P>SOLUTION: The oscillating body 20 has a plurality of protrusions 4, and transmits an excited oscillation in a sending direction to a moving body 12 that contacts with the slide face 3 at the tip of the protrusion 4. A curvature in the sending direction of the moving body of the slide face 3 of the tip of the protrusion 4 is almost equal to a curvature in the vicinity of the belly of a neutral face parallel curve, and set to a value that coincides with or is slightly larger than a curvature at the maximum amplification of a drive oscillation. The curvature of the slide face 3 is not larger than ten times of the curvature of the neutral face parallel curve at a drive limit minimum amplification. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の突起先端の摺動面と接触する移動体に、励起した送り方向の振動を伝達する振動体、摺動面研磨装置および摺動面研磨方法に関する。   The present invention relates to a vibrating body, a sliding surface polishing apparatus, and a sliding surface polishing method that transmit excited vibration in a feeding direction to a moving body that is in contact with a sliding surface of a plurality of protrusion tips.

図8は従来の振動波モータに組み込まれる一般的な振動体の外観を示す斜視図である。従来、振動波モータに組み込まれる一般的な振動体420は、弾性体401、圧電部材402および摩擦材405から構成される。弾性体401は、振動体420をハウジング(図示せず)にビスで取り付けるための固定部408と、圧電部材402によって励起される振動の振幅を増幅する振幅拡大部409と、固定部408および振幅拡大部409を連結する薄肉部410とが一体に成形された構造を有する。振幅拡大部409は、櫛歯状に形成された突起404および基底部411からなる。各突起404の間には、空隙からなる溝部407が形成されている。一方、圧電部材402は、弾性体401の基底部411の反突起側の面に固定されている。   FIG. 8 is a perspective view showing an external appearance of a general vibrator incorporated in a conventional vibration wave motor. Conventionally, a general vibrating body 420 incorporated in a vibration wave motor includes an elastic body 401, a piezoelectric member 402, and a friction material 405. The elastic body 401 includes a fixing portion 408 for attaching the vibrating body 420 to a housing (not shown) with a screw, an amplitude expanding portion 409 for amplifying the amplitude of vibration excited by the piezoelectric member 402, the fixing portion 408, and the amplitude. The thin portion 410 that connects the enlarged portion 409 is integrally formed. The amplitude expanding portion 409 includes a protrusion 404 and a base portion 411 formed in a comb shape. Between each protrusion 404, the groove part 407 which consists of a space | gap is formed. On the other hand, the piezoelectric member 402 is fixed to the surface on the side opposite to the protrusion of the base portion 411 of the elastic body 401.

また、各突起404の上面である摺動面403には、摩擦材405が接着、はんだ、溶接などにより固定されている。摩擦材としては、効率よく出力を伝達するために、摩擦係数が高く、耐摩耗性に優れた材料であることが望ましく、この条件に見合う種々の有機材料、無機材料、金属材料が用いられる。また、弾性体の材質として、鉄系の粉末焼結材が用いられるが、これに限定されるものではなく、例えばステンレス、炭素鋼、黄銅、リン青銅、アルミ、亜鉛など振動によるエネルギーロスの少ない金属(つまり、振動の減衰が小さい金属)が適合する。また、ある程度ヤング率が高く、振動の減衰が小さい高分子化合物であってもよい。   Further, a friction material 405 is fixed to the sliding surface 403 that is the upper surface of each protrusion 404 by bonding, soldering, welding, or the like. The friction material is desirably a material having a high friction coefficient and excellent wear resistance in order to efficiently transmit output, and various organic materials, inorganic materials, and metal materials that meet this condition are used. In addition, an iron-based powder sintered material is used as the material of the elastic body, but it is not limited to this, and there is little energy loss due to vibration such as stainless steel, carbon steel, brass, phosphor bronze, aluminum, zinc, etc. Metal (ie metal with low vibration damping) is suitable. Further, it may be a polymer compound having a high Young's modulus to some extent and a small vibration damping.

このような振動体が組み込まれた振動波モータでは、垂直方向から移動体が加圧された状態で摺動面と接触する。近年、高トルク振動波モータが求められており、高トルク化のために、加圧力を増加させた場合、以下のような問題があった。第1の問題として、摺動面全体の平均面圧が上昇し、摩擦材の耐久性が多少劣化するだけでなく、エッジ付近に加圧力が集中的に加わるので、移動体からの反力による局所的な高圧環境の下、摺動面を形成する摩擦材の耐久性が著しく悪化し、摩擦材のエッジ付近を破壊させてしまうおそれがあった。また、第2の問題として、摺動面のエッジと移動体との線接触によって、このエッジが移動体側の摺動面を致命的なまでに損傷させてしまうおそれがあった。   In the vibration wave motor in which such a vibration body is incorporated, the moving body is pressed from the vertical direction and contacts the sliding surface. In recent years, a high-torque vibration wave motor has been demanded, and there has been the following problem when the applied pressure is increased to increase the torque. As a first problem, not only the average surface pressure of the entire sliding surface increases and the durability of the friction material is somewhat deteriorated, but also pressure is concentrated in the vicinity of the edge. Under the local high-pressure environment, the durability of the friction material forming the sliding surface is remarkably deteriorated, and the vicinity of the edge of the friction material may be destroyed. As a second problem, there is a possibility that the edge of the sliding surface and the moving body may seriously damage the sliding surface on the moving body side due to the line contact between the sliding surface and the moving body.

このような、エッジ付近の面圧集中により、エッジ付近の摩擦材が損傷し、その損傷により移動体側の摺動面も損傷するという連鎖的な上記問題に対し、特許文献1には、摺動面に曲率を持たせて接触面積を広げ、面圧を下げる弾性体が示されている。図9は突起先端の摺動面に曲率を持たせた弾性体を示す図である。図において、553は突起、558は摺動面、557は弾性体、556は圧電部材である。この弾性体557では、摺動面558に曲率を持たせることにより、接触状態を一定に保ち、安定した駆動力が得られる。そして、摺動面のエッジにより、移動体を機械的に損傷させ、接触面積が小さく、動力伝達が効率よくできないといった問題を解決する。この場合、曲率は、弾性体の弾性振動の1/2波長より小さい値に設定されている。   With respect to the chained problem that the friction material near the edge is damaged due to the concentration of the surface pressure near the edge, and the sliding surface on the moving body side is also damaged due to the damage, Patent Document 1 discloses sliding. An elastic body is shown in which the surface is curved to increase the contact area and reduce the surface pressure. FIG. 9 is a view showing an elastic body in which the sliding surface of the protrusion tip has a curvature. In the figure, 553 is a protrusion, 558 is a sliding surface, 557 is an elastic body, and 556 is a piezoelectric member. In the elastic body 557, by providing the sliding surface 558 with a curvature, the contact state is kept constant and a stable driving force can be obtained. And the problem that a moving body is damaged mechanically by the edge of a sliding surface, a contact area is small, and power transmission cannot be performed efficiently is solved. In this case, the curvature is set to a value smaller than ½ wavelength of the elastic vibration of the elastic body.

また、突起先端の摺動面のエッジと移動体とが線接触することにより、アブレッシブ摩耗が発生することを回避するために、特許文献2には、エッジに丸みを設けて線接触を回避するように成形された弾性体が示されている。図10は突起先端の摺動面のエッジ部に丸みを持たせた弾性体を示す図である。図において、651は弾性体、652は溝部、653は突起、654は摺動面である。図11は突起先端の摺動面のエッジ部が面取りされた弾性体を示す図である。751は弾性体、752は溝部、753は突起、755は摺動面である。摺動面755は、振動波により、常に移動体と平行に振動するわけではないので、そのエッジ部から移動体と接触することになるが、このような丸みあるいは面取りをエッジ部に施すことにより、突起先端の摺動面のエッジ部が移動体と線接触することを防止でき、アブレシブ摩耗を少なくすることができる。   Also, in order to avoid the occurrence of abrasive wear due to the line contact between the edge of the sliding surface at the tip of the protrusion and the moving body, Patent Document 2 provides a rounded edge to avoid line contact. An elastic body shaped as described above is shown. FIG. 10 is a view showing an elastic body in which the edge portion of the sliding surface at the tip of the protrusion is rounded. In the figure, 651 is an elastic body, 652 is a groove, 653 is a protrusion, and 654 is a sliding surface. FIG. 11 is a view showing an elastic body having a chamfered edge portion of the sliding surface at the tip of the protrusion. 751 is an elastic body, 752 is a groove, 753 is a protrusion, and 755 is a sliding surface. The sliding surface 755 does not always vibrate in parallel with the moving body due to the vibration wave. Therefore, the sliding surface 755 comes into contact with the moving body from the edge portion, but by applying such rounding or chamfering to the edge portion, Further, it is possible to prevent the edge portion of the sliding surface at the tip of the protrusion from making a line contact with the moving body, and to reduce abrasive wear.

また、特許文献3には、摺動面のエッジと移動体との線接触は、移動体に不要な振動を励起する加振源となるので、線接触をできるだけ避けなければならないことが示されている。また、特許文献4に記載の製造方法では、エッジ部の丸みの大きさを設定することが示されている。具体的に、エッジ部の丸みの大きさを駆動振動の振幅と同程度から10倍程度に設定すること、丸み形状の大きさにより決まる、研磨砥粒の大きさおよび毛の長さを持つ研磨布で丸み形状を成形することが示されている。さらに、特許文献5には、エッジ部のR加工は量産に適さないとし、振動体と移動体との均一な接触を得るために、円周方向に均一な弾性体からなる摺動材を設けることが示されている。
特許第2543145号公報 特許第2563325号公報 特開2000−23475号公報 特開平8−47270号公報 特開平7−337039号公報
Further, Patent Document 3 shows that the line contact between the edge of the sliding surface and the moving body is an excitation source that excites unnecessary vibrations on the moving body, so that the line contact should be avoided as much as possible. ing. Moreover, in the manufacturing method described in Patent Document 4, it is shown that the roundness of the edge portion is set. Specifically, the roundness of the edge portion is set to about the same as the amplitude of the drive vibration to about 10 times, and polishing with the size of the abrasive grains and the length of the hair determined by the size of the round shape. It is shown that a round shape is formed with a cloth. Further, in Patent Document 5, R processing of the edge portion is not suitable for mass production, and a sliding material made of a uniform elastic body is provided in the circumferential direction in order to obtain uniform contact between the vibrating body and the moving body. It has been shown.
Japanese Patent No. 2543145 Japanese Patent No. 2563325 JP 2000-23475 A JP-A-8-47270 JP 7-337039 A

しかしながら、上記従来例では、突起先端に曲率を持たせる場合、曲率の大きさを弾性体の弾性振動の1/2波長より小さな値としているが、その説明が不十分であった。また、突起先端を円弧状に成形する具体的手段が検討されていない。つまり、多くの摩擦材の突起先端を1つずつ円弧形状に成形することは、量産性の面から無理があった。また、円弧形状の曲率をねらいの値にすることは非常に困難であった。また、丸みを設ける製造方法は、高硬度の摺動材には適用できなかった。   However, in the above-described conventional example, when the curvature is provided at the tip of the protrusion, the magnitude of the curvature is set to a value smaller than ½ wavelength of the elastic vibration of the elastic body, but the explanation is insufficient. Further, a specific means for forming the tip of the protrusion into an arc shape has not been studied. That is, it has been impossible from the viewpoint of mass productivity to mold the protrusion tips of many friction materials one by one into an arc shape. Moreover, it has been very difficult to set the curvature of the arc shape to a target value. Moreover, the manufacturing method which provides roundness cannot be applied to a sliding material having high hardness.

また一方、突起の先端を摺動材で連結する場合、駆動振動における振動体の中立面を摺動面側に押し上げてしまい、突起の振幅拡大効果が十分に得られず、振動発生効率を低下させてしまっていた。   On the other hand, when the tip of the projection is connected with a sliding material, the neutral surface of the vibration body in the drive vibration is pushed up to the sliding surface side, so that the effect of expanding the amplitude of the projection cannot be obtained sufficiently and the vibration generation efficiency It was lowered.

そこで、本発明は、安定した駆動が得られるような曲率を有する円弧形状に摺動面が成形された振動体、その振動体を製造する摺動面研磨装置および摺動面研磨方法を提供することを目的とする。   Accordingly, the present invention provides a vibrating body in which a sliding surface is formed in an arc shape having a curvature that allows stable driving, a sliding surface polishing apparatus and a sliding surface polishing method for manufacturing the vibrating body. For the purpose.

また、本発明は、高硬度な摩擦材にも対応でき、量産に適するように、エッジ部に丸みが設けられた摺動面を有する振動体を製造することができる摺動面研磨装置および摺動面研磨方法を提供することを他の目的とする。   The present invention also provides a sliding surface polishing apparatus and a sliding device capable of manufacturing a vibrating body having a sliding surface with rounded edges so as to be compatible with high hardness friction materials and suitable for mass production. It is another object to provide a dynamic surface polishing method.

上記目的を達成するために、本発明の振動体は、複数の突起を有し、該突起先端の摺動面と接触する移動体に、励起した送り方向の振動を伝達する振動体において、前記摺動面は円弧形状に形成され、該摺動面の移動体送り方向の曲率が中立面平行曲線の腹付近における曲率に略等しいことを特徴とする。   In order to achieve the above object, a vibrating body according to the present invention has a plurality of protrusions, and transmits the excited vibration in the feeding direction to a moving body that contacts the sliding surface of the protrusion tip. The sliding surface is formed in an arc shape, and the curvature of the sliding surface in the moving body feeding direction is substantially equal to the curvature in the vicinity of the antinode of the neutral plane parallel curve.

また、摺動面研磨装置は、振動体に設けられた複数の突起の、移動体と接触する摺動面を研磨面に押圧した状態で研磨する摺動面研磨装置であって、前記振動体に振動を励起させる圧電部材に給電可能な状態で前記振動体を保持する保持手段と、前記振動体に振動を励起しながら前記研磨面に押圧された前記摺動面を円弧形状に研磨する研磨手段とを備え、前記研磨される摺動面の移動体送り方向の曲率が一定になるように、前記摺動面を成形することを特徴とする。   The sliding surface polishing apparatus is a sliding surface polishing apparatus that polishes a plurality of protrusions provided on the vibrating body in a state where the sliding surface that contacts the moving body is pressed against the polishing surface. A holding means for holding the vibrating body in a state in which power can be supplied to the piezoelectric member that excites vibrations, and polishing for polishing the sliding surface pressed against the polishing surface in an arc shape while exciting vibration to the vibrating body And means for shaping the sliding surface so that the curvature of the sliding surface to be polished is constant in the moving body feeding direction.

また、摺動面研磨方法は、振動体に設けられた複数の突起の、移動体と接触する摺動面を研磨面に押圧した状態で研磨する摺動面研磨方法であって、前記振動体に振動を励起させる圧電部材に給電可能な状態で前記振動体を保持する保持ステップと、前記振動体に振動を励起しながら前記研磨面に押圧された前記摺動面を円弧形状に研磨する研磨ステップとを有し、前記研磨される摺動面の移動体送り方向の曲率が一定になるように、前記摺動面を成形することを特徴とする。   Further, the sliding surface polishing method is a sliding surface polishing method in which a plurality of protrusions provided on the vibrating body are polished in a state where the sliding surface contacting the moving body is pressed against the polishing surface. A holding step for holding the vibrating body in a state where power can be supplied to a piezoelectric member that excites vibrations, and polishing for polishing the sliding surface pressed against the polishing surface into an arc shape while exciting vibration to the vibrating body And forming the sliding surface so that the curvature of the sliding surface to be polished is constant in the moving body feeding direction.

本発明の請求項1に係る振動体によれば、摺動面の移動体送り方向の曲率が中立面平行曲線の腹付近における曲率に略等しいので、安定した駆動が得られるような曲率を有する円弧形状に摺動面が成形される。この振動体を用いることで、耐久性に優れ、異音を発しない安定した駆動を実現でき、高トルク化のために加圧を増やしても耐久性が劣化することのない振動波モータを得ることができる。   According to the vibrating body according to claim 1 of the present invention, the curvature in the moving body feed direction of the sliding surface is substantially equal to the curvature in the vicinity of the antinode of the neutral plane parallel curve. The sliding surface is formed into an arc shape. By using this vibrating body, it is possible to achieve a stable drive that is excellent in durability, does not generate abnormal noise, and does not deteriorate in durability even when the pressure is increased for higher torque. be able to.

また、請求項6に係る摺動面研磨装置によれば、研磨仕上げ後の曲率を決定でき、そのような曲率を有する振動体を製造することができる。また、高硬度な摩擦材にも対応でき、量産に適するように、振動体を製造することができる。   According to the sliding surface polishing apparatus of the sixth aspect, the curvature after the polishing finish can be determined, and a vibrating body having such a curvature can be manufactured. Moreover, a vibrating body can be manufactured so as to be compatible with a high-hardness friction material and suitable for mass production.

本発明の振動体、摺動面研磨装置および摺動面研磨方法の実施の形態について、図面を参照しながら説明する。   Embodiments of a vibrator, a sliding surface polishing apparatus, and a sliding surface polishing method according to the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は第1の実施形態における振動波モータに組み込まれる振動体の外観を示す斜視図である。この振動体20は、弾性体1、圧電部材2および摩擦材5から構成される。弾性体1は、振動体20をハウジング(図示せず)にビス等で取り付けるための固定部8と、圧電部材2によって励起される振動の振幅を増幅する振幅拡大部9と、固定部8および振幅拡大部9を連結する薄肉部10とが一体に成形された構造を有する。振幅拡大部9は、櫛歯状に形成された突起4および基底部11からなる。各突起4の間には、空隙からなる溝部7が形成されている。一方、圧電部材2は、弾性体1の基底部11の反突起側の面に固定されている。
[First Embodiment]
FIG. 1 is a perspective view showing an appearance of a vibrating body incorporated in a vibration wave motor according to the first embodiment. The vibrating body 20 includes an elastic body 1, a piezoelectric member 2, and a friction material 5. The elastic body 1 includes a fixing portion 8 for attaching the vibrating body 20 to a housing (not shown) with screws, an amplitude expanding portion 9 for amplifying the amplitude of vibration excited by the piezoelectric member 2, a fixing portion 8 and The thin-walled portion 10 that connects the amplitude-enlarging portion 9 is integrally formed. The amplitude expanding portion 9 includes a protrusion 4 and a base portion 11 formed in a comb shape. Between each protrusion 4, the groove part 7 which consists of a space | gap is formed. On the other hand, the piezoelectric member 2 is fixed to the surface on the side opposite to the protrusion of the base portion 11 of the elastic body 1.

また、各突起4の上面である摺動面3には、摩擦材5が接着、はんだ、溶接などにより固定されている。摩擦材としては、効率よく出力を伝達するために、摩擦係数が高く、耐摩耗性に優れた材料であることが望ましく、この条件に見合う種々の有機材料、無機材料、金属材料が用いられる。また、弾性体1の材質として、鉄系の粉末焼結材が用いられるが、これに限定されるものではなく、例えばステンレス、炭素鋼、黄銅、リン青銅、アルミ、亜鉛など振動によるエネルギーロスの少ない金属(つまり、振動の減衰が小さい金属)が適合する。また、ある程度ヤング率が高く、振動の減衰が小さい高分子化合物であってもよい。   A friction material 5 is fixed to the sliding surface 3 that is the upper surface of each protrusion 4 by bonding, soldering, welding, or the like. The friction material is desirably a material having a high friction coefficient and excellent wear resistance in order to efficiently transmit output, and various organic materials, inorganic materials, and metal materials that meet this condition are used. Moreover, although the iron-based powder sintered material is used as a material of the elastic body 1, it is not limited to this, For example, energy loss by vibration, such as stainless steel, carbon steel, brass, phosphor bronze, aluminum, zinc, etc. Less metal (that is, metal with low vibration damping) is suitable. Further, it may be a polymer compound having a high Young's modulus to some extent and a small vibration damping.

つぎに、各突起先端の摺動面の曲率について考察する。図2は駆動振動の腹付近における突起先端の摺動面と移動体との接触状態を、振動体の外径側から見た図である。図において、12は移動体である。同図(A)は突起の摺動面を円弧形状に形成していない場合を示す。図中、4aは突起である。尚、実際の接触では、エッジ部だけで線接触が行われているわけではなく、移動体側の摺動面が振動体側の摺動面をなぞるように変形しているが、ここでは分かり易く示している。同図(B)は突起の摺動面を円弧形状に形成し、その摺動面を移動体側の摺動面とともに中立面平行曲線にほぼ一致させた場合を示す。図中、4bは突起である。ここで、中立面平行曲線とは、駆動振動を表す振動体中立面の曲線と平行な、振動体摺動面を通る曲線を指す(図4の波線m参照)。また、移動体側の摺動面の曲率は、中立面平行曲線にほぼ一致することは、実験により既知である。   Next, the curvature of the sliding surface at the tip of each protrusion will be considered. FIG. 2 is a view of the contact state between the sliding surface at the tip of the protrusion and the moving body in the vicinity of the antinode of the driving vibration as viewed from the outer diameter side of the vibrating body. In the figure, 12 is a moving body. FIG. 4A shows a case where the sliding surface of the protrusion is not formed in an arc shape. In the figure, 4a is a protrusion. In actual contact, the line contact is not performed only at the edge portion, but the sliding surface on the moving body side is deformed so as to follow the sliding surface on the vibrating body side. ing. FIG. 5B shows a case where the sliding surface of the protrusion is formed in an arc shape and the sliding surface is made to substantially coincide with the neutral plane parallel curve together with the sliding surface on the moving body side. In the figure, 4b is a protrusion. Here, the neutral plane parallel curve refers to a curve that passes through the vibrating body sliding surface and is parallel to the curved surface of the vibrating body neutral surface that represents drive vibration (see the wavy line m in FIG. 4). Further, it is known from experiments that the curvature of the sliding surface on the moving body side substantially matches the neutral plane parallel curve.

本発明者等は、同図(A)、(B)に示す形状を有する振動体側の摺動面に、移動体側の摺動面を押し付けて接触させたときの振動体側の摺動面からの反力を計算により求めた。図3は移動体反力分布を示すグラフである。このグラフの横軸は、振動体における移動体送り方向の位相(θangle)を表す。一方、グラフの縦軸は、解析モデルの各節点における、移動体の押圧に対する振動体の摺動面からの反力分布の大きさ(Repulsive Force)を表す。本発明者等の静解析計算結果では、図2(A)における移動体反力分布は、曲線aに示す通りである。図2(B)における移動体反力分布は、曲線bに示す通りである。これらの計算結果から、突起4の摺動面の曲率を、中立面平行曲線における駆動振動の腹付近における曲率にほぼ一致させることにより、エッジ付近の面圧を減らして加圧力による局所的な高圧環境を抑制できることがわかる。   The present inventors have pressed the sliding surface on the movable body side against the sliding surface on the vibrating body side having the shape shown in FIGS. The reaction force was calculated. FIG. 3 is a graph showing the moving body reaction force distribution. The horizontal axis of this graph represents the phase (θangle) in the moving body feed direction of the vibrating body. On the other hand, the vertical axis of the graph represents the magnitude of the reaction force distribution (Repulsive Force) from the sliding surface of the vibrating body against the pressing of the moving body at each node of the analysis model. In the static analysis calculation result of the present inventors, the moving body reaction force distribution in FIG. 2A is as shown by a curve a. The moving body reaction force distribution in FIG. 2B is as shown by the curve b. From these calculation results, by making the curvature of the sliding surface of the protrusion 4 substantially coincide with the curvature in the vicinity of the antinode of the driving vibration in the neutral plane parallel curve, the surface pressure in the vicinity of the edge is reduced and the local pressure due to the applied pressure is reduced. It can be seen that the high pressure environment can be suppressed.

しかし、曲線bに示すように、図2(B)における移動体反力分布は、エッジ部分でまだ反力が大きく、不完全である。一方、円弧形状の摩擦面(摺動面)のエッジ部に丸みを持たせると、その移動体反力分布は、曲線cに示すように反力が均一なものとなる。図2(D)はエッジ部に丸みを持たせた場合を示す。このように、エッジ部に丸みを持たせた方が良い結果が得られた理由は2つある。その1つは、2平面の接触で見られるような、エッジ付近に応力が集中する現象の影響を緩和するからである。もう1つは、突起間の溝部で移動体がたるむことにより、エッジ付近に移動体の屈曲点が生じる現象の影響を緩和するからである。   However, as shown by the curve b, the moving body reaction force distribution in FIG. 2B is still incomplete because the reaction force is still large at the edge portion. On the other hand, when the edge portion of the arc-shaped friction surface (sliding surface) is rounded, the reaction force distribution of the moving body becomes uniform as shown by the curve c. FIG. 2D shows a case where the edge portion is rounded. As described above, there are two reasons why a better result is obtained when the edge portion is rounded. One of them is that the influence of the phenomenon of stress concentration near the edge as seen in contact between two planes is mitigated. The other is that the influence of the phenomenon that the bending point of the moving body is generated near the edge due to the moving body slacking in the groove between the protrusions is mitigated.

このように、エッジ部に丸みを設けることは、移動体のアブレッシブ摩耗の他、上記2つの現象の影響を緩和するために、モータの耐久性向上に効果的である。本実施形態では、摺動面をそのような形状(図2(D)参照)に成形することによって、耐久性に優れ、異音を発しない滑らかな安定した駆動を実現でき、高トルク化のために加圧を増やしても耐久性が劣化することのない振動波モータを得ることができる。   Thus, providing the edge portion with roundness is effective in improving the durability of the motor in order to reduce the influence of the above two phenomena in addition to the abrasive wear of the moving body. In the present embodiment, by forming the sliding surface into such a shape (see FIG. 2D), it is possible to realize a smooth and stable drive that is excellent in durability and does not generate abnormal noise, and has high torque. Therefore, it is possible to obtain a vibration wave motor whose durability does not deteriorate even when the pressure is increased.

また、振動波モータとして用いる場合、モータの回転数あるいは出力によって、駆動振動の振幅が変わるが、同時に中立面平行曲線の曲率も変化する。図4は無負荷時の振動波モータにおける振動体による移動体の駆動状態を示す図である。同図(A)に示すように、最高速回転時、駆動波の振幅は最も大きく、このとき中立面平行曲線の曲率も大きくなる。この状態から、回転数を下げていくと、同図(B)に示すように、駆動波の振幅は小さくなり、中立面平行曲線の曲率も小さくなっていく。そして、振幅がある一定値以下になると、振動体と移動体はほぼ全面で接触し、モータは停止する。このときの振幅を駆動限界最小振幅とし、曲率を駆動限界最小曲率とする。   When used as a vibration wave motor, the amplitude of the drive vibration changes depending on the rotation speed or output of the motor, but at the same time, the curvature of the neutral plane parallel curve also changes. FIG. 4 is a diagram showing a driving state of the moving body by the vibrating body in the vibration wave motor when there is no load. As shown in FIG. 3A, the amplitude of the driving wave is the largest at the highest speed rotation, and the curvature of the neutral plane parallel curve is also increased at this time. When the rotational speed is lowered from this state, the amplitude of the driving wave becomes smaller and the curvature of the neutral plane parallel curve becomes smaller as shown in FIG. When the amplitude falls below a certain value, the vibrating body and the moving body are almost in contact with each other, and the motor stops. The amplitude at this time is the drive limit minimum amplitude, and the curvature is the drive limit minimum curvature.

仮に、摺動面の曲率を、モータとして一番使用したい駆動振幅における中立面平行曲線の曲率に合わせてしまうと、摺動面の劣化や発熱による効率の低下などにより、同じ回転数あるいは出力であっても、より大きな駆動振幅が必要になった場合、エッジ部で線接触が発生し、異音を発生するなどの問題が生じるおそれがある。このため、最低でも、実駆動環境の下、最大振幅を要する条件の中立面平行曲線の曲率に合わせて、摺動面の曲率を成形しなければならない。これにより、全ての駆動条件で線接触を回避でき、安定な駆動を得ることができる。   If the curvature of the sliding surface is matched to the curvature of the neutral plane parallel curve at the drive amplitude that is most desired to be used as a motor, the same rotational speed or output will result due to deterioration of the sliding surface or reduced efficiency due to heat generation. However, when a larger drive amplitude is required, there is a possibility that a line contact occurs at the edge portion, and a problem such as generation of abnormal noise occurs. For this reason, at least, the curvature of the sliding surface must be formed in accordance with the curvature of the neutral plane parallel curve that requires the maximum amplitude under the actual driving environment. Thereby, line contact can be avoided under all driving conditions, and stable driving can be obtained.

また、低速駆動時、つまり駆動波が低振幅である場合、移動体側の曲率は小さくなるが、振動体側摺動面の曲率は最大振幅時の曲率になっている。このため、図2(B)に示す摺動面を有する振動体と移動体の接触は、図2(C)に示すように、最大振幅時にほぼ全域で接触していた送り方向の接触幅が小さくなる。そして、駆動中、複数の全突起の摺動面が、いずれの場所においても、移動体と接触していない状態が瞬間的に生まれることがある。この瞬間、振動体から移動体へのトルク伝達はなくなり、駆動が不安定になる。そこで、振動体から移動体へのトルクの伝達を確実に行って安定な駆動を得るために、振動体の突起先端の摺動面の曲率を数式(1)に示す条件を満足するように設定する必要がある。   Further, when driving at low speed, that is, when the driving wave has a low amplitude, the curvature on the moving body side is small, but the curvature on the sliding surface on the vibrating body side is the curvature at the maximum amplitude. For this reason, as shown in FIG. 2 (C), the contact between the vibrating body having the sliding surface and the moving body shown in FIG. Get smaller. During driving, a state in which the sliding surfaces of all the plurality of protrusions are not in contact with the moving body at any place may be instantly created. At this moment, there is no torque transmission from the vibrating body to the moving body, and the driving becomes unstable. Therefore, in order to reliably transmit torque from the vibrating body to the moving body and obtain a stable drive, the curvature of the sliding surface at the tip of the protrusion of the vibrating body is set so as to satisfy the condition shown in Equation (1). There is a need to.

摺動面曲率/駆動限界最小曲率 < 10 …… (1)
つぎに、上記考察されたように、振動体の摺動面を、エッジ部に丸みを持たせた円弧形状に成形する摺動面研磨装置およびその研磨方法を示す。図5は摺動面研磨装置の構成を示す斜視図である。この摺動面研磨装置は、振動体保持部41および研磨部42から構成される。振動体保持部41では、振動体20がその固定部8を挿通するビスでベース22に固定されている。ベース22はケース23の下面に取り付けられており、ケース23はロータリコネクタ24を介してホルダ25に取り付けられている。ロータリコネクタ24と振動体20の圧電部材2との間には、フィルム基板29が接続されている。一方、研磨部42は、ターンテーブル26を有し、その上面には軟質層27が設けられている。さらに、軟質層27の上には、ラッピングフィルム28が貼られている。
Sliding surface curvature / driving limit minimum curvature <10 (1)
Next, as discussed above, a sliding surface polishing apparatus and a polishing method thereof for forming a sliding surface of a vibrating body into an arc shape with rounded edges are shown. FIG. 5 is a perspective view showing the configuration of the sliding surface polishing apparatus. This sliding surface polishing apparatus includes a vibrating body holding unit 41 and a polishing unit 42. In the vibrating body holding portion 41, the vibrating body 20 is fixed to the base 22 with a screw that passes through the fixing portion 8. The base 22 is attached to the lower surface of the case 23, and the case 23 is attached to the holder 25 via the rotary connector 24. A film substrate 29 is connected between the rotary connector 24 and the piezoelectric member 2 of the vibrating body 20. On the other hand, the polishing unit 42 includes a turntable 26, and a soft layer 27 is provided on the upper surface thereof. Furthermore, a wrapping film 28 is stuck on the soft layer 27.

研磨方法は、一般的な方法と同じである。研磨砥粒を含む研磨層であるラッピングフィルム28が平滑な上面に貼り付けられたターンテーブル26を、試料がばたつかないように適度な早さで回転させ、そのターンテーブル26上に、研磨液を滴下しながらホルダ25をターンテーブル26側に押圧することで、振動体20の摺動面を研磨砥粒に加圧して接触させている。また、ホルダ25が駆動源(図示せず)によって駆動されると、振動体20は、ホルダ25とともに、ターンテーブル26上を径方向に繰り返し摺動(スライド)する。ここで、研磨層としては、ラッピングフィルム(住友スリーエム社製)が用いられるが、特に、本実施形態では摩擦材がセラミック材質であるので、ダイヤモンド砥粒のラッピングフィルムを使用した。   The polishing method is the same as a general method. A turntable 26 having a lapping film 28, which is a polishing layer containing abrasive grains, is attached to a smooth upper surface, is rotated at an appropriate speed so that the sample does not flutter, and polishing is performed on the turntable 26. By pressing the holder 25 toward the turntable 26 while dropping the liquid, the sliding surface of the vibrating body 20 is pressed against the abrasive grains and brought into contact therewith. When the holder 25 is driven by a drive source (not shown), the vibrating body 20 slides (slides) repeatedly on the turntable 26 in the radial direction together with the holder 25. Here, a wrapping film (manufactured by Sumitomo 3M Limited) is used as the polishing layer. In particular, in this embodiment, since the friction material is a ceramic material, a wrapping film of diamond abrasive grains was used.

振動体20は、前述したように、固定部8を挿通するビスでベース22に固定されており、ロータリコネクタ24に接続されているフレキシブル基板29を通じて給電されている。そして、振動体20に振動を励起させながら研磨することにより、摺動面を移動体送り方向の曲率が一定な円弧形状に成形している。この研磨方法を振動研磨と称し、振動体が研磨中に励振する振動の振幅を研磨振幅と称する。研磨振幅は、実駆動状態における振動振幅と同じであると考えてよく、駆動振動が最大のときの円弧形状に摺動面を成形する場合、そのときの駆動振動の振幅値を研磨振幅に設定して研磨する。   As described above, the vibrating body 20 is fixed to the base 22 with a screw that passes through the fixing portion 8, and is supplied with power through the flexible substrate 29 connected to the rotary connector 24. Then, by polishing the vibrating body 20 while exciting the vibration, the sliding surface is formed into an arc shape with a constant curvature in the moving body feeding direction. This polishing method is referred to as vibration polishing, and the amplitude of vibration excited by the vibrating body during polishing is referred to as polishing amplitude. The polishing amplitude may be considered to be the same as the vibration amplitude in the actual driving state. When the sliding surface is formed into an arc shape when the driving vibration is maximum, the amplitude value of the driving vibration at that time is set as the polishing amplitude. And polish.

この研磨による成形は、研磨振幅により決まる曲率に至るまで研磨量に分布をもって進行するが、その曲率まで研磨が進むと、摺動面における押圧力に対する反力の分布が一様になり、この時点で、円弧形状の成形は事実上ストップする。その後、縁だれの成形だけが進行し、所望の円弧形状を有する摺動面の成形が完成する。このように、振動研磨では、過剰な研磨を行うことなく、研磨振幅を設定するだけで、研磨仕上げ後の曲率を決定することができる。   Molding by this polishing proceeds with a distribution in the amount of polishing until the curvature determined by the polishing amplitude, but as the polishing proceeds to that curvature, the distribution of reaction force against the pressing force on the sliding surface becomes uniform, and at this time Thus, the forming of the arc shape is practically stopped. Thereafter, only the edge forming proceeds, and the formation of the sliding surface having a desired arc shape is completed. Thus, in vibration polishing, the curvature after polishing can be determined only by setting the polishing amplitude without performing excessive polishing.

ここで、研磨振幅について説明する。研磨面への押圧力などにより決まる振動体およびターンテーブル間の系の剛性により、研磨中の振幅は変化しやすい。また、研磨による成形が進行し、摺動面の接触面積が増えるような、接触状態が変化することでも、系の剛性が変化し、研磨振幅は変わる。そこで、研磨振幅の値を一定にするため、振動体20への入力信号を制御することが必要である。本実施形態では、振動体20の圧電部材2に設けられたセンサ相(図示せず)からの出力信号を用いて研磨振幅を測定し、そのフィードバック制御を行っている。また、研磨振幅を検出する手段として、非接触式の振動センサなどを用いてもよい。このように、研磨振幅を制御することにより、摺動面の曲率を所望(ねらい)の値にすることが可能となる。   Here, the polishing amplitude will be described. The amplitude during polishing tends to change due to the rigidity of the system between the vibrating body and the turntable determined by the pressing force on the polishing surface. In addition, the rigidity of the system changes and the polishing amplitude also changes when the contact state changes such that the molding by polishing proceeds and the contact area of the sliding surface increases. Therefore, in order to keep the polishing amplitude value constant, it is necessary to control the input signal to the vibrating body 20. In this embodiment, the polishing amplitude is measured using an output signal from a sensor phase (not shown) provided on the piezoelectric member 2 of the vibrating body 20, and feedback control is performed. Further, as a means for detecting the polishing amplitude, a non-contact type vibration sensor or the like may be used. Thus, by controlling the polishing amplitude, the curvature of the sliding surface can be set to a desired value.

また一般に、ラッピングフィルムを用いた研磨では、ラッピングフィルムと研磨板の間に塵や埃が挟まって、縁だれが起きることを防止するため、ラッピングフィルムにテンションをかけることが行われる。本実施形態では、意図的に縁だれを起こすことを目的として、ラッピングフィルムと研磨板の間に、軟質層27として厚さ0.5mmのテフロン(登録商標)シートを挟むことにした。   Further, in general, in polishing using a wrapping film, tension is applied to the wrapping film in order to prevent dust from being caught between the wrapping film and the polishing plate and causing edge dripping. In the present embodiment, a Teflon (registered trademark) sheet having a thickness of 0.5 mm is sandwiched between the wrapping film and the polishing plate as the soft layer 27 for the purpose of intentionally causing a fringing.

この軟質層を設けたことにより、摺動面のエッジ部が沈み込み、エッジ部がエッジ内部の領域よりも強く研磨され、だれが生じる。だれ量の調節は、ホルダと研磨板間の押圧力の大きさによって行われる。押圧力が大きい程、だれやすく、押圧力を大きくすることで内部の領域の研磨量も多くなるが、押圧力に対するだれ量と内部領域の研磨量の増分率との間には差があるので、その範囲で調節を行い、一度に成形することが可能である。もちろん、ラッピングフィルムにテンションをかけることで、縁だれの研磨量を調節してもよい。このように、縁だれと円弧形状を一度に成形できるので、この製造方法は量産に適している。この結果、前述した図2(D)に示すような、エッジ部に丸み(縁だれ)を有する摺動面が成形される。   By providing this soft layer, the edge portion of the sliding surface sinks, and the edge portion is polished more strongly than the region inside the edge, causing dripping. The amount of drooping is adjusted by the amount of pressing force between the holder and the polishing plate. The greater the pressing force, the easier it will droop, and increasing the pressing force will increase the amount of polishing in the internal area, but there is a difference between the amount of dripping with respect to the pressing force and the increment of the polishing amount in the internal area. It is possible to mold at once by adjusting within the range. Of course, the edge polishing amount may be adjusted by applying tension to the wrapping film. As described above, since the edge and the arc shape can be formed at a time, this manufacturing method is suitable for mass production. As a result, a sliding surface having a rounded edge (edge) as shown in FIG. 2D is formed.

また、研磨終了を判定する際、本実施形態では、センサ相からの出力信号を確認している。面圧の高いエッジ部分の接触は、振動体にとっても不要な振動を起こそうとする加振源となるので、センサ相からの出力信号の波形を確認すると、研磨開始時には、エッジ近辺が接触したタイミングでパルス的な信号が確認される。しかし、研磨が進行するに従い、この信号レベルは下がり、ほぼ無視できる範囲まで収まった時点を、エッジの影響の無い形状の摺動面になったと判断する。研磨終了後の摺動面の形状は、前述したように、研磨振幅で決まる曲率を有する円弧形状、およびエッジ近辺の面圧上昇現象を緩和する丸み形状を有するものである。   Further, when determining the end of polishing, in this embodiment, an output signal from the sensor phase is confirmed. The contact of the edge part with high surface pressure becomes an excitation source that causes unnecessary vibrations even for the vibrating body, so when checking the waveform of the output signal from the sensor phase, the vicinity of the edge contacted at the start of polishing. A pulse-like signal is confirmed at the timing. However, as the polishing progresses, the signal level decreases, and it is determined that the sliding surface has a shape without the influence of the edge when the signal level falls within a substantially negligible range. As described above, the shape of the sliding surface after the polishing is an arc shape having a curvature determined by the polishing amplitude, and a round shape that alleviates the surface pressure increase phenomenon near the edge.

さらに、研磨開始後、暫くは、最終目標とする曲率を得るための研磨振幅よりも大きな振幅値に設定することで、研磨時間を短縮できる。ただし、大きく設定し過ぎると、圧電部材が割れる、あるいは摩擦材のエッジ部が破壊するなどの問題が生じるので、そのような不具合のない範囲で設定する。   Furthermore, for a while after the start of polishing, the polishing time can be shortened by setting the amplitude value to be larger than the polishing amplitude for obtaining the final curvature. However, if it is set too large, problems such as breakage of the piezoelectric member or destruction of the edge portion of the friction material occur.

本実施形態では、摩擦材5は硬質のセラミック材質からなり、次のように製造される。すなわち、セラミック材質のシートからドーナツ形状に抜き取ったものを焼成してセラミックリングとし、このセラミックリングを弾性体の突起上面に接着した後、溝部をレーザ加工により切断して、摩擦材5は製造される。ここで、いわゆる「接着後の切断」と、「切断後の接着」とを比較した場合、「切断後の接着」では、各突起における摩擦材の接着層の厚みに差が生じやすく、貼り付けた時点で高さにばらつきが生じ、平面度も悪い。また、「切断後の接着」では、研磨第一工程として平面度出し行い、この後、研磨第二工程として振動研磨工程を施さなければならなくなり、コスト的にも適切でない。   In the present embodiment, the friction material 5 is made of a hard ceramic material and is manufactured as follows. That is, a ceramic material sheet extracted into a donut shape is fired to form a ceramic ring. After the ceramic ring is bonded to the upper surface of the protrusion of the elastic body, the groove is cut by laser processing to produce the friction material 5. The Here, when comparing the so-called “cutting after bonding” and “adhesion after cutting”, the “adhesion after cutting” is likely to cause a difference in the thickness of the adhesive layer of the friction material at each protrusion, and sticking. At that time, the height varies and the flatness is poor. In “adhesion after cutting”, flatness must be obtained as the first polishing step, and then the vibration polishing step must be performed as the second polishing step, which is not appropriate in terms of cost.

このように、第1の実施形態の振動体によれば、摺動面の移動体送り方向の曲率が中立面平行曲線の腹付近における曲率に略等しいので、安定した駆動が得られるような曲率を有する円弧形状に摺動面が成形される。この振動体を用いることで、耐久性に優れ、異音を発しない安定した駆動を実現でき、高トルク化のために加圧を増やしても耐久性が劣化することのない振動波モータを得ることができる。また、摺動面のエッジは丸み形状に形成されているので、移動体からの反力分布をより均一にできる。また、全ての駆動条件で線接触を回避し、安定した駆動が得られる。全ての突起の摺動面のいずれかが移動体と接触しているので、常に安定した駆動が得られる。   Thus, according to the vibrating body of the first embodiment, the curvature of the sliding surface in the moving body feed direction is substantially equal to the curvature in the vicinity of the antinode of the neutral plane parallel curve, so that stable driving can be obtained. The sliding surface is formed into an arc shape having a curvature. By using this vibrating body, it is possible to achieve a stable drive that is excellent in durability, does not generate abnormal noise, and does not deteriorate in durability even when the pressure is increased for higher torque. be able to. Further, since the edge of the sliding surface is formed in a round shape, the reaction force distribution from the moving body can be made more uniform. Further, line contact is avoided under all driving conditions, and stable driving can be obtained. Since one of the sliding surfaces of all the protrusions is in contact with the moving body, a stable drive can always be obtained.

また、研磨仕上げ後の曲率を決定でき、そのような曲率を有する振動体を製造することができる。また、高硬度な摩擦材にも対応でき、量産に適するように、振動体を製造することができる。また、研磨振幅の設定により曲率をねらいの値にすることができる。量産に適するように、丸み形状と円弧形状の両方の成形を行うことができる。   Moreover, the curvature after the polishing finish can be determined, and a vibrating body having such a curvature can be manufactured. Moreover, a vibrating body can be manufactured so as to be compatible with a high-hardness friction material and suitable for mass production. Further, the curvature can be set to a target value by setting the polishing amplitude. Both round shape and arc shape can be formed so as to be suitable for mass production.

[第2の実施形態]
第2の実施形態の振動体の摺動面は、前記第1の実施形態で考察された形状を有する他、摺動幅に応じた曲率の円弧形状を有する。前記第1の実施形態と同一の構成要素については、同一の符号を用いる。
[Second Embodiment]
The sliding surface of the vibrating body according to the second embodiment has an arc shape with a curvature corresponding to the sliding width, in addition to the shape considered in the first embodiment. The same reference numerals are used for the same constituent elements as those in the first embodiment.

始めに、振動体の摺動面の幅について考察する。図1に示す振動体20では、径方向に一次振動が励振されるので、外周側の振動振幅が大きい。また、振動体の駆動モードである面外振動の波長も、摺動面の径(摺動径)に比例して外周側で長い。このため、中立面平行曲線は、摺動径によって異なり、摺動面に形成される円弧形状の最適な曲率も、同様に摺動径によって異なる。摺動面の接触面積を増やし、平均面圧を減少させるためには、径に応じて摺動幅を広げなければならない。このとき、各径における摺動幅内では、最適な曲率の円弧形状にする必要がある。つまり、外周側の中立面平行曲線が曲率の大きい円弧になるので、外周側の摺動面の曲率を大きくしている。   First, consider the width of the sliding surface of the vibrating body. In the vibrating body 20 shown in FIG. 1, since the primary vibration is excited in the radial direction, the vibration amplitude on the outer peripheral side is large. Further, the wavelength of out-of-plane vibration that is the driving mode of the vibrating body is also longer on the outer peripheral side in proportion to the diameter of the sliding surface (sliding diameter). For this reason, the neutral plane parallel curve varies depending on the sliding diameter, and the optimum curvature of the arc shape formed on the sliding surface also varies depending on the sliding diameter. In order to increase the contact area of the sliding surface and reduce the average surface pressure, the sliding width must be increased according to the diameter. At this time, it is necessary to make an arc shape with an optimal curvature within the sliding width at each diameter. That is, the neutral surface parallel curve on the outer peripheral side becomes a circular arc with a large curvature, so that the curvature of the sliding surface on the outer peripheral side is increased.

これにより、摺動幅の広い振動波モータであっても、耐久性に優れ、異音を発しない滑らかな駆動を実現できる。また、摺動幅が広くなることで、平均面圧が下がるので、振動体および移動体間の加圧力を増加し、高トルク化を図ることができる。   As a result, even a vibration wave motor with a wide sliding width can achieve a smooth drive that is excellent in durability and does not generate abnormal noise. In addition, since the average surface pressure is reduced by increasing the sliding width, the applied pressure between the vibrating body and the moving body can be increased, and the torque can be increased.

図6は第2の実施形態における摺動面研磨装置の構成を示す斜視図である。第2の実施形態における摺動面研磨装置140は、振動体保持部41および研磨部142から構成され、振動体保持部の構成は前記第1の実施形態と同じである。研磨部142は、振動体20と略同等の外径を有する研磨盤32、この研磨盤32を支持する研磨支持体33、および研磨盤32の上面に貼られたラッピングフィルム31から構成される。   FIG. 6 is a perspective view showing a configuration of a sliding surface polishing apparatus according to the second embodiment. The sliding surface polishing apparatus 140 according to the second embodiment includes a vibrating body holding unit 41 and a polishing unit 142, and the configuration of the vibrating body holding unit is the same as that of the first embodiment. The polishing unit 142 includes a polishing board 32 having an outer diameter substantially equal to that of the vibrating body 20, a polishing support 33 that supports the polishing board 32, and a wrapping film 31 that is attached to the upper surface of the polishing board 32.

前述したように、振動体20の摺動面の幅を径に応じて拡げる場合、中立面平行曲線は摺動径に応じて異なり、摺動面に形成される円弧形状の最適な曲率も摺動径に応じて異なる。したがって、径方向に曲率の異なる摺動面の円弧形状を、摺動径に応じた最適な曲率で作ることが望ましい。   As described above, when the width of the sliding surface of the vibrating body 20 is expanded in accordance with the diameter, the neutral plane parallel curve differs depending on the sliding diameter, and the optimal curvature of the arc shape formed on the sliding surface is also It depends on the sliding diameter. Therefore, it is desirable to make the arc shape of the sliding surface having a different curvature in the radial direction with an optimal curvature corresponding to the sliding diameter.

第2の実施形態では、正確に理想的な摺動面の円弧形状を作るために、実駆動に近い環境を作り出すことにした。すなわち、研磨盤32の材料には、振動体20の面外曲げ振動に対し、振動波モータとして実際に用いられる移動体と同程度の曲げ剛性を有する金属材料が用いられている。あるいは、移動体をそのまま使用することも可能である。   In the second embodiment, an environment close to actual driving is created in order to accurately create an ideal arcuate shape of the sliding surface. That is, the material of the polishing board 32 is a metal material having bending rigidity comparable to that of the moving body actually used as the vibration wave motor with respect to the out-of-plane bending vibration of the vibrating body 20. Alternatively, the moving body can be used as it is.

ただし、摺動面の径方向の幅(長さ)が、移動体のそれより大きい(振動体>移動体)場合、振動体の摩擦材の一部分しか研磨されなくなってしまい、移動体の取り付け時の偏心や移動体に加わる側力の影響を強く受けることになる。このため、摺動面の径方向の幅(長さ)が、移動体のそれより小さくして(振動体<移動体)、常に同じ効果が得られるような研磨盤を用いる。   However, when the width (length) of the sliding surface in the radial direction is larger than that of the moving body (vibrating body> moving body), only a part of the friction material of the vibrating body is polished, and the moving body is attached. It is strongly influenced by the eccentricity of the side and the side force applied to the moving body. For this reason, a polishing disc is used in which the radial width (length) of the sliding surface is smaller than that of the moving body (vibrating body <moving body), and the same effect is always obtained.

このように、第2の実施形態によれば、摺動面の径方向の幅を拡げることが可能であるとともに、径に応じて最適な曲率の円弧形状を有する摺動面を成形することができる。   As described above, according to the second embodiment, it is possible to widen the radial width of the sliding surface, and to form the sliding surface having an arc shape with an optimal curvature according to the diameter. it can.

[第3の実施形態]
図7は第3の実施形態における摺動面研磨装置の構成を示す斜視図である。第3の実施形態における摺動面研磨装置240は、量産性を高めるために、一度に複数の振動体の摺動面を製造可能であり、振動体保持部41および研磨部242から構成される。振動体保持部の構成は前記第1および第2の実施形態と同じであるが、振動体を回転駆動させるために、振動体保持部には、回転機構(図示せず)が設けられている。
[Third Embodiment]
FIG. 7 is a perspective view showing the configuration of the sliding surface polishing apparatus in the third embodiment. The sliding surface polishing apparatus 240 according to the third embodiment can manufacture sliding surfaces of a plurality of vibrating bodies at a time in order to increase mass productivity, and includes a vibrating body holding unit 41 and a polishing unit 242. . The configuration of the vibrating body holding unit is the same as that of the first and second embodiments, but a rotating mechanism (not shown) is provided in the vibrating body holding unit in order to rotationally drive the vibrating body. .

研磨部242は、振動体20によって押圧される研磨盤52、この研磨盤52の上に張られ、振動体20が加圧されて接触するラッピングフィルム51、このラッピングフィルム51を送るモータ53、およびラッピングフィルム51に一定のテンションをかけるブレーキ44を有する。研磨する場合、一度研磨に使用されたラッピングフィルム51の場所をずらし、効率よく研磨作業を行うようにする。   The polishing unit 242 includes a polishing board 52 pressed by the vibrating body 20, a wrapping film 51 that is stretched over the polishing board 52 and is in contact with the vibrating body 20, and a motor 53 that sends the wrapping film 51. A brake 44 for applying a certain tension to the wrapping film 51 is provided. When polishing, the location of the wrapping film 51 once used for polishing is shifted so that the polishing operation is performed efficiently.

本実施形態では、研磨盤52は回転不能であるので、前述したように、振動体20を回転自在に保持する振動体保持部41を回転させながら、均一に研磨する。このとき、振動体の回転数は、研磨振幅と同じ振幅値でモータを実際に駆動させた場合の、振動体と移動体の相対速度に応じた値に再現されている。また、駆動力としては、研磨中に振動体に起きている振動を用いているが、研磨液などによって十分な相対速度が得られない場合、外部モータの出力をベルトを介してケース23に伝達することで、補助してもよい。   In this embodiment, since the polishing board 52 is not rotatable, as described above, the polishing body 52 is uniformly polished while rotating the vibration body holding portion 41 that rotatably holds the vibration body 20. At this time, the rotational speed of the vibrating body is reproduced to a value corresponding to the relative speed of the vibrating body and the moving body when the motor is actually driven with the same amplitude value as the polishing amplitude. As the driving force, the vibration generated in the vibrating body during polishing is used, but when a sufficient relative speed cannot be obtained by polishing liquid or the like, the output of the external motor is transmitted to the case 23 via the belt. By doing so, you may assist.

一定方向に連続回転する実際の振動波モータでは、移動体の振動位相が振動体の振動位相よりも遅れる現象が起き、摩擦面の摩耗量を移動体送り方向でみた場合、摩耗量に偏りが生じる。これは、摺動面の面圧に偏りがあるからであり、より滑らかな駆動を得るためには、この面圧分布を緩和しなければならない。このため、実駆動状態に近い弾性体と移動体の相対速度を再現しながら、実駆動状態の接触に近い状態で研磨を行うことは、摺動面の移動体送り方向の応力分布を均一にする効果がある。このように、第3の実施形態によれば、摺動面における移動体送り方向の面圧の偏りをなくし、偏摩耗を防止できる。   In an actual vibration wave motor that continuously rotates in a certain direction, the phenomenon that the vibration phase of the moving body lags behind the vibration phase of the vibrating body occurs, and when the wear amount of the friction surface is viewed in the moving body feed direction, the wear amount is biased. Arise. This is because the surface pressure of the sliding surface is uneven, and this surface pressure distribution must be relaxed in order to obtain smoother driving. Therefore, polishing in a state close to the contact in the actual drive state while reproducing the relative speed between the elastic body and the mobile body close to the actual drive state makes the stress distribution in the moving body feed direction of the sliding surface uniform. There is an effect to. As described above, according to the third embodiment, the uneven surface pressure in the moving body feeding direction on the sliding surface can be eliminated, and uneven wear can be prevented.

以上が本発明の実施形態の説明であるが、本発明は、これら実施形態の構成に限られるものではなく、特許請求の範囲で示した機能、または実施形態の構成が持つ機能が達成できる構成であればどのようなものであっても適用可能である。   The above is the description of the embodiments of the present invention. However, the present invention is not limited to the configurations of these embodiments, and the functions shown in the claims or the functions of the configurations of the embodiments can be achieved. Anything is applicable.

第1の実施形態における振動波モータに組み込まれる振動体の外観を示す斜視図である。It is a perspective view which shows the external appearance of the vibrating body incorporated in the vibration wave motor in 1st Embodiment. 駆動振動の腹付近における突起先端の摺動面と移動体との接触状態を、振動体の外径側から見た図である。It is the figure which looked at the contact state of the sliding surface of the front-end | tip of a protrusion and the moving body in the vicinity of the antinode of drive vibration from the outer diameter side of the vibrating body. 移動体反力分布を示すグラフである。It is a graph which shows a mobile body reaction force distribution. 無負荷時の振動波モータにおける振動体による移動体の駆動状態を示す図である。It is a figure which shows the drive state of the moving body by the vibrating body in the vibration wave motor at the time of no load. 摺動面研磨装置の構成を示す斜視図である。It is a perspective view which shows the structure of a sliding surface grinding | polishing apparatus. 第2の実施形態における摺動面研磨装置の構成を示す斜視図である。It is a perspective view which shows the structure of the sliding surface grinding | polishing apparatus in 2nd Embodiment. 第3の実施形態における摺動面研磨装置の構成を示す斜視図である。It is a perspective view which shows the structure of the sliding surface grinding | polishing apparatus in 3rd Embodiment. 従来の振動波モータに組み込まれる一般的な振動体の外観を示す斜視図である。It is a perspective view which shows the external appearance of the general vibration body integrated in the conventional vibration wave motor. 突起先端の摺動面に曲率を持たせた弾性体を示す図である。It is a figure which shows the elastic body which gave the curvature to the sliding surface of the protrusion tip. 突起先端の摺動面のエッジ部に丸みを持たせた弾性体を示す図である。It is a figure which shows the elastic body which made the edge part of the sliding surface of a processus | protrusion round. 突起先端の摺動面のエッジ部が面取りされた弾性体を示す図である。It is a figure which shows the elastic body by which the edge part of the sliding surface of the protrusion tip was chamfered.

符号の説明Explanation of symbols

1 弾性体
2 圧電部材
3 摺動面
4 突起
20 振動体
26 ターンテーブル
27 軟質層
28 ラッピングフィルム
DESCRIPTION OF SYMBOLS 1 Elastic body 2 Piezoelectric member 3 Sliding surface 4 Protrusion 20 Vibrating body 26 Turntable 27 Soft layer 28 Lapping film

Claims (15)

複数の突起を有し、該突起先端の摺動面と接触する移動体に、励起した送り方向の振動を伝達する振動体において、
前記摺動面は円弧形状に形成され、該摺動面の移動体送り方向の曲率が中立面平行曲線の腹付近における曲率に略等しいことを特徴とする振動体。
In the vibrating body having a plurality of protrusions and transmitting the excited vibration in the feeding direction to the moving body that contacts the sliding surface of the protrusion tip,
The vibrating body is characterized in that the sliding surface is formed in an arc shape, and the curvature of the sliding surface in the moving body feeding direction is substantially equal to the curvature in the vicinity of the antinode of the neutral plane parallel curve.
前記摺動面のエッジ部は、丸み形状に形成されていることを特徴とする請求項1記載の振動体。   The vibrating body according to claim 1, wherein an edge portion of the sliding surface is formed in a round shape. 振動波モータに組み込まれる場合、前記摺動面の移動体送り方向の曲率は、駆動振動の最大振幅時の曲率と一致するかあるいはそれより僅かに大きい曲率であることを特徴とする請求項1記載の振動体。   2. When incorporated in a vibration wave motor, the curvature of the sliding surface in the moving body feed direction is a curvature that is equal to or slightly larger than the curvature at the maximum amplitude of the drive vibration. The vibrator described. 前記摺動面の移動体送り方向の曲率は、駆動限界最小振幅時における前記中立面平行曲線の曲率の10倍以下であることを特徴とする請求項3記載の振動体。   4. The vibrating body according to claim 3, wherein the curvature of the sliding surface in the moving body feeding direction is not more than 10 times the curvature of the neutral plane parallel curve at the drive limit minimum amplitude. 前記摺動面の移動体送り方向の曲率は、該摺動面の径に応じて異なることを特徴とする請求項3記載の振動体。   The vibrating body according to claim 3, wherein the curvature of the sliding surface in the moving body feeding direction varies depending on the diameter of the sliding surface. 振動体に設けられた複数の突起の、移動体と接触する摺動面を研磨面に押圧した状態で研磨する摺動面研磨装置であって、
前記振動体に振動を励起させる圧電部材に給電可能な状態で前記振動体を保持する保持手段と、
前記振動体に振動を励起しながら前記研磨面に押圧された前記摺動面を円弧形状に研磨する研磨手段とを備え、
前記研磨される摺動面の移動体送り方向の曲率が一定になるように、前記摺動面を成形することを特徴とする摺動面研磨装置。
A sliding surface polishing apparatus that polishes a plurality of protrusions provided on the vibrating body in a state in which the sliding surface that contacts the moving body is pressed against the polishing surface,
Holding means for holding the vibrating body in a state in which power can be supplied to the piezoelectric member that excites vibration of the vibrating body;
Polishing means for polishing the sliding surface pressed against the polishing surface into an arc shape while exciting vibrations in the vibrator,
The sliding surface polishing apparatus, wherein the sliding surface is shaped so that the curvature of the sliding surface to be polished is constant in the moving body feeding direction.
前記振動体の振動振幅である研磨振幅を検出する振幅検出手段を備え、前記検出される研磨振幅が一定になるように制御することを特徴とする請求項6記載の摺動面研磨装置。   The sliding surface polishing apparatus according to claim 6, further comprising amplitude detection means for detecting a polishing amplitude that is a vibration amplitude of the vibrating body, and controlling the detected polishing amplitude to be constant. 前記研磨手段は、研磨砥粒を含む研磨層と、平面度を有する高硬度弾性体と、前記研磨層と前記高硬度弾性体との間に設けられた軟質層とからなる前記研磨面を有し、
前記摺動面の曲率が一定になるように成形すると同時に、該摺動面に縁だれが生じるように成形することを特徴とする請求項6または7記載の摺動面研磨装置。
The polishing means has the polishing surface comprising a polishing layer containing abrasive grains, a high hardness elastic body having flatness, and a soft layer provided between the polishing layer and the high hardness elastic body. And
The sliding surface polishing apparatus according to claim 6 or 7, wherein the sliding surface is molded so that the curvature of the sliding surface becomes constant, and at the same time, the sliding surface is shaped so as to cause an edge.
前記高硬度弾性体は、前記移動体と同程度の曲げ剛性を有する金属材料からなることを特徴とする請求項8記載の摺動面研磨装置。   9. The sliding surface polishing apparatus according to claim 8, wherein the high-hardness elastic body is made of a metal material having a bending rigidity comparable to that of the moving body. 前記保持手段は、前記振動体を回転自在に保持し、前記研磨手段は、前記保持手段によって回転自在に保持された、実駆動に近い状態の振動体と、前記移動体との相対速度を再現しながら研磨することを特徴とする請求項6記載の摺動面研磨装置。   The holding means rotatably holds the vibrating body, and the polishing means reproduces the relative speed between the vibrating body, which is rotatably held by the holding means, and a state close to actual driving. The sliding surface polishing apparatus according to claim 6, wherein the polishing is performed while polishing. 振動体に設けられた複数の突起の、移動体と接触する摺動面を研磨面に押圧した状態で研磨する摺動面研磨方法であって、
前記振動体に振動を励起させる圧電部材に給電可能な状態で前記振動体を保持する保持ステップと、
前記振動体に振動を励起しながら前記研磨面に押圧された前記摺動面を円弧形状に研磨する研磨ステップとを有し、
前記研磨される摺動面の移動体送り方向の曲率が一定になるように、前記摺動面を成形することを特徴とする摺動面研磨方法。
A sliding surface polishing method for polishing a plurality of projections provided on the vibrating body, with the sliding surface contacting the moving body pressed against the polishing surface,
A holding step of holding the vibrating body in a state in which power can be supplied to the piezoelectric member that excites vibration of the vibrating body;
A polishing step of polishing the sliding surface pressed against the polishing surface into an arc shape while exciting vibrations in the vibrator;
A sliding surface polishing method, wherein the sliding surface is formed so that a curvature of the sliding surface to be polished in a moving body feeding direction is constant.
前記振動体の振動振幅である研磨振幅を検出する振幅検出ステップを有し、前記検出される研磨振幅が一定になるように制御することを特徴とする請求項11記載の摺動面研磨方法。   12. The sliding surface polishing method according to claim 11, further comprising an amplitude detection step of detecting a polishing amplitude that is a vibration amplitude of the vibrating body, wherein the detected polishing amplitude is controlled to be constant. 前記研磨ステップでは、研磨砥粒を含む研磨層と、平面度を有する高硬度弾性体と、前記研磨層と前記高硬度弾性体との間に設けられた軟質層とからなる前記研磨面を用いて前記摺動面を研磨し、前記摺動面の曲率が一定になるように成形すると同時に、該摺動面に縁だれが生じるように成形することを特徴とする請求項11または12記載の摺動面研磨方法。   In the polishing step, the polishing surface including a polishing layer containing polishing abrasive grains, a high-hardness elastic body having flatness, and a soft layer provided between the polishing layer and the high-hardness elastic body is used. 13. The sliding surface according to claim 11 or 12, wherein the sliding surface is polished and molded so that the curvature of the sliding surface is constant, and at the same time, the sliding surface is molded to have an edge. Sliding surface polishing method. 前記高硬度弾性体は、前記移動体と同程度の曲げ剛性を有する金属材料からなることを特徴とする請求項13記載の摺動面研磨方法。   The sliding surface polishing method according to claim 13, wherein the high-hardness elastic body is made of a metal material having a bending rigidity comparable to that of the moving body. 前記保持ステップでは、前記振動体を回転自在に保持し、前記研磨ステップでは、前記回転自在に保持された、実駆動に近い状態の振動体と、前記移動体との相対速度を再現しながら研磨することを特徴とする請求項11記載の摺動面研磨方法。   In the holding step, the vibrating body is rotatably held, and in the polishing step, polishing is performed while reproducing a relative speed between the movable body that is rotatably held and is close to actual driving. The sliding surface polishing method according to claim 11, wherein:
JP2004090022A 2004-03-25 2004-03-25 Oscillating body, slide face polishing device and slide face polishing method Withdrawn JP2005278336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090022A JP2005278336A (en) 2004-03-25 2004-03-25 Oscillating body, slide face polishing device and slide face polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090022A JP2005278336A (en) 2004-03-25 2004-03-25 Oscillating body, slide face polishing device and slide face polishing method

Publications (1)

Publication Number Publication Date
JP2005278336A true JP2005278336A (en) 2005-10-06

Family

ID=35177410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090022A Withdrawn JP2005278336A (en) 2004-03-25 2004-03-25 Oscillating body, slide face polishing device and slide face polishing method

Country Status (1)

Country Link
JP (1) JP2005278336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018487A (en) * 2006-07-12 2008-01-31 Pentax Corp Polishing method and polishing device
US20160111981A1 (en) * 2012-04-19 2016-04-21 Canon Kabushiki Kaisha Vibrator, vibration type driving apparatus and manufacturing method of vibrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018487A (en) * 2006-07-12 2008-01-31 Pentax Corp Polishing method and polishing device
US20160111981A1 (en) * 2012-04-19 2016-04-21 Canon Kabushiki Kaisha Vibrator, vibration type driving apparatus and manufacturing method of vibrator
US10541630B2 (en) * 2012-04-19 2020-01-21 Canon Kabushiki Kaisha Manufacturing method of vibrator

Similar Documents

Publication Publication Date Title
JP5709413B2 (en) Vibration type driving device
US9263972B2 (en) Vibrator, vibration type driving apparatus and manufacturing method of vibrator
JPH05200659A (en) Ultrasonic polishing device
WO2017082350A1 (en) Method for exciting longitudinal/torsional vibration of langevin-type ultrasonic vibrator
JP2011015552A (en) Drive device
JP2005278336A (en) Oscillating body, slide face polishing device and slide face polishing method
JP2007111803A (en) Ultrasonic vibration cutting device
JP3218945B2 (en) Ultrasonic motor
JP2007125682A (en) Cup type grinding wheel and ultrasonic polishing device
JP4705971B2 (en) Lapping machine manufacturing equipment
JP4182666B2 (en) Method for changing manufacturing process of vibration wave motor
JP5706069B2 (en) Diamond polishing apparatus and diamond polishing method
JP4085646B2 (en) Vibration wave motor and manufacturing method thereof
JP2009226574A (en) Ultrasonic grinding wheel
JP3194647B2 (en) Ultrasonic linear actuator
JPH0374182A (en) Ultrasonic motor
JP7451211B2 (en) Contact body, vibration type actuator having the same, method for manufacturing the contact body, and method for deriving the amount of polishing in the contact body
JPH06269181A (en) Ultrasonic motor
JP5883177B2 (en) Vibration type driving device
JPWO2003095144A1 (en) Lapping device and lapping method
JP2551812B2 (en) Processing method for lining materials used in ultrasonic motors
JP3830265B2 (en) Vibration wave actuator
JP2005169615A (en) Ultrasonic machining device
JP2004112923A (en) Vibration wave drive unit, and machining method of elastic member constituting vibrator thereof
JPH11113271A (en) Vibrated driving device and device with the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060418

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605