JPH05211783A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH05211783A
JPH05211783A JP4013823A JP1382392A JPH05211783A JP H05211783 A JPH05211783 A JP H05211783A JP 4013823 A JP4013823 A JP 4013823A JP 1382392 A JP1382392 A JP 1382392A JP H05211783 A JPH05211783 A JP H05211783A
Authority
JP
Japan
Prior art keywords
rotor
contact
vibrator
ultrasonic motor
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4013823A
Other languages
Japanese (ja)
Inventor
Takayuki Tsukimoto
貴之 月本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4013823A priority Critical patent/JPH05211783A/en
Publication of JPH05211783A publication Critical patent/JPH05211783A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve the characteristic of a rod-like ultrasonic motor and, at the same time, to prevent the occurrence of squeaking by making the rotor of the motor to follow the undulation of its contact plane with a vibrator. CONSTITUTION:In a rod-like ultrasonic motor the rotor of which is composed of a main rotor ring 2 and contact spring section 2a which in turn is composed of a contact projecting section 2d, flange section 2c, and base section 2b, the wall thickness of the member constituting the section 2a is increased as going farther from the contact section with a vibrator so as to make the natural frequency of the section 2a in all natural vibration modes twice or more of the driving frequency of the motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、棒状弾性体に設けられ
た電気−機械エネルギー変換素子に電気エネルギーを供
給することにより、棒状振動子としての弾性体を振動さ
せ振動子の表面粒子に円または楕円運動を生じさせ、振
動子に押圧した移動体を摩擦駆動させる超音波モータ、
特にカメラ等の光学機器、プリンタ等の事務機器に好適
な超音波モータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies an electric energy to an electro-mechanical energy conversion element provided on a rod-shaped elastic body to vibrate the elastic body as a rod-shaped vibrator to cause circular particles on the surface particles of the vibrator. Or an ultrasonic motor that causes an elliptical motion and frictionally drives a moving body that is pressed against a vibrator,
In particular, the present invention relates to an ultrasonic motor suitable for optical equipment such as cameras and office equipment such as printers.

【0002】[0002]

【従来の技術】棒状超音波モータは、棒形状の振動子の
一端面を駆動面とし、振動子構造体間に狭持固定する圧
電素子(PZT)に、所定の位相差を有する交流電圧を
印加することにより、軸を含む複数の平面内に形成した
屈曲振動の合成で、該駆動面に円又は楕円運動を生じさ
せ、この駆動面に加圧接触している移動体(ロータ)を
摩擦駆動することを基本的構成としている。
2. Description of the Related Art A rod-shaped ultrasonic motor uses an end face of a rod-shaped vibrator as a drive surface and applies an AC voltage having a predetermined phase difference to a piezoelectric element (PZT) which is sandwiched and fixed between the vibrator structures. By applying a force, a bending or vibration is formed in a plurality of planes including the axis to generate a circular or elliptical motion on the driving surface, and the moving body (rotor) that is in pressure contact with the driving surface is rubbed. Driving is the basic configuration.

【0003】振動子の駆動面に生じる円又は楕円運動の
大きさは、高々数μm程度であるため、振動子の駆動面
に対してロータを全周にわたり接触させるには、振動子
の駆動面及び該駆動面に当接するロータの接触面の面精
度を、上記運動の大きさ以上に仕上げなければならな
い。
Since the size of the circular or elliptical motion generated on the driving surface of the vibrator is about several μm at the most, in order to bring the rotor into contact with the driving surface of the vibrator over the entire circumference, the driving surface of the vibrator is required. Also, the surface accuracy of the contact surface of the rotor that comes into contact with the drive surface must be finished to be equal to or greater than the magnitude of the movement.

【0004】しかし、現実には加工コストとの兼ね合い
から、ここまで高精度にはできず、ロータ側における接
触部にバネ性を付与し、全周にわたり接触を保持できる
ようにしている。
However, in reality, in consideration of the machining cost, it is not possible to achieve such high precision, and the contact portion on the rotor side is provided with a spring property so that the contact can be maintained over the entire circumference.

【0005】図2はバネ性を有するロータの断面(片半
部分のみ図示)を示している。2はロータ本環で、その
下部から板厚を薄くしてバネ性を付与したロータ接触バ
ネ部2aを一体的に形成し、ロータ接触バネ部2aの最
下端面を振動子の駆動面(不図示)と当接する接触面と
している。なお、図2において、ロータのバネ部2aに
示してる寸法は、ロータを含めてモータが非常に小型で
あることを示すと共に、本発明の実施例との比較のため
に示している。
FIG. 2 shows a cross section of a rotor having a spring property (only one half is shown). A rotor main ring 2 is integrally formed with a rotor contact spring portion 2a having a thin plate thickness and a spring property provided from the lower portion thereof, and the lowermost end surface of the rotor contact spring portion 2a is a drive surface (not (Shown in the figure). Note that, in FIG. 2, the dimensions shown in the spring portion 2a of the rotor are shown for the sake of comparison with the embodiment of the present invention while showing that the motor including the rotor is very small.

【0006】[0006]

【発明が解決しようとする課題】ところで、ロータのバ
ネ特性は矛かすぎるとモータ回転数、トルクともに出
ず、剛すぎると前述の接触平面のうねりに追従できず、
モータ出力がでない。
By the way, if the spring characteristics of the rotor are too contradictory, neither the motor rotation speed nor the torque is produced, and if it is too rigid, it is impossible to follow the above-mentioned waviness of the contact plane.
There is no motor output.

【0007】したがって、一般に実験的にバネ剛きを計
り、結果的にモータ特性が優れたものを選択する手法に
より決定していた。
Therefore, in general, the spring stiffness is experimentally determined, and as a result, the one having excellent motor characteristics is selected.

【0008】しかし、このような手法によりバネ形状を
決定してもモータ特性にバラツキが生じたり、駆動中に
鳴きを発生することがあった。
However, even if the spring shape is determined by such a method, variations in motor characteristics may occur, or squeal may occur during driving.

【0009】本発明は、上記した問題点を解決すること
を目的とする。
An object of the present invention is to solve the above problems.

【0010】[0010]

【課題を解決するための手段】本発明の目的を達成する
手段は、特許請求の範囲に記載した通りであり、その技
術的背景を、図3に示す鳴きの発生の原因により説明す
る。図3は図2に示すロータを用いて駆動したときの、
ロータと振動子の接触の様子を非接触光学変位計で測定
した結果を示し、太い実線で示す波形は振動子の駆動面
における振動波形、細い実線で示す波形はロータの接触
部の振動波形である。
The means for achieving the object of the present invention are as set forth in the claims, and the technical background thereof will be explained by the cause of the occurrence of squeaking shown in FIG. FIG. 3 shows a case where the rotor shown in FIG.
The contact between the rotor and the oscillator is measured by a non-contact optical displacement meter.The thick solid line indicates the vibration waveform on the drive surface of the oscillator, and the thin solid line indicates the rotor contact part vibration waveform. is there.

【0011】ロータ接触部の振動波形より、ロータは駆
動の2倍の周波成分を多く含み、周方向速度の最大とな
る振動子振動波形の頂傍では接触していない。
From the vibration waveform of the rotor contact portion, the rotor contains a large amount of frequency components twice as high as that of the drive, and there is no contact near the apex of the vibrator vibration waveform that maximizes the circumferential speed.

【0012】したがって、振動子振動振幅の頂傍付近に
接触している場合と比べ、モータ回転数は落ちる。ま
た、接触が滑らかに行なわれないため、鳴きを起こす原
因にもなる。
Therefore, the number of rotations of the motor is reduced as compared with the case where the vibrator is in the vicinity of the top of the vibration amplitude. Moreover, the contact is not smooth, which may cause squeaking.

【0013】このロータの接触バネの振動数を調べる
と、図4に示すように、接触バネ部2aの2次曲げモー
ドの固有振動数が、振動子駆動周波数(36〜42KH
z)の2倍付近に存在することが分った。
When the frequency of the contact spring of this rotor is examined, as shown in FIG. 4, the natural frequency of the secondary bending mode of the contact spring portion 2a is found to be the oscillator drive frequency (36 to 42 KH).
It was found to exist in the vicinity of twice z).

【0014】一方、振動子の変位分布は正弦波状であ
り、これに押圧された接触バネ2aの受ける加振力は概
ね図5に示したような半波整流波形状となる。
On the other hand, the displacement distribution of the vibrator is sinusoidal, and the exciting force received by the contact spring 2a pressed by the vibrator has a half-wave rectified wave shape as shown in FIG.

【0015】このとき、加振力成分として駆動の2倍の
成分も多く含み、この周波数に接触バネの固有振動(特
に2次の曲げ振動)があれば、これが振幅拡大し、前述
のロータ接触部振動波形のように滑かな接触を妨げる。
At this time, the exciting force component also includes a large amount of components twice as large as that of the driving force, and if there is natural vibration of the contact spring (particularly secondary bending vibration) at this frequency, the amplitude is expanded and the rotor contact as described above is made. Prevents smooth contact like the vibration waveform of the part.

【0016】なお、駆動周波数の3倍以上の成分につい
ても同様の理屈が成立するが、加振力の周波数数成分と
して、2倍の成分に比べ小さいこと、接触バネの3次曲
げ以上の振動モードの静剛性は2次曲げに比べ相当高く
なることにより、駆動周波数の3倍以上の成分が接触バ
ネの固有振動を大きく励起する可能性は小さい。
The same reasoning can be applied to the component of three times the driving frequency or more, but the frequency component of the exciting force is smaller than the component of the two times, and the vibration of the contact spring is greater than the third bending. Since the static rigidity of the mode is considerably higher than that of the secondary bending, it is unlikely that a component three times or more the driving frequency will significantly excite the natural vibration of the contact spring.

【0017】以上より、ロータ接触部の固有振動の振動
数を、駆動周波数の2倍の周波数から離せば良いといえ
る。但し、駆動周波数の2倍の周波数より低くした場
合、加振力に追従できず、よって高い方向へ離す必要が
ある。
From the above, it can be said that the natural frequency of the rotor contact portion should be separated from the frequency twice the drive frequency. However, when the frequency is lower than twice the driving frequency, the vibration force cannot be tracked, and therefore, it is necessary to separate in the higher direction.

【0018】[0018]

【実施例】図1は本発明による超音波モータの第1実施
例を示すロータの断面図である。本実施例のロータは、
図2に示す従来のロータと同様に、ロータ本環2と接触
バネ部2aから構成されており、接触バネ部2aは、ロ
ータ本環2の外周部から軸方向下方に延出される基部2
bと、該基部2bの下端から内側に延びて片持支持の状
態となって大きなバネ性を付与されるフランジ部2c
と、該フランジ部2cの内端部から軸方向下方に突出す
る接触突起部2bとから構成されている。
1 is a sectional view of a rotor showing a first embodiment of an ultrasonic motor according to the present invention. The rotor of this embodiment is
Similar to the conventional rotor shown in FIG. 2, the rotor main ring 2 and the contact spring portion 2a are formed, and the contact spring portion 2a extends from the outer peripheral portion of the rotor main ring 2 downward in the axial direction.
b, and a flange portion 2c which extends inward from the lower end of the base portion 2b and is in a cantilevered support state to have a large spring property.
And a contact protrusion 2b that protrudes axially downward from the inner end of the flange 2c.

【0019】基部2bの肉厚をt1 、フランジ部2cの
肉厚をt2 、接触突起部2dの肉厚をt3 とすると、本
実施例では、t1 >t2 =t1 の関係としており、具体
的にはt1 =0.5mm,t2 =t1 =0.2mmとし
ている。
Assuming that the thickness of the base portion 2b is t 1 , the thickness of the flange portion 2c is t 2 , and the thickness of the contact protrusion portion 2d is t 3 , then in the present embodiment, the relationship of t 1 > t 2 = t 1 is satisfied. Specifically, t 1 = 0.5 mm and t 2 = t 1 = 0.2 mm.

【0020】すなわち、振動子との接触部から遠ざかる
程、接触バネ部の肉厚を増して剛性を高めている。
That is, as the distance from the contact portion with the vibrator is increased, the thickness of the contact spring portion is increased to increase the rigidity.

【0021】なお、d1 =5.5mm,d2 =4.2m
m,L1 =1.0mm,L2 =0.2mmとし、図2に
示す従来例のロータにおける接触バネ部2aの2次曲げ
の固有振動モードの振動数が80KHzにあったもの
が、本実施例では120KHzまで高まり、駆動周波数
の2.5倍以上となった。
Incidentally, d 1 = 5.5 mm, d 2 = 4.2 m
With m, L 1 = 1.0 mm and L 2 = 0.2 mm, the frequency of the natural vibration mode of the secondary bending of the contact spring portion 2a in the conventional rotor shown in FIG. 2 was 80 KHz. In the example, the frequency was increased to 120 KHz, which was 2.5 times or more the driving frequency.

【0022】また、0,1,3次の固有振動数が従来8
0KHz〜105KHzにあったものが、120〜14
0KHzに向上した。
In addition, the natural frequencies of 0, 1, and 3 are conventionally 8
What was at 0 KHz to 105 KHz is 120 to 14
Improved to 0 KHz.

【0023】本実施例のロータを用いて駆動したときの
接触部振動波形を図6に示す。
FIG. 6 shows a contact portion vibration waveform when the rotor of this embodiment is used for driving.

【0024】図3に示す従来の場合との比較より明らか
なように、振動子の振動の頂部付近でも接触するように
なり、モータ特性はモータ回転数、トルクともに改善さ
れた。
As is clear from the comparison with the conventional case shown in FIG. 3, the contact is made even near the top of the vibration of the vibrator, and the motor characteristics are improved in both the motor rotation speed and the torque.

【0025】なお、本実施例では、接触突起部2dの先
端部を面取り加工して丸みを付け、この面取り部はアル
ミ製ロータの耐摩耗処理であるアルマイトのモータ駆動
中における欠けを防止するようにしている。
In this embodiment, the tip of the contact protrusion 2d is chamfered to be rounded so that the chamfered part prevents wear of the aluminum rotor during the driving of alumite during motor driving. I have to.

【0026】図7は本発明による超音波モータの第2実
施例を示すロータの断面図である。本実施例のロータ
は、ロータ本環2から一体的に延出される接触バネ部2
aを全体的に内側に向けて傾斜させた円錐台形状とする
と共に、その肉厚を先端に行く程薄くし、接触バネ部2
aの固有振動数を高くしている。
FIG. 7 is a sectional view of a rotor showing a second embodiment of the ultrasonic motor according to the present invention. The rotor of this embodiment has a contact spring portion 2 integrally extended from the rotor main ring 2.
The contact spring part 2 has a truncated cone shape in which a is slanted inward as a whole, and the thickness thereof is reduced toward the tip.
The natural frequency of a is increased.

【0027】なお、d1 =5.5mm,d2 =4.2m
m,t1 =0.3mm,t3 =0.2mm,t1 =0.
75mmとし、接触バネ部2aの固有振動モードの振動
数は150KHzになり、また、0,1,3次の固有振
動数も全て150KHz以上となった。接触の様子も図
6に示したと同様のものが得られ、モータ出力も向上し
た。
Incidentally, d 1 = 5.5 mm, d 2 = 4.2 m
m, t 1 = 0.3 mm, t 3 = 0.2 mm, t 1 = 0.
The frequency of the natural vibration mode of the contact spring portion 2a was 150 KHz, and the natural frequencies of 0, 1, and 3 orders were all 150 KHz or more. The state of contact was similar to that shown in FIG. 6, and the motor output was also improved.

【0028】図8は本発明による超音波モータの第3実
施例を示す概略図である。
FIG. 8 is a schematic view showing a third embodiment of the ultrasonic motor according to the present invention.

【0029】本実施例は、振動子1の駆動面側に接触バ
ネ部1aを形成したもので、ロータ3がこの接触バネ部
1aの上面に接触する。ロータ3の接触部には、接着、
塗布又はコーティングされた耐摩耗用の樹脂層4が設け
られている。
In this embodiment, the contact spring portion 1a is formed on the driving surface side of the vibrator 1, and the rotor 3 contacts the upper surface of the contact spring portion 1a. On the contact portion of the rotor 3, adhesive,
A coated or coated resin layer 4 for abrasion resistance is provided.

【0030】振動子1の接触バネ部1aは、駆動面に行
くに従って肉厚を薄くした逆円錐台形状に形成されてお
り、図7に示す第2実施例と同様の理屈による。
The contact spring portion 1a of the vibrator 1 is formed in the shape of an inverted truncated cone whose thickness becomes thinner toward the driving surface, and the same reason as in the second embodiment shown in FIG. 7 is used.

【0031】すなわち、本実施例のように振動子1側に
接触バネ部を設けたタイプでも、振動子接触バネは図5
に示すような加振力分布を受けるため、接触バネ部1a
の固有振動数を高めることによる効果は、上記の各実施
例と同様である。
That is, even in the type in which the contact spring portion is provided on the side of the vibrator 1 as in this embodiment, the vibrator contact spring is shown in FIG.
The contact spring portion 1a receives the excitation force distribution as shown in
The effect of increasing the natural frequency of is the same as that of each of the above-described embodiments.

【0032】図9は、本発明による超音波モータの第4
実施例を示すロータの断面図である。
FIG. 9 shows a fourth ultrasonic motor according to the present invention.
It is sectional drawing of the rotor which shows an Example.

【0033】本実施例は、ロータの接触バネ部2aを、
基部2b、フランジ部2c、接触突起部2dから構成し
た点は第1実施例と同様であるが、これらの肉厚t1
2,t3 は、t1 >t3 >t2 の関係にある。そし
て、フランジ部2cと接触突起部2dの連結部の内側を
面取り加工により傾斜面5とし、接触バネ先端部の質量
を減らしている。
In this embodiment, the contact spring portion 2a of the rotor is
It is similar to the first embodiment in that it is composed of the base portion 2b, the flange portion 2c, and the contact protrusion portion 2d, but the thickness t 1 ,
t 2 and t 3 have a relationship of t 1 > t 3 > t 2 . Then, the inside of the connecting portion between the flange portion 2c and the contact protrusion portion 2d is chamfered to form the inclined surface 5, thereby reducing the mass of the tip end portion of the contact spring.

【0034】これにより、接触バネ部の固有振動数を高
めている。
As a result, the natural frequency of the contact spring portion is increased.

【0035】なお、t1 =0.45mm,t2 =0.2
mm,t3 =0.3mm,L1 =1.0mm,L2
0.35mm,L2 =0.2mm,d1 =5.5mm,
2 =4.15mmとしている。
Note that t 1 = 0.45 mm, t 2 = 0.2
mm, t 3 = 0.3 mm, L 1 = 1.0 mm, L 2 =
0.35 mm, L 2 = 0.2 mm, d 1 = 5.5 mm,
d 2 = 4.15 mm.

【0036】図10は本発明による超音波モータを駆動
源とする装置の概略図である。
FIG. 10 is a schematic view of an apparatus using an ultrasonic motor as a drive source according to the present invention.

【0037】a1 ,a2 は駆動用圧電素子、Sはセンサ
用圧電素子、b1 ,b2 は振動子構造体で、振動子構造
体b1 とb2 との間に圧電素子a1 ,a2 ,Sおよび電
極板を介装した状態でボルトCにより振動子構造体b
1 ,b2 を締結し、圧電素子を挟持固定した振動子が形
成される。
A 1 and a 2 are piezoelectric elements for driving, S is a piezoelectric element for sensor, b 1 and b 2 are vibrator structures, and the piezoelectric element a 1 is between the vibrator structures b 1 and b 2. , A 2 , S and the electrode plate, the vibrator structure b is fixed by the bolt C.
A vibrator in which 1 and b 2 are fastened and a piezoelectric element is sandwiched and fixed is formed.

【0038】rはロータで、バネケースdを介して加圧
バネeにより振動子の駆動面に加圧接触する。fは外周
部に歯車部が形成された回転出力部材で、ベアリングg
に軸支されており、バネケースdと摩擦接触している。
したがって、ロータrと一体的に回転する。hは固定部
材で、ボルトCの先端部に固定され、ゴムシートiを介
装した状態でビスにより取り付部材jに固定される。
Reference numeral r denotes a rotor, which is brought into pressure contact with the driving surface of the vibrator by a pressure spring e via a spring case d. f is a rotation output member having a gear portion formed on the outer peripheral portion, and a bearing g
And is in frictional contact with the spring case d.
Therefore, it rotates integrally with the rotor r. A fixing member h is fixed to the tip of the bolt C, and is fixed to the mounting member j by a screw with the rubber sheet i interposed.

【0039】このように構成した超音波モータを駆動源
とする装置は、大歯車部54aと小歯車部54bを一体
的に有する歯車54における該大歯車54aに、回転出
力部材fの歯車部が噛合し、超音波モータの出力が取り
出される。
In the apparatus having the ultrasonic motor as a drive source configured as described above, the gear portion of the rotation output member f is attached to the large gear 54a of the gear 54 integrally including the large gear portion 54a and the small gear portion 54b. It meshes and the output of the ultrasonic motor is taken out.

【0040】歯車54の小歯車部54bは、被駆動体、
例えばカメラのレンズ鏡筒55の外周部に形成された歯
車部55aと噛合し、超音波モータにより回転駆動され
る。一方、歯車54には、エンコーダスリット板56が
同軸的に取り付けられ、フォトカップラ57により回転
検出が行われる。
The small gear portion 54b of the gear 54 is a driven body,
For example, it meshes with a gear portion 55a formed on the outer peripheral portion of the lens barrel 55 of the camera and is rotationally driven by an ultrasonic motor. On the other hand, an encoder slit plate 56 is coaxially attached to the gear 54, and rotation is detected by the photocoupler 57.

【0041】[0041]

【発明の効果】以上説明してきたように本発明によれ
ば、棒状超音波モータにおいて、接触バネ部の動特性
は、良好な接触状態を保つため重要であるが、その一条
件として、駆動周波数の2倍以上に接触バネの全固有振
動数をすることで、良好な接触状態が保たれ、モータ性
能は向上する。
As described above, according to the present invention, in the rod-shaped ultrasonic motor, the dynamic characteristics of the contact spring portion are important for maintaining a good contact state. One of the conditions is the drive frequency. By setting the total natural frequency of the contact spring to be more than twice, the good contact state is maintained and the motor performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波モータの第1実施例を示す
ロータの断面図。
FIG. 1 is a sectional view of a rotor showing a first embodiment of an ultrasonic motor according to the present invention.

【図2】従来の超音波モータのロータの断面図。FIG. 2 is a sectional view of a rotor of a conventional ultrasonic motor.

【図3】図2のロータを用いた時の、ロータ及び振動子
の接触部の振動波形。
3 is a vibration waveform of a contact portion between a rotor and a vibrator when the rotor of FIG. 2 is used.

【図4】ロータの接触バネ部の2次曲げ振動モードを示
す図。
FIG. 4 is a diagram showing a secondary bending vibration mode of a contact spring portion of a rotor.

【図5】加振力を示す波形図。FIG. 5 is a waveform diagram showing an exciting force.

【図6】第1実施例のロータ及び振動子の接触部の振動
波形。
FIG. 6 is a vibration waveform of a contact portion between the rotor and the vibrator of the first embodiment.

【図7】第2実施例を示すロータの断面図FIG. 7 is a sectional view of a rotor showing a second embodiment.

【図8】第3実施例を示す超音波モータの概略断面図。FIG. 8 is a schematic sectional view of an ultrasonic motor showing a third embodiment.

【図9】第4実施例を示すロータの断面図。FIG. 9 is a sectional view of a rotor showing a fourth embodiment.

【図10】本発明による超音波モータを駆動源とする装
置の概略図。
FIG. 10 is a schematic view of an apparatus using an ultrasonic motor as a drive source according to the present invention.

【符号の説明】[Explanation of symbols]

1…振動子 1a…接触バネ部 2…ロータ本環 2a…接触バネ部 2b…基部 2c…フランジ部 2d…接触突起部 3…ロータ 4…耐摩耗樹脂層 DESCRIPTION OF SYMBOLS 1 ... Oscillator 1a ... Contact spring part 2 ... Rotor main ring 2a ... Contact spring part 2b ... Base part 2c ... Flange part 2d ... Contact protrusion part 3 ... Rotor 4 ... Wear resistant resin layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 棒状振動体に設けられた電気−機械エネ
ルギー変換素子に電気信号を印加することによって、前
記振動体の軸を含む異なる複数の平面内に、屈曲振動を
励起させ、かつ各々の振動に時間的に所定の位相差を持
たせることにより、前記振動体の表面に回転運動を生じ
させ、前記振動体に圧接係合した移動体を摩擦駆動する
超音波モータであって、該移動体では該振動体が接触バ
ネを有するものに於て、該接触バネの固有振動モードの
全てのモードの固有振動数が、駆動周波数の2倍より大
きい事を特徴とする超音波モータ。
1. A bending vibration is excited in a plurality of different planes including the axis of the vibrating body by applying an electric signal to an electro-mechanical energy conversion element provided in the rod-shaped vibrating body, and each of them is excited. An ultrasonic motor that causes a rotational movement on the surface of the vibrating body by giving a predetermined phase difference to the vibration, and frictionally drives a moving body press-engaged with the vibrating body. In the body, the vibrating body has a contact spring, and the natural frequencies of all modes of the natural vibration mode of the contact spring are larger than twice the driving frequency.
【請求項2】 請求項1に記載した棒状超音波モータを
含む装置に於て、振動子に押圧されて摩擦駆動される部
材から駆動力を得る出力部材を有することを特徴とする
装置。
2. An apparatus including the rod-shaped ultrasonic motor according to claim 1, further comprising an output member that obtains a driving force from a member that is frictionally driven by being pressed by a vibrator.
JP4013823A 1992-01-29 1992-01-29 Ultrasonic motor Pending JPH05211783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013823A JPH05211783A (en) 1992-01-29 1992-01-29 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013823A JPH05211783A (en) 1992-01-29 1992-01-29 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH05211783A true JPH05211783A (en) 1993-08-20

Family

ID=11843998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013823A Pending JPH05211783A (en) 1992-01-29 1992-01-29 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH05211783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523109B1 (en) * 2001-01-22 2005-10-20 캐논 가부시끼가이샤 Vibration wave driving apparatus
JP2014087151A (en) * 2012-10-23 2014-05-12 Nikon Corp Vibration actuator and optical device
JP2018186656A (en) * 2017-04-26 2018-11-22 キヤノン株式会社 Vibration type actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523109B1 (en) * 2001-01-22 2005-10-20 캐논 가부시끼가이샤 Vibration wave driving apparatus
JP2014087151A (en) * 2012-10-23 2014-05-12 Nikon Corp Vibration actuator and optical device
JP2018186656A (en) * 2017-04-26 2018-11-22 キヤノン株式会社 Vibration type actuator
US11165370B2 (en) 2017-04-26 2021-11-02 Canon Kabushiki Kaisha Vibration actuator

Similar Documents

Publication Publication Date Title
Dubois et al. PZT thin film actuated elastic fin micromotor
JP3107933B2 (en) Vibration wave driving device and device provided with vibration wave driving device
JP2996477B2 (en) Vibration wave drive
JPS5937672B2 (en) Rotary drive device using ultrasonic vibration
JP2803939B2 (en) Vibration wave device
EP0740353B1 (en) A vibriation wave driving apparatus and a vibration member
JP3205026B2 (en) Vibration wave driving device and device having vibration wave driving device
JPH099656A (en) Ultrasonic vibrator and ultrasonic motor
JPH05211783A (en) Ultrasonic motor
JP3107946B2 (en) Vibration wave drive
JP3167394B2 (en) Vibration wave driving device and device having vibration wave driving device
JPH06189567A (en) Ultrasonic motor
JPS62213585A (en) Vibration wave motor
JP2001037265A (en) Vibrating driver and apparatus using the same
JP2769151B2 (en) Ultrasonic motor
JP3001956B2 (en) Disk type ultrasonic motor
JP2003164171A (en) Oscillatory wave drive unit
JP2720037B2 (en) Ultrasonic motor
JP2746578B2 (en) Ultrasonic motor
JP3190073B2 (en) Vibration wave motor and device with vibration wave motor
JP3179662B2 (en) Ultrasonic motor and device having ultrasonic motor
JPH07163165A (en) Ultrasonic motor and device employing it
JPH08298792A (en) Vibration wave drive device
JP2754625B2 (en) Vibration actuator
JPH0681523B2 (en) Vibration wave motor