JP3190073B2 - Vibration wave motor and device with vibration wave motor - Google Patents

Vibration wave motor and device with vibration wave motor

Info

Publication number
JP3190073B2
JP3190073B2 JP22710291A JP22710291A JP3190073B2 JP 3190073 B2 JP3190073 B2 JP 3190073B2 JP 22710291 A JP22710291 A JP 22710291A JP 22710291 A JP22710291 A JP 22710291A JP 3190073 B2 JP3190073 B2 JP 3190073B2
Authority
JP
Japan
Prior art keywords
vibration
vibrating body
contact
driving
wave motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22710291A
Other languages
Japanese (ja)
Other versions
JPH0568383A (en
Inventor
月本貴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22710291A priority Critical patent/JP3190073B2/en
Publication of JPH0568383A publication Critical patent/JPH0568383A/en
Application granted granted Critical
Publication of JP3190073B2 publication Critical patent/JP3190073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、振動体に接合された電
気−機械エネルギー変換素子に電気エネルギーを供給す
ることにより、振動体を振動させ振動体の駆動面に回転
運動を生じさせ、振動体と接触した接触体と振動体とを
相対回転させる振動波モータ、特にカメラ等の光学機
器、プリンタ等の事務機器に好適な振動波モータおよび
振動波モータを備えた装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric-to-mechanical energy conversion device joined to a vibrating body for supplying electric energy to vibrate the vibrating body to rotate the driving surface of the vibrating body. The vibrating body and the contact body that has come into contact with the vibrating body.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration wave motor for relatively rotating , particularly a vibration wave motor suitable for optical equipment such as a camera and office equipment such as a printer, and an apparatus provided with the vibration wave motor.

【0002】[0002]

【従来の技術】従来、振動波モータとしての超音波モー
タとしては、円環状の弾性体に曲げ振動を起こし、摩擦
力によりレンズ駆動用移動体を駆動させるタイプのもの
が、カメラ用AF機構などで、実用化されている。しか
し、この従来のタイプのものは、リング形状であるた
め、加圧機構を含めたユニットとしては、比較的コスト
高であり、中空を要求されないモータ用としてはコスト
上不利である。そこで中実型で、加圧系などの構成が容
易な、図2乃至図3に示すようなタイプのモータが、近
年提案された。
2. Description of the Related Art Conventionally, as an ultrasonic motor as a vibration wave motor, a type in which an annular elastic body undergoes bending vibration and a lens driving moving body is driven by a frictional force, such as an AF mechanism for a camera, etc. In practical use. However, since this conventional type has a ring shape, it is relatively expensive as a unit including a pressurizing mechanism, and disadvantageous in cost for a motor which does not require a hollow. Therefore, a motor of the type shown in FIGS. 2 and 3 which is a solid type and has a simple structure such as a pressurizing system has been proposed in recent years.

【0003】ここで、該提案にかかるモータについて図
2乃至図4をもちいて簡単に説明する。
Here, the motor according to the proposal will be briefly described with reference to FIGS.

【0004】図2は棒状の超音波モータの振動斜視
図、図3はモータ構成図を示す縦断面図である。
FIG. 2 is a perspective view of a vibrating body of a rod-shaped ultrasonic motor, and FIG. 3 is a longitudinal sectional view showing a motor configuration diagram.

【0005】電気−機械エネルギー変換素子(以下PZ
Tと称す)a1,a2により、振動は図4に示すよう
な1次曲げの振動を発生する。
[0005] An electro-mechanical energy conversion element (hereinafter PZ)
Due to a1 and a2), the vibrating body generates a primary bending vibration as shown in FIG.

【0006】Cは上部が細い円柱形状を有するボルト
で、真ちゅう、ステンレス等の減衰の比較的小さい金属
等でできた振動体としての構成部材b1およびb2間に
PZTa1,a2を挟持固定する。
Reference numeral C denotes a bolt having a cylindrical shape with a thin upper portion. PZTa1 and a2 are sandwiched and fixed between structural members b1 and b2 as vibrating members made of metal such as brass or stainless steel having relatively small attenuation.

【0007】また円柱部mの形状は振動体を構成する
定部材gと結合する上部付近にて振動体の振動時変位
小さくなるような寸法にて決定する。
The shape of the cylindrical portion m is such that the displacement of the vibrating body at the time of vibration near the upper portion where it is connected to the fixing member g constituting the vibrating body
Is determined so that is small.

【0008】そして、移動体dはベアリングeを通して
バネケースf、コイルバネhを介して振動を構成する
固定部材に結合されているため、振動の上面に加圧接
触している。
The moving body d is connected to the fixed member forming the vibrating body through the spring case f and the coil spring h through the bearing e, and is in pressure contact with the upper surface of the vibrating body .

【0009】ところで、PZTa1,a2にて発生する
1次曲げモードはθ方向に90°の位置的位相差を持っ
た方向に2種かつ時間的に90°ずれて励振されるた
め、移動体との接触部A点(図4に図示)は楕円運動を
行う。尚、その運動方向は振動の形状により決まりZ
軸に対して角度α傾いた面内を楕円運動する。このと
き、加圧接触している移動体は摩擦駆動される。
The primary bending modes generated in PZTa1 and a2 are excited in two directions in the direction having a positional phase difference of 90 ° in the θ direction and are shifted by 90 ° in time. (FIG. 4) performs an elliptical motion. The direction of movement is determined by the shape of the vibrating body.
Performs elliptical motion in a plane inclined at an angle α with respect to the axis. At this time, the moving body in pressure contact is driven by friction.

【0010】[0010]

【発明が解決しようとする課題】ところで、図2に示す
ような超音波モータの振幅はきわめて微小(μmオーダ
ー)のため、現実の加工精度を考慮すると以下の問題が
発生する。尚以下に示すそり量は駆動面に垂直方向につ
いて、そして振動方向は駆動面の垂線となす角により定
義する。
By the way, FIG.
Since the amplitude of such an ultrasonic motor is extremely small (on the order of μm), the following problems occur in consideration of actual machining accuracy. The amount of warpage shown below is defined in a direction perpendicular to the drive surface, and the direction of vibration is defined by an angle formed with a perpendicular to the drive surface.

【0011】振動体としての構造部材b1は旋盤等で加
工されるが、図5に示すように、高精度に加工しても平
面度0.2〜0.8μm程度のそり(x)を生じてい
る。また、その変形形状はsin2θで示される殆んど
2つ折れの形状を呈している。ところでレンズのAF用
アクチュエータなどに利用されている円環型超音波モー
タでも同様にそりが見られるが、振動に発生させる波
数は一般に多く、この棒状の超音波モータ程切実になら
ない。この理由を以下に述べる。
The structural member b1 as a vibrating body is processed by a lathe or the like. As shown in FIG. 5, even when processed with high precision, a warp (x) having a flatness of about 0.2 to 0.8 μm is generated. ing. Further, the deformed shape is almost a two-fold shape represented by sin2θ. By the way, although a warp is similarly observed in an annular ultrasonic motor used for an AF actuator of a lens, the wave number generated in the vibrating body is generally large and is not as sharp as that of the rod-shaped ultrasonic motor. The reason will be described below.

【0012】図6は円環型超音波モータについて示した
もので(横軸は円環を展開したθ座標)、(a)におい
て、iは1μmの振動体のそり形状を表し、静的な状態
(振動していない状態)における接触部の形状を示す。
(b)ではjは5波の0.5μmの振動変位、さらに
(c)は両者が重畳したものに、移動体dが接触してい
る様子を示す。
FIG. 6 shows an annular ultrasonic motor (the horizontal axis is the θ coordinate of the developed annular ring). In FIG. 6A, i represents the warp shape of a 1 μm vibrator, and Status
3 shows the shape of the contact portion in a state (not vibrating).
In (b), j indicates a vibration displacement of 0.5 μm of five waves, and (c) indicates a state in which the moving body d is in contact with a superposition of both.

【0013】図12,13にも同様の図を示すが、図6
ではそりのピーク位置(図中B)と振動波動の位相差
0、図12が180°、図13が90°のときを示し、
いずれの状態でも移動体は波動の全ての山(波頭:図中
太線)に接触はできないが、いくつかに少なくとも1つ
の波頭に接触し、常に振動から駆動力を得ることがで
きることがわかる。
Similar figures are shown in FIGS. 12 and 13, but FIG.
Then, the peak position of the warp (B in the figure) and the phase difference of the vibration wave are 0, FIG. 12 shows the case of 180 °, and FIG. 13 shows the case of 90 °,
In any state, the moving body cannot make contact with all the peaks of the wave (crests: thick line in the figure), but it can be seen that the moving body comes into contact with at least one of the crests and can always obtain the driving force from the vibrating body .

【0014】一方、複数の異なる方向の屈曲振動を所定
の時間的位相差を有して励起する方式の超音波モータ
は、1波駆動に相当し、図7の状態となったとき、矢印
Cの示す波頭と移動体dとが接触せず、移動体dは駆動
力を殆んど得ることができない。したがって、きわめて
効率の悪いモータとなってしまう。
On the other hand, a plurality of bending vibrations in different directions are determined.
The ultrasonic motor of the type that excites with a temporal phase difference is equivalent to one-wave drive. When the state shown in FIG. 7 is reached, the wave front indicated by the arrow C does not contact the moving body d, The body d can hardly obtain the driving force. Therefore, the motor becomes extremely inefficient.

【0015】すなわち、図7の(a)はそり変形iを示
し、(b)は振動変位jを示し、この合成(i+j)を
(c)に示すように、矢印Cにおいて移動体dは波頭と
接触しない。
That is, FIG. 7 (a) shows a warp deformation i, FIG. 7 (b) shows a vibration displacement j, and this composite (i + j) is shown in FIG. Do not contact with

【0016】図11は従来の効率の悪い振動波モータの
振動体を示している。この振動体は、振動方向(α)が
60°で、接触面のそりは0.8μmであった。また、振幅の
上限値をとる駆動周波数は64.8kHzと高く、比較的小さ
い振幅から発熱するため、大振幅は難しく、1.5μm以上
の振幅を発生させると、振動体の内部損が急増し、効率
が著しく低減し、あるいは小電力での駆動ができない。
ここで振動体の接触部における振動変位(振動振幅によ
る移動量)は図11の矢印で示されるベクトルの長さa
で表され、その軸方向の変位成分の大きさは、そのベク
トルが軸となす角、つまり振動体の駆動面の静止時にお
ける垂線となす角をαとするとa・cosαである。
FIG. 11 shows a vibrating body of a conventional inefficient vibration wave motor. This vibrator has a vibration direction (α)
At 60 °, the warpage of the contact surface was 0.8 μm. Also, the amplitude
The drive frequency that takes the upper limit is as high as 64.8 kHz, and heat is generated from a relatively small amplitude, so large amplitude is difficult.If an amplitude of 1.5 μm or more is generated, the internal loss of the vibrator suddenly increases, and the efficiency is significantly reduced. Or low-power driving.
Here, the vibration displacement at the contact part of the vibrating body (depending on the vibration amplitude)
Is the length a of the vector indicated by the arrow in FIG.
The magnitude of the axial displacement component is represented by the vector
The angle that the torque makes with the axis, that is, when the driving surface of the vibrating body is stationary
Let α be the angle formed by the perpendicular line to be drawn.

【0017】しかし、振幅(振動振幅による移動量a)
が1.5μm以下(a≦1.5μm)の振動では、振動方向
α=60°で、且つ接触面のそりが0.8μm(x=0.8μm)
であるため x<acosα の条件を満せず、移動体が振動体の駆動波の山の頂点
(波頭)に接触しない瞬間が存在してしまう。このた
め、摩擦駆動力が移動体に伝わらず、効率よく出力する
ことができない。
However, the amplitude ( movement amount a due to vibration amplitude )
Is 1.5 μm or less (a ≦ 1.5 μm), the vibration direction α = 60 °, and the warpage of the contact surface is 0.8 μm (x = 0.8 μm)
Therefore, the condition x <a · cosα is not satisfied, and there is a moment when the moving body does not contact the peak (wavefront) of the peak of the driving wave of the vibrating body. For this reason, the friction driving force is not transmitted to the moving body, and cannot be output efficiently.

【0018】ところで、波動とそりの位相関係が図7に
示す状態のとき、速い送り速度を持つ波頭と移動体が接
触できるための条件、つまり全時間領域にわたって波頭
と移動体とが接触できるための条件は、そりの量と波動
振幅の大きさの関係で決まる。
By the way, when the phase relationship between the wave and the warp is as shown in FIG. 7, the condition that the wave front having a high feed rate can contact the moving body, that is, the wave front and the moving body can contact over the entire time domain. Is determined by the relationship between the amount of warpage and the magnitude of the wave amplitude.

【0019】ところで、棒状に形成されているモータに
おいて、接触・非接触を決定するのは、駆動面に垂直な
方向の成分である。これは、図4において、矢印で示す
ロータとの接触部の質点変位をaとすると、上記した垂
直方向の成分はa・cosαとなり、この成分が面のそ
り量xより大きければよいことになる。
By the way, in a motor formed in a rod shape, contact / non-contact is determined by a component in a direction perpendicular to the driving surface. In FIG. 4, when the mass point displacement of the contact portion with the rotor indicated by the arrow is a, the above-described component in the vertical direction is a · cos α, and this component only needs to be larger than the warpage amount x of the surface. .

【0020】[0020]

【課題を解決するための手段】したがって、振動体と接
触し、振動体と相対的に回転する接触体との接触径、駆
動周波数、モータスペックの回転数から決定される変位
a、及び、使用する加工機、振動体の部材b1の大き
さ、形状等で決まるそり量xについて、0<x<a・c
osαとなるように振動角αを決定すれば効率のよいモ
ータが実現できる。
Therefore, the displacement determined by the contact diameter of the contacting member which comes into contact with the vibrating body and rotates relative to the vibrating body, the driving frequency, and the rotation speed of the motor specifications.
0 <x <a · c for a and the amount of warpage x determined by the size and shape of the processing machine to be used and the member b1 of the vibrating body.
If the vibration angle α is determined to be osα, an efficient motor can be realized.

【0021】なお、本発明の原理について振動にそり
を生じ、接触体駆動面は理想的にそりを生じていない場
合を例にして上記の説明を行なっているが、図7に示し
た波動と振動のそりとの位相状態にて、振動のそり
接触体駆動面のそりが逆位相のとき、図16に示した
ように、より接触不可能であり、本発明に示す条件はき
びしくなる。
The principle of the present invention has been described above by taking as an example a case where the vibrating body is warped and the contact body driving surface is not ideally warped. When the warp of the vibrating body and the warp of the contact body drive surface are in opposite phases in the phase state of the warp of the vibrator and the warp of the vibrator, as shown in FIG. It becomes severe.

【0022】この場合、接触体駆動面のそりをwとする
と、0<x+w<acosαとなる。
In this case, if the warp of the contact body driving surface is w, then 0 < x + w <acosα.

【0023】また、きわめてまれに、旋盤加工時のチャ
ッキングの影響等により3つ折れ(sin3θなる形
状)のそりを生じていることがあり、振動のそりと振
動変位の位相関係が図17のようになったとき波頭部C
接触体駆動面dとは接触できず前述同様モータ効率は
悪化する。このとき接触体駆動面が波頭と接触する条件
は、上記の関係と同様である。
Further, the rare, the influence of the chucking during lathing may have cause warping of three fold (Sin3shita made shape), the phase relationship between the sled and the vibration displacement of the vibrating body 17 When the wave head C
Cannot contact the contact body driving surface d, and the motor efficiency is deteriorated as described above. At this time, the conditions under which the contact body driving surface comes into contact with the wave front are the same as those described above.

【0024】また、表面粗さのようなきわめて細いピッ
チの凸凹については、その包絡線により定義する。
Also, irregularities having a very fine pitch such as surface roughness are defined by their envelopes.

【0025】[0025]

【実施例】図1は本発明による振動波モータとしての
音波モータの一実施例を示す。
FIG. 1 shows an embodiment of an ultrasonic motor as a vibration wave motor according to the present invention.

【0026】本実施例による振動波モータとしての超音
波モータは、図2,3に示す超音波モータと基本的には
同様の構造であり、ロータRの接触面のそり量(x)
は、0.2μm〜0.8μm程度の範囲でバラツキを有してい
る。一方、振動体は電源条件、モータでの発熱等から、
ロータRとの接触部にて得られる変位(振幅運動による
移動量)を1.5μm〜2.5μmo−p程度が限界であった。
なおo、pは片振幅を示す。
The ultrasonic motor as the vibration wave motor according to the present embodiment has basically the same structure as the ultrasonic motor shown in FIGS. 2 and 3, and the warpage (x) of the contact surface of the rotor R.
Have variations in the range of about 0.2 μm to 0.8 μm. On the other hand, the vibrating body is subject to power supply conditions, heat generated by the motor, etc.
Displacement obtained at the point of contact with rotor R (due to amplitude motion
The maximum amount of movement was about 1.5 μm to 2.5 μm-p.
In addition, o and p show a half amplitude.

【0027】また、この振動体の振動方向(α)は、39
°である。ここで、振動方向(α)は、振動体の振動方
向が駆動面の静止時における垂線となす角でる。 また、
振動体の接触部の振動での振幅運動による移動量aは、
振動子の形状及び振動体にかける電圧若しくは電圧の周
波数等で変化する値で、測定若しくは計算によって求め
ることが可能な値である。
The vibration direction (α) of the vibrator is 39
°. Here, the vibration direction (α) is the vibration method of the vibrating body.
The direction is the angle between the drive surface and the perpendicular when the drive surface is stationary. Also,
The movement amount a due to the amplitude motion due to the vibration of the contact portion of the vibrating body is
The shape of the vibrator and the voltage applied to the vibrator or the voltage
A value that changes with the wave number, etc., obtained by measurement or calculation
Is a value that can be

【0028】すなわち、a=1.5μm〜2.5μm、
α=39°とし、acosαの値(Z方向成分)は1.
2μm〜1.9μmとなる。このことから、そり量
(x)は、acosαより小なる条件を満足することに
なる。
That is, a = 1.5 μm-2.5 μm,
α = 39 °, and the value of acos α (Z-direction component) is 1.
It is 2 μm to 1.9 μm. From this, the amount of warpage (x) satisfies a condition smaller than acos α.

【0029】この超音波モータを実際に駆動すると、大
出力を効率よく取り出すことができた。
When this ultrasonic motor was actually driven, a large output could be efficiently taken out.

【0030】以上より、1波駆動の超音波モータにおい
て、現実的に(理想平面ではこのようなことはないか
ら)、出力を大きく取り出すためには、振動方向αを小
さくすればする程よいといえる。
From the above, it can be said that, in a single-wave driven ultrasonic motor, the smaller the vibration direction α is, the more practically (in an ideal plane, there is no such a thing), the more the output can be taken out. .

【0031】このようにするには、図8に示すように、
1点鎖線で示すたわみ関数のロータ接触部付近の傾きが
大きく、つまり、角度βが大きくなるような形状を与え
ればよい。
To do this, as shown in FIG.
What is necessary is just to give a shape such that the inclination of the deflection function shown by the one-dot chain line near the rotor contact portion is large, that is, the angle β is large.

【0032】このためには、図8に示す振動の形状で
は、t,μを小とすることにより実現できる。また、振
同一形状でもロータとの接触径により異なる。例え
ば図1に示すα2 はαより大きく、外径側で接触させた
方が通常有利である。
This can be realized by reducing t and μ in the shape of the vibrating body shown in FIG. Further, even if the vibrating body has the same shape, it differs depending on the contact diameter with the rotor. For example, α 2 shown in FIG. 1 is larger than α, and it is usually advantageous to make contact on the outer diameter side.

【0033】図9,図10は軸の傾きβが大きくなる振
形状の例である。
FIGS. 9 and 10 show examples of vibrating body shapes in which the inclination β of the axis becomes large.

【0034】図9の実施例では、t部の寸法を小さく
し、剛性を下げると共に、上部の質量を大きくし、βを
大きくしたものである。
In the embodiment shown in FIG. 9, the size of the t portion is reduced, the rigidity is reduced, the mass of the upper portion is increased, and β is increased.

【0035】また、図10に示す実施例では、振動
くびれ部における軸方向の長さHを長くし、βを大きく
したものである。
In the embodiment shown in FIG. 10, the length H in the axial direction of the constricted portion of the vibrator is increased and β is increased.

【0036】なお、上記の実施例は、加工容易性等の理
由から、ロータと当接する振動の駆動面が平面状のも
のについて説明したが、駆動面がテーパ状であっても同
様の効果が得られる。
Although the above embodiment has been described with reference to the case where the driving surface of the vibrating body which comes into contact with the rotor is planar for reasons such as easiness of processing, the same effect can be obtained even if the driving surface is tapered. Is obtained.

【0037】図14は駆動面にテーパ形状を有する振動
の実施例を示している。
FIG. 14 shows a vibration having a tapered shape on the driving surface.
1 shows an example of a body .

【0038】本実施例では駆動面は振動の軸に対し4
5°、振動方向は48°であるため、α=3°であり、
駆動面の平面度が0.5μmであることから、振動振幅
0.6μmでも良好なモータ効率が得られた。
In this embodiment, the driving surface is located at 4 degrees with respect to the axis of the vibrating body.
5 ° and the vibration direction is 48 °, so α = 3 °,
Since the flatness of the driving surface was 0.5 μm, good motor efficiency was obtained even at a vibration amplitude of 0.6 μm.

【0039】図15に本発明によるモータを使用して、
ある装置を駆動する場合の構成を示す。
Using the motor according to the invention in FIG.
1 shows a configuration for driving a certain device.

【0040】1は移動体2と同軸的に接合された歯車
で、回転出力を歯車1に伝達し、歯車3と噛み合う歯車
をもった装置を駆動させる。移動体2および装置の回転
位置、回転速度を検出するために、光学式エンコーダス
リット板5が歯車3と同軸に配置されフォトカプラ4で
位置・速度を検出する。
Reference numeral 1 denotes a gear coaxially connected to the moving body 2 for transmitting a rotation output to the gear 1 to drive a device having a gear meshing with the gear 3. In order to detect the rotational position and rotational speed of the moving body 2 and the apparatus, an optical encoder slit plate 5 is disposed coaxially with the gear 3 and the position and speed are detected by a photocoupler 4.

【0041】[0041]

【発明の効果】以上説明してきたように、本発明によれ
ば、振動体における駆動面の加工精度等によって、接触
と駆動面とが接触されないという状態がなくなり、モ
ータの効率を向上させることができるという効果が得ら
れる。
As described above, according to the present invention, depending on the machining accuracy of the driving surface of the vibrating body, the contact
The state where the body and the drive surface are not in contact with each other is eliminated, and the effect that the efficiency of the motor can be improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波モータの一実施例を示す
図。
FIG. 1 is a diagram showing one embodiment of an ultrasonic motor according to the present invention.

【図2】従来の超音波モータの斜視図。FIG. 2 is a perspective view of a conventional ultrasonic motor.

【図3】従来の超音波モータの縦断面図。FIG. 3 is a longitudinal sectional view of a conventional ultrasonic motor.

【図4】本発明の原理を説明する図。FIG. 4 illustrates the principle of the present invention.

【図5】振動のそりを示す図。FIG. 5 is a diagram showing warpage of a vibrating body .

【図6】振動のそり、振動変位と、これらの合成とロ
ータとの接触状態を示す図。
FIG. 6 is a diagram showing a warp and a vibration displacement of a vibrating body, a combination thereof, and a contact state with a rotor.

【図7】図6の状態からある時間経過後の振動のそ
り、振動変位と、これらの合成とロータとの接触状態を
示す図。
FIG. 7 is a view showing the warpage and vibration displacement of the vibrating body after a certain time has elapsed from the state of FIG.

【図8】他の実施例の振動の側面図。FIG. 8 is a side view of a vibrating body according to another embodiment.

【図9】他の実施例の振動の側面図。FIG. 9 is a side view of a vibrating body according to another embodiment.

【図10】他の実施例の振動の側面図。FIG. 10 is a side view of a vibrating body according to another embodiment.

【図11】従来の振動の側面図。FIG. 11 is a side view of a conventional vibrating body .

【図12】本発明の原理を説明する振動のそり、振動
変位と、これらの合成とロータとの接触状態を示す図。
FIG. 12 is a diagram illustrating a warp and a vibration displacement of a vibrating body, a combination thereof, and a contact state with a rotor for explaining the principle of the present invention.

【図13】図12の状態からある時間経過後の振動
そり、振動変位と、これらの合成とロータとの接触状態
を示す図。
FIG. 13 is a view showing a warp and a vibration displacement of the vibrating body after a certain time has elapsed from the state of FIG. 12, and a combination thereof, and a state of contact with the rotor.

【図14】本発明の他の実施例の振動の図。FIG. 14 is a diagram of a vibrating body according to another embodiment of the present invention.

【図15】本発明による超音波モータを駆動源として使
用した装置の断面図。
FIG. 15 is a sectional view of an apparatus using an ultrasonic motor according to the present invention as a drive source.

【図16】本発明の原理を説明する図。FIG. 16 illustrates the principle of the present invention.

【図17】本発明の原理を説明する図。FIG. 17 illustrates the principle of the present invention.

【符号の説明】[Explanation of symbols]

a1,a2…圧電素子(PZT) b1,b2…振動
構造体 c…ピン付ボルト d…振動 e…ベアリング f…バネケース g…振動固定部材 h…コイルバネ α…振動方向 A…移動体との接
触位置 x…そり量 a…振動振幅 B…そりのピーク β…たわみ角 C…振動の波頭
a1, a2: Piezoelectric element (PZT) b1, b2: Vibration
Body structure c: Bolt with pin d: Vibrating body e: Bearing f: Spring case g: Vibrating body fixing member h: Coil spring α: Vibration direction A: Contact position with moving body x: Warpage amount a: Vibration amplitude B: Warpage Peak β: deflection angle C: vibration crest

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振動体に挟持された電気−機械エネルギ
ー変換素子に駆動用の電気信号を印加することにより、
該振動体の端面である駆動面に複数の異なる方向の屈曲
振動を所定の時間的位相差を有して励起し、これらの複
数の屈曲振動の合成により振動の1波駆動によって該振
動体の駆動面に回転運動を生じさせ、該駆動面に端面に
て加圧接触する接触体と前記振動体とを相対回転させる
ものであって、前記駆動面の端面には固有のそりが存在
し、前記回転運動は前記駆動面の質点について振動方向
を有すると共に振動振幅を有する振動波モータにおい
て、 該振動体に励起される屈曲振動の該接触体との接触部に
おける前記振動方向について該振動体の駆動面の静止時
における垂線となす角度をα、該振動体の接触部の振動
での振幅運動による移動量をa、該接触体との接触面に
おける該振動体の端面のそり量をxとすると、0<x<
a・cosαとなる条件aで駆動することを特徴とする
振動波モータ。
An electric signal for driving is applied to an electro-mechanical energy conversion element sandwiched by a vibrating body,
Bending vibrations in a plurality of different directions are excited with a predetermined temporal phase difference on a driving surface which is an end surface of the vibrating body, and the vibration body is driven by one-wave driving of the vibration by synthesizing the plurality of bending vibrations. A rotating motion is generated on the driving surface, and the contact body and the vibrating body that press against the driving surface at the end surface are relatively rotated, and an inherent warpage is present on the end surface of the driving surface, In the vibration wave motor, the rotational motion has a vibration direction about a mass point of the driving surface and has a vibration amplitude, wherein the bending direction of the bending vibration excited by the vibration body is the vibration direction of the vibration body at a contact portion with the contact body. Α is the angle between the drive surface and the vertical line when the drive surface is stationary, a is the amount of movement due to the amplitude motion of the vibration of the contact portion of the vibrating body, and x is the amount of warpage of the end face of the vibrating body at the contact surface with the contact body. Then, 0 <x <
A vibration wave motor driven under a condition a that satisfies a · cos α.
【請求項2】 請求項1に記載の振動波モータを駆動源
として有し、該振動波モータにより駆動される被駆動部
材を有することを特徴とする振動波モータを備えた装
置。
2. An apparatus provided with a vibration wave motor, comprising: the vibration wave motor according to claim 1 as a driving source; and a driven member driven by the vibration wave motor.
JP22710291A 1991-09-06 1991-09-06 Vibration wave motor and device with vibration wave motor Expired - Lifetime JP3190073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22710291A JP3190073B2 (en) 1991-09-06 1991-09-06 Vibration wave motor and device with vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22710291A JP3190073B2 (en) 1991-09-06 1991-09-06 Vibration wave motor and device with vibration wave motor

Publications (2)

Publication Number Publication Date
JPH0568383A JPH0568383A (en) 1993-03-19
JP3190073B2 true JP3190073B2 (en) 2001-07-16

Family

ID=16855515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22710291A Expired - Lifetime JP3190073B2 (en) 1991-09-06 1991-09-06 Vibration wave motor and device with vibration wave motor

Country Status (1)

Country Link
JP (1) JP3190073B2 (en)

Also Published As

Publication number Publication date
JPH0568383A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
EP1665336B1 (en) Ultrasonic lead screw motor
US4453103A (en) Piezoelectric motor
JP2996483B2 (en) Vibration type motor
US5532540A (en) Electric motor with vibrating elements and elastic coupling
JP2803939B2 (en) Vibration wave device
JP3107933B2 (en) Vibration wave driving device and device provided with vibration wave driving device
WO2007056952A1 (en) A thread driven polyhedron ultrasonic motor
JPS5937672B2 (en) Rotary drive device using ultrasonic vibration
US5115161A (en) Ultrasonic motor
JPS6022479A (en) Stator of surface wave motor and improvement in movable element
JPS59188381A (en) Improvement in rotor/movable element of surface wave motor
JP4841432B2 (en) Ultrasonic motor for lead screw
JP3190073B2 (en) Vibration wave motor and device with vibration wave motor
JP3167394B2 (en) Vibration wave driving device and device having vibration wave driving device
JP3016577B2 (en) Vibration wave device
EP0543360A1 (en) Vibration driven motor
JPS6149670A (en) Cantilever beam-shaped supersonic twisted elliptical vibrator
JPS5937673B2 (en) Unidirectional drive device using ultrasonic vibration
JP2001037265A (en) Vibrating driver and apparatus using the same
JPH05211783A (en) Ultrasonic motor
Frank et al. Design and performance of a resonant roller wedge actuator
JP2971971B2 (en) Ultrasonic actuator
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith
JP2001145376A (en) Vibration wave derive device
JP2012075225A (en) Feed screw driving device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11