JPH08293424A - Manufacture of oxide permanent magnet - Google Patents

Manufacture of oxide permanent magnet

Info

Publication number
JPH08293424A
JPH08293424A JP7098827A JP9882795A JPH08293424A JP H08293424 A JPH08293424 A JP H08293424A JP 7098827 A JP7098827 A JP 7098827A JP 9882795 A JP9882795 A JP 9882795A JP H08293424 A JPH08293424 A JP H08293424A
Authority
JP
Japan
Prior art keywords
temperature
sintering
permanent magnet
holding
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7098827A
Other languages
Japanese (ja)
Inventor
Takashi Arakawa
尚 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7098827A priority Critical patent/JPH08293424A/en
Publication of JPH08293424A publication Critical patent/JPH08293424A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE: To develop a technique for stably providing an oxide permanent magnet with high iHc as high Br. CONSTITUTION: In manufacture of an oxide permanent magnet by crushing pre-sintered ferrite powder into fine particles, molding the fine particles within a magnetic field, and then sintering the resulting molding, the temperature rise speed at least in a temperature range of 700-900 deg.C of temperature rise in sintering is set to 0.1-2 deg.C/minute. Subsequently, heating is maintained at a holding temperature above 900 deg.C, or the temperature within the range of 700-900 deg.C of the temperature rise in sintering is maintained at least once or more for one or more hours. Subsequently, heating at a holding temperature above 900 deg.C is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、残留磁束密度 (以下、
“Br"と記す) が高く且つ保持力 (以下、“iHc"と記
す) の高い酸化物永久磁石を安定して得るための製造方
法に関する。
The present invention relates to a residual magnetic flux density (hereinafter,
The present invention relates to a manufacturing method for stably obtaining an oxide permanent magnet having a high "Br" and a high coercive force (hereinafter, "iHc").

【0002】[0002]

【従来の技術】一般に、酸化物永久磁石、例えば、Sr
フェライト磁石は、まず、原料粉末である酸化鉄および
炭酸ストロンチウムの粉末を配合・混合し、その後、仮
焼成により、Sr フェライト結晶を生成させ、次いで、
このようにして得た仮焼成物を微粉砕して微粉末とし、
その後、この微粉末を磁界中湿式成形してから本焼成を
行うことにより製造されている。
2. Description of the Related Art Generally, oxide permanent magnets such as Sr are used.
In a ferrite magnet, first, raw material powders of iron oxide and strontium carbonate are mixed and mixed, and then calcined to produce Sr ferrite crystals, and then,
The calcinated product thus obtained is pulverized into a fine powder,
After that, the fine powder is wet-molded in a magnetic field and then main-baked to manufacture.

【0003】このような既知の酸化物永久磁石の製造方
法においては、磁気特性の向上のために、高Br 化を図
るにはフェライト化率、焼結密度、結晶配向度または構
成フェライト粒子自体のIs(飽和磁化) をそれぞれ大き
くすること、一方、高いiHc化を図るには、焼結体中
の単磁区粒子 (結晶) の存在率を高めることが有効であ
ることが知られている。
In such a known method for producing an oxide permanent magnet, in order to improve the magnetic properties, in order to achieve a high Br, the ferrite ratio, the sintering density, the crystal orientation degree, or the constituent ferrite particles themselves are changed. It is known that increasing the abundance of single domain particles (crystals) in the sintered body is effective for increasing Is (saturation magnetization) and increasing iHc.

【0004】そこで、Sr フェライト磁石についても、
従来より、高Br 化ならびに高iHc化のため、上記知
見に基づいて磁石組成、添加物および製造条件等につい
て種々検討されてきたが、酸化物永久磁石自体が焼結体
であるため、例えば焼結体の密度を高めると必然的に結
晶の成長を助長し結晶粒の粗大化により、結晶粒子が多
磁化することによって、単磁区粒子の割合が減少し、結
局、Br とiHcを同時に向上させることは極めて困難
であった。
Therefore, as for the Sr ferrite magnet,
Conventionally, various magnet compositions, additives, manufacturing conditions, and the like have been studied based on the above findings in order to achieve high Br and high iHc. Increasing the density of the aggregates inevitably promotes crystal growth and coarsens the crystal grains, resulting in multi-magnetization of the crystal grains, reducing the proportion of single domain grains, and ultimately improving Br and iHc at the same time. It was extremely difficult.

【0005】このような状況下において、近年、微粉末
を分級しまたは2種以上の微粉末を混合して微粉末の粒
度分布を制御することにより、前記両磁気特性の向上を
図る方法が提案されている。例えば、特開平4−320009
号公報、特開平6−20819 号公報に開示されている発明
である。
Under these circumstances, in recent years, there has been proposed a method for improving both magnetic properties by classifying fine powders or mixing two or more kinds of fine powders to control the particle size distribution of the fine powders. Has been done. For example, JP-A-4-320009
The invention is disclosed in Japanese Patent Laid-Open No. 6-20819.

【0006】これらの方法では、粗大粒子の存在を少な
くし、単磁区粒子の存在割合を増大させると共に、焼結
性の高い超微粉末の量を低減させることにより、焼結時
にこの超微粉末に起因する結晶粒子の異常粒成長を抑制
し、磁気特性の劣化およびバラツキの低減等を図ってい
る。ここで、超微粉末が若干ながら残されている理由
は、超微粉末が極度に少なくなると、成形時の成形体密
度が低下するからであり、また焼結時に焼結助剤的に働
く焼結性の高い超微粉末が少ないと、焼結後の焼結体密
度が低下し、焼結体の磁気特性、特にBr の低下および
強度の低下が生じるからである。
[0006] In these methods, the presence of coarse particles is reduced, the proportion of single domain particles is increased, and the amount of ultrafine powder having high sinterability is reduced. The abnormal grain growth of the crystal grains caused by the above is suppressed, and the deterioration of the magnetic characteristics and the variation are reduced. Here, the reason why the ultrafine powder is slightly left is that if the ultrafine powder is extremely small, the density of the compact during compaction is lowered, and the firing that acts as a sintering aid during sintering is performed. This is because if the amount of the ultrafine powder having a high binding property is small, the density of the sintered body after sintering is lowered, and the magnetic characteristics of the sintered body, especially Br and strength are lowered.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の方法においても、上述したように焼結性の向上等の理
由のために焼結時に焼結助剤的に働く焼結性の高い超微
粉末 (直径<0.1 μm)を若干含んでいること、および昇
温時には昇温速度にもよるが成形体表面と内部には温度
差が生じることなどの要因により、特に結晶粒子の異常
粒成長に起因する磁気特性のバラツキ、ならびに成形体
表面と内部との収縮率の差または局所的な焼結挙動の差
による収縮率の差によるヒビ、割れ、変形等が生じるこ
とがあった。
However, even in these methods, the ultrafine powder having a high sinterability, which acts as a sintering aid during sintering for the reason of improving the sinterability as described above, is also used. Due to the fact that it contains a small amount (diameter <0.1 μm) and that a temperature difference occurs between the surface and the inside of the compact depending on the temperature rise rate during temperature rise As a result, variations in the magnetic properties, and cracks, cracks, and deformations due to the difference in shrinkage between the surface of the molded body and the inside or the difference in local sintering behavior may occur.

【0008】ここに、本発明の目的は、従来技術の抱え
る上記の問題を低減することにより、高Br かつ高iH
cの酸化物永久磁石を安定して製造する技術を開発する
ことである。
The object of the present invention is to improve the Br and iH by reducing the above problems of the prior art.
It is to develop a technique for stably manufacturing the oxide permanent magnet of c.

【0009】[0009]

【課題を解決するための手段】本発明者が、上記課題を
解決する手段として、焼結時の昇温速度が速くなった場
合の磁気特性のバラツキおよび焼結時のヒビ、割れおよ
び変形等の発生が見られる原因について鋭意研究を進め
た結果、次のような知見を得た。
Means for Solving the Problems As means for solving the above problems, the present inventor has found variations in magnetic characteristics when the temperature rising rate during sintering is high and cracks, cracks and deformation during sintering. The following findings were obtained as a result of intensive research on the cause of occurrence of the phenomenon.

【0010】(1) 焼結時の昇温速度が遅い場合において
は、成形体中に含まれる超微粉末等の焼結性の高い粒子
が低温度から表面拡散等により徐々に焼結/消失し、焼
結が全体的に徐々に進行して行くのに対し、昇温速度が
速くなるにつれ、焼結が不均一に、局所的に生じるよう
になってくる傾向がある。そこで、昇温速度と焼結挙動
とについて、さらに研究を進めた結果、次の点を見い出
した。
(1) When the temperature rising rate during sintering is slow, particles having high sinterability such as ultrafine powder contained in the compact are gradually sintered / disappeared from a low temperature due to surface diffusion and the like. However, while the sintering gradually progresses as a whole, there is a tendency that the sintering becomes uneven and locally occurs as the heating rate increases. Then, as a result of further research on the heating rate and the sintering behavior, the following points were found.

【0011】(2) 焼成した原料粉末を粉砕して微粉末と
し、この微粉末を磁場中にて成形した後、本焼成して酸
化物永久磁石を製造する方法においては、本焼成の昇温
時の少なくとも700 〜900 ℃の温度範囲での昇温速度を
0.1 〜2℃/分とすることにより、ほぼ均一な焼結を生
じさせ高Br かつ高iHcの酸化物永久磁石を安定して
得られる。
(2) In the method of producing an oxide permanent magnet by pulverizing a calcined raw material powder into a fine powder, molding the fine powder in a magnetic field, and then subjecting the powder to a fine powder Temperature increase rate of at least 700 to 900 ℃
By setting the rate to 0.1 to 2 ° C./minute, almost uniform sintering is caused, and an oxide permanent magnet having high Br and high iHc can be stably obtained.

【0012】(3) 本焼成の昇温時における700 〜900 ℃
の温度範囲において少なくとも1回以上、1時間以上の
温度保持を行うことにおいても同様の効果が得られる。
(3) 700 to 900 ° C. at the time of temperature rise during main firing
The same effect can be obtained by holding the temperature at least once in the temperature range of 1 hour or more.

【0013】ここに、本発明の要旨とするところは、仮
焼成したフェライト粉末を粉砕して微粉末とし、該微粉
末を磁場中にて成形した後、本焼成して酸化物永久磁石
を製造する方法において、本焼成の昇温時の少なくとも
700 〜900 ℃の温度範囲での昇温速度を0.1 〜2℃/分
とし、次いで900 ℃超の保持温度で加熱保持を行うこと
を特徴とする酸化物永久磁石の製造方法である。
Here, the gist of the present invention is that the calcinated ferrite powder is pulverized into a fine powder, the fine powder is molded in a magnetic field, and then the fine powder is sintered to produce an oxide permanent magnet. In the method,
A method for producing an oxide permanent magnet, characterized in that a temperature rising rate in a temperature range of 700 to 900 ° C. is set to 0.1 to 2 ° C./min, and then heating and holding is performed at a holding temperature of more than 900 ° C.

【0014】さらに別の面からは、本発明は、仮焼成し
たフェライト粉末を粉砕して微粉末とし、該微粉末を磁
場中にて成形した後、本焼成して酸化物永久磁石を製造
する方法において、本焼成の昇温時の700 〜900 ℃の温
度範囲で少なくとも1回以上、1時間以上の保持を行
い、次いで900 ℃超の保持温度で加熱保持を行うことを
特徴とする酸化物永久磁石の製造方法である。
From still another aspect, in the present invention, the calcinated ferrite powder is pulverized into a fine powder, the fine powder is molded in a magnetic field, and then the powder is sintered to produce an oxide permanent magnet. In the method, the oxide is characterized by holding at least once in the temperature range of 700 to 900 ° C. at the time of temperature rise during the main calcination for 1 hour or more, and then heating and holding at a holding temperature of more than 900 ° C. It is a manufacturing method of a permanent magnet.

【0015】なお、本発明にかかる製造方法において用
いられる微粉末、その粒度分布および成形方法は、特に
限定されるものではなく、例えば直径<0.1 μmという
超微粉末による磁気特性のバラツキ、ヒビ、割れ、変形
等が生じる微粉末であればよい。しかし、より磁気特性
の高い酸化物永久磁石を得るために、高Br かつ高iH
cが実現できるようにさらに粒度調整された微粉末およ
び成形方法を適用することが望ましい。
The fine powder used in the manufacturing method according to the present invention, the particle size distribution thereof and the molding method are not particularly limited, and for example, variations in magnetic properties, cracks, and the like due to ultrafine powder having a diameter of <0.1 μm. Any fine powder that causes cracking or deformation may be used. However, in order to obtain an oxide permanent magnet with higher magnetic properties, high Br and high iH
It is desirable to apply a fine powder and a molding method whose particle size is further adjusted so that c can be realized.

【0016】[0016]

【作用】次に、本発明において製造条件を上述のように
限定した理由およびその作用についてさらに具体的に説
明する。
Next, the reason why the manufacturing conditions are limited as described above in the present invention and the operation thereof will be described more specifically.

【0017】まず、本発明によれば、仮焼成した原料粉
末を粉砕して微粉末とし、この得られた微粉末を磁場中
にて成形した後、得られた成形体を本焼成して酸化物永
久磁石を製造する方法において、本焼成の昇温時の少な
くとも700 〜900 ℃の温度範囲においての昇温速度を0.
1 〜2℃/分とする。
First, according to the present invention, the calcinated raw material powder is pulverized into a fine powder, and the obtained fine powder is molded in a magnetic field. In the method for producing a permanent magnet, the heating rate in the temperature range of at least 700 to 900 ° C at the time of heating in the main firing is set to 0.
1 to 2 ° C / min.

【0018】本発明において成形に用いる微粉末に対し
ては特に限定はないが、本発明の目的は、焼結後の磁気
特性の低下およびバラツキならびにヒビ、割れ、変形等
の不良を低減させ、高Br かつ高iHcの酸化物永久磁
石を安定的に製造することにあるため、高Br 且つ高i
Hc用に調整された微粉末を用いることが望ましい。
There is no particular limitation on the fine powder used for molding in the present invention, but the object of the present invention is to reduce deterioration and variations in magnetic properties after sintering and defects such as cracks, cracks, and deformations, Since it is intended to stably manufacture an oxide permanent magnet having high Br and high iHc, high Br and high i
It is desirable to use fine powders tuned for Hc.

【0019】具体的には直径<0.1 μmの超微粉末を3.
0 体積%以下、好ましくは 0.5〜2.0 体積%含有し、全
体の平均粒径が 0.5〜1.0 μmのフェライト微粉末であ
る。このような高磁気特性用の微粉末を使用する際に
は、本発明による効果がより大きく表われる。
Specifically, an ultrafine powder having a diameter of <0.1 μm is used in 3.
The ferrite fine powder contains 0% by volume or less, preferably 0.5 to 2.0% by volume, and has an average particle size of 0.5 to 1.0 μm as a whole. When using such fine powder for high magnetic properties, the effect of the present invention is more significant.

【0020】また、このようなフェライト微粉末の成形
においても、特に限定はなく、従来通りの湿式磁場中プ
レス等の手法を用いることが可能である。ただし、磁気
特性の向上の観点からは、できれば粒子配向性等の優れ
た成形法、例えば成形時の磁界方向とプレス方向が直交
する成形手法、磁場中静水圧プレス等を用いる方が望ま
しい。
Also, there is no particular limitation on the molding of such ferrite fine powder, and a conventional method such as pressing in a wet magnetic field can be used. However, from the viewpoint of improving the magnetic properties, it is preferable to use a molding method having excellent particle orientation, for example, a molding method in which the magnetic field direction at the time of molding is orthogonal to the pressing direction, a hydrostatic press in a magnetic field, or the like.

【0021】次に、本発明では、焼結過程の昇温時の少
なくとも700 〜900 ℃の温度範囲域で昇温速度を0.1 〜
2℃/分とするが、他の焼結条件 (保持温度、保持時
間、昇温速度等) は特に限定されることはない。例えば
700 ℃までは従来法のように5℃/分で昇温してもよ
い。このように焼結の昇温時の昇温速度が限定される温
度域を設ける理由を以下に述べる。
Next, according to the present invention, the rate of temperature increase is 0.1 to within a temperature range of at least 700 to 900 ° C. during temperature increase during the sintering process.
The rate is 2 ° C./minute, but other sintering conditions (holding temperature, holding time, temperature rising rate, etc.) are not particularly limited. For example
Up to 700 ° C, the temperature may be raised at 5 ° C / minute as in the conventional method. The reason why the temperature range in which the rate of temperature rise during the temperature rise of sintering is limited in this way is described below.

【0022】すでに述べたように、磁気特性のバラツキ
およびヒビ、割れ、変形等の発生原因について検討した
結果、特に粒度分布調整を行っていない直径 0.1μm 以
下の超微粉末の多い微粉末を用いた成形体を、磁気特性
のバラツキおよびヒビ、割れ、変形等の発生が生じやす
い昇温速度の速い条件で焼結を行うと、焼結保持温度以
前の温度において、その内部に局所的に焼結が進行した
部分が存在し、さらに、完全に焼結が進行した焼結体に
おいては、前記の局所的な焼結進行部に対応すると考え
られる異常粒成長部が認められた。したがって、磁気特
性のバラツキおよびヒビ、割れ、変形等の発生原因の主
因の1つとして、成形体内部に含まれる超微粉末が影響
を与えていることが考えられた。しかしながら、前記し
たように成形に供する微粉末中の超微粉末の含有率が極
度に低下すると、成形密度ひいては焼結密度の低下につ
ながるため、微粉末および成形体中での超微粉末の低減
を図るのではなく、焼結段階において、この超微粉末が
異常粒成長等の原因として寄与される以前に消失もしく
は減少させることを考えたのである。
As described above, as a result of studying the causes of variations in magnetic properties and cracks, cracks, deformation, etc., it was found that fine powders with a diameter of 0.1 μm or less and a large amount of ultrafine powder, which were not subjected to particle size distribution adjustment, were used. If the formed compact is sintered under conditions where the temperature rise rate is high, where variations in magnetic properties and cracks, cracks, and deformation are likely to occur, the compact is locally burned at a temperature lower than the sintering holding temperature. In the sintered body in which there was a part where the binding progressed and further the sintering proceeded completely, an abnormal grain growth part that was considered to correspond to the above-mentioned local sintering progress part was recognized. Therefore, it was considered that the ultrafine powder contained in the compact had an effect as one of the main causes of the variation in magnetic properties and the occurrence of cracks, cracks, deformation, and the like. However, as described above, if the content of the ultrafine powder in the fine powder to be molded is extremely reduced, it leads to a decrease in the molding density and thus the sintering density. Rather than attempting to achieve this, it was thought that in the sintering stage, this ultrafine powder disappears or is reduced before it contributes to abnormal grain growth and the like.

【0023】従来から知られているように微粉末に比較
し比表面積が大きく、大きな表面エネルギーをもつ超微
粉末は焼結性に優れること、また低温で生じる焼結は表
面拡散が支配的であり、粒子間のネック成長が優先さ
れ、結晶粒径の増大および焼結収縮が少ないことを鑑
み、成形体の低温部での予備熱処理によって、成形時に
は含まれていた成形体内部の超微粉末を低減させるので
ある。しかしながら、このような成形体中の超微粉末を
消失もしくは減少させる予備熱処理工程を、従来からの
本焼成過程の前に新らに加えることは工程が増え、生産
性の低下を招くため、できれば、既存の焼結工程中にて
本熱処理を行うことが望ましいと考えた。
As is conventionally known, ultrafine powder having a larger specific surface area and larger surface energy than fine powder has excellent sinterability, and surface sintering is dominant in sintering that occurs at low temperature. In consideration of the fact that the neck growth between particles is prioritized, and the increase in crystal grain size and sintering shrinkage are small, the pre-heat treatment in the low temperature part of the molded body causes the ultra-fine powder inside the molded body included at the time of molding. Is reduced. However, if a preliminary heat treatment step for eliminating or reducing the ultrafine powder in such a compact is newly added before the conventional main firing step, the number of steps is increased and the productivity is lowered. It was considered desirable to perform this heat treatment during the existing sintering process.

【0024】また、これとは別に生産性は低下するが、
昇温速度を2℃/分以下に低下させた場合には、前記予
備熱処理を行うと同様に磁気特性のバラツキおよびヒ
ビ、割れ、変形等の発生が少ないという事実があった。
In addition to this, productivity decreases,
There was a fact that when the temperature rising rate was lowered to 2 ° C./min or less, variations in magnetic characteristics and occurrence of cracks, cracks, deformation, etc. were small as in the case of performing the preliminary heat treatment.

【0025】そこで、磁気特性のバラツキおよびヒビ、
割れ、変形等の発生を抑制するために、成形体中の超微
粉末を消失もしくは減少させるための熱処理の役割をは
たす工程を現状の焼結工程中に行うこととし、該予備熱
処理相当部以外の温度域においては、生産性の低下をも
たらさないよう、特に昇温速度等を限定せず、特定温度
域のみ、昇温速度が限定された酸化物永久磁石の製造方
法としたのである。
Therefore, variations in magnetic characteristics and cracks,
In order to suppress the occurrence of cracking, deformation, etc., the step of performing the heat treatment for eliminating or reducing the ultrafine powder in the compact should be performed during the current sintering step, except for the portion corresponding to the preliminary heat treatment. In this temperature range, the rate of temperature increase is not particularly limited so as not to cause a decrease in productivity, and the method for producing an oxide permanent magnet is limited to a specific temperature range only.

【0026】したがって、本発明において、冷却速度を
規定する温度範囲を700 〜900 ℃としたのは、その温度
範囲において焼結反応速度が粒子サイズの影響を大きく
受けるからである。
Therefore, in the present invention, the temperature range defining the cooling rate is set to 700 to 900 ° C. because the sintering reaction rate is greatly influenced by the particle size in that temperature range.

【0027】また、昇温速度の上限速度を2℃/分する
のは、昇温速度をこれより大きくすると、焼結中の成形
体内部の温度差により、成形体中心部と周囲部とでの焼
結状態に差が生じ始めると共に、超微粉末が焼結に悪影
響を与える温度に達するまでに充分に消失するのに充分
な時間が得られず、結果的に磁気特性のバラツキおよび
ヒビ、割れ、変形等の充分な安定化が得られないためで
ある。また、下限速度を0.1 ℃/分とするのは、これよ
り小さい昇温速度にすると、実質的に昇温時間が極端に
長くなり、生産性の低下が著しくなるのみであり、0.1
℃/分より小とする更なる昇温速度低下においても、磁
気特性バラツキおよびヒビ、割れ、変形等の更なる改善
も認められないため、生産性の観点より、下限昇温速度
を0.1 ℃/分とした。
The upper limit of the rate of temperature rise is 2 ° C./min. If the rate of temperature rise is made higher than this, the temperature difference between the inside of the compact during sintering will cause a difference between the center and the periphery of the compact. In addition to the difference between the sintering states of the above, the time required for the ultrafine powder to sufficiently disappear before reaching the temperature that adversely affects the sintering, resulting in variations in magnetic properties and cracks, This is because sufficient stabilization such as cracking and deformation cannot be obtained. The lower limit rate of 0.1 ° C./min means that if the temperature raising rate is lower than this, the temperature raising time will be extremely long and the productivity will be significantly reduced.
Even if the heating rate is further decreased below ℃ / min, no further improvement in magnetic property variations and cracks, cracks, deformations, etc. is observed, so from the viewpoint of productivity, the lower limit heating rate is 0.1 ℃ / min. Minutes

【0028】本発明においては、限定温度域での昇温速
度については、その範囲のみを示しているが、望ましく
は、限定温度域の低温側での昇温速度を遅くし、かつ高
温側での昇温速度を速くするというように昇温速度を変
化させた方が、超微粉末の消失もしくは低減による磁気
特性のバラツキ低減およびヒビ、割れ、変形等の低減の
効果と焼結時間の短縮による生産性の向上が共によくな
り望ましい。
In the present invention, the heating rate in the limited temperature range is shown only in that range, but it is desirable to slow down the heating rate on the low temperature side in the limited temperature range and to increase it on the high temperature side. It is better to change the heating rate such as increasing the heating rate, because it reduces the dispersion of magnetic properties due to the disappearance or reduction of ultrafine powder and reduces cracks, cracks, deformation, etc. and shortens the sintering time. This is desirable because it improves both productivity.

【0029】また、同様の効果は、本発明の別の態様で
示すように焼結過程において、超微粉末の消失もしくは
減少を目的とした700 〜900 ℃の温度範囲での少なくと
も1回以上、1時間以上の温度保持工程を設けることに
よっても達成できる。
Further, the same effect is obtained as shown in another embodiment of the present invention, in the sintering process, at least once or more in the temperature range of 700 to 900 ° C. for the purpose of eliminating or reducing the ultrafine powder, This can also be achieved by providing a temperature holding step for 1 hour or more.

【0030】かかる温度保持工程での温度範囲の限定
は、前記理由と同様である。なお、この態様での保持工
程における保持時間は、1時間未満では、充分な超微粉
末の低減が望めず、温度保持による充分な効果が認めら
れないことによる。上限は特に限定されないが、経済上
からは余り長時間の保持は望ましくなく、5時間以下で
あればよい。
The limitation of the temperature range in the temperature holding step is the same as the above reason. If the holding time in the holding step in this mode is less than 1 hour, sufficient reduction of the ultrafine powder cannot be expected, and sufficient effect of holding the temperature cannot be recognized. The upper limit is not particularly limited, but from the economical viewpoint, holding for a very long time is not desirable and may be 5 hours or less.

【0031】次いで、このように700 〜900 ℃の温度範
囲での特定昇温速度での昇温、好ましくはさらに保持を
行ってから、今度は900 ℃超の温度で加熱保持を行い、
焼結を完了させる。通常、このときの保持温度は1000〜
1300℃である。保持時間は焼結が完了するまでであり、
これは通常30分〜2時間程度である。次に、実施例によ
って本発明の作用効果をさらに具体的に説明する。
Then, the temperature is raised at a specific heating rate in the temperature range of 700 to 900 ° C., preferably further held, and then heated and held at a temperature higher than 900 ° C.,
Complete the sintering. Usually, the holding temperature at this time is 1000 ~
It is 1300 ° C. The holding time is until sintering is completed,
This is usually about 30 minutes to 2 hours. Next, the working effects of the present invention will be described more specifically by way of examples.

【0032】[0032]

【実施例】【Example】

(実施例1)Fe2O3 とSrO とのモル比が5.8 のSrフェライ
ト仮焼成粉末をボールミルにより湿式粉砕して、スラリ
ーを得た。このときのフェライト結晶微粉末の平均粒径
は空気透過式測定法にて0.72μmであった。次に、この
スラリーの濃度を60%に調整した後、湿式磁場プレス機
にて成形圧0.5 ton/cm2 、磁場強度7kOe で湿式磁場中
成形を行い、直径25×高さ約15mmの円柱状の成形体を得
た。なお、磁場配向方向は、加圧方向と同じであった。
(Example 1) Sr ferrite calcination powder having a molar ratio of Fe 2 O 3 and SrO of 5.8 was wet pulverized by a ball mill to obtain a slurry. At this time, the average particle diameter of the ferrite crystal fine powder was 0.72 μm as determined by the air permeation measurement method. Next, after adjusting the concentration of this slurry to 60%, it was molded in a wet magnetic field at a molding pressure of 0.5 ton / cm 2 and a magnetic field strength of 7 kOe using a wet magnetic field press machine, and a cylindrical shape with a diameter of 25 and a height of about 15 mm was used. A molded body of was obtained. The magnetic field orientation direction was the same as the pressing direction.

【0033】次に、この成形体を乾燥した後、図1に示
す焼成プロファイルにて700 〜900℃の昇温速度を変化
させ、各条件にて10個の焼結体を作製し、磁気特性およ
びヒビ、割れ、変形等の外観検査を行った。
Next, after drying the molded body, the temperature rising rate of 700 to 900 ° C. was changed according to the firing profile shown in FIG. 1 to produce 10 sintered bodies under each condition, and the magnetic characteristics were obtained. And visual inspection for cracks, cracks, deformation, etc. was performed.

【0034】それらの結果は表1にまとめて示す。な
お、従来例における焼成プロファィルは図3に示す通り
であった。表1の結果からも明らかなように、本発明の
昇温プロファイルでは、磁気特性の安定化と外観不良の
低減が認められる。
The results are summarized in Table 1. The firing profile in the conventional example was as shown in FIG. As is clear from the results of Table 1, in the temperature rising profile of the present invention, stabilization of magnetic properties and reduction of appearance defects are recognized.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例2)実施例1と同様の条件にて、成
形体を作製、乾燥した後、図2に示す焼成プロファイル
にて保持時間90分一定とし、保持温度Tを変化させ、各
条件にて10Pの焼結体を作製し、磁気特性およびヒビ、
割れ、変形等の外観検査を行った。
(Example 2) A molded body was prepared under the same conditions as in Example 1 and dried, and then the holding temperature T was changed by keeping the holding temperature 90 minutes constant in the firing profile shown in FIG. We made a 10P sintered body under the conditions,
A visual inspection such as cracking or deformation was performed.

【0037】その結果、表2に示すように比較例におい
ては、磁気特性の充分な安定化ができず、かつ外観不良
を有するのに対し、本発明例では磁気特性の安定化と外
観不良の低減が認められる。
As a result, as shown in Table 2, in the comparative example, the magnetic characteristics could not be sufficiently stabilized and the appearance was poor, whereas in the inventive example, the magnetic characteristics were stabilized and the appearance was poor. Reduction is observed.

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例3)実施例1と同様の条件にて、成
形体を作製、乾燥した後、図2に示す焼成プロファイル
にて保持温度を800 ℃一定とし、保持時間tを変化さ
せ、各条件にて10個の焼結体を作製し、磁気特性および
ヒビ、割れ、変形等の外観検査を行った。
Example 3 A molded body was prepared under the same conditions as in Example 1 and dried, and then the holding temperature was kept constant at 800 ° C. and the holding time t was changed according to the firing profile shown in FIG. Ten sintered bodies were produced under each condition, and the magnetic properties and the appearance inspections such as cracks, cracks, and deformations were performed.

【0040】その結果、表3に示すように保持時間が60
分未満では充分な安定化ができず、さらに保持時間が長
い90分は、保持時間60分とほぼ同等の良好な結果であっ
た。なお、従来法における焼成プロファィルは図3に示
す通りであった。
As a result, as shown in Table 3, the retention time is 60
If it is less than a minute, sufficient stabilization cannot be achieved, and 90 minutes, which is a long holding time, is a good result almost equal to the holding time of 60 minutes. The baking profile in the conventional method was as shown in FIG.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
焼結時に該成形体中に含まれる超微粒子が結晶粒の粗大
化を生じさせる温度域以前に消失もしくは減少し、かつ
超微粒子が存在している温度域での成形体内の温度分布
がほぼ均一になるため、温度差に起因する局所的な焼結
速度の差に起因する変形が軽減され、超微粒子に起因す
る結晶粒子の粗大化によるiHcの劣化を抑制すると共
に焼結に起因する磁気特性のバラツキおよびヒビ、割
れ、変形が低減できる。なお、本発明の方法は、Sr系フ
ェライト磁石のみならず、Ba系フェライト磁石等の酸化
物永久磁石にも有効に適用される。
As described above, according to the present invention,
The ultrafine particles contained in the compact during sintering disappear or decrease before the temperature range that causes coarsening of crystal grains, and the temperature distribution in the compact in the temperature range in which the ultrafine particles are present is almost uniform. Therefore, the deformation due to the difference in local sintering rate due to the temperature difference is reduced, the deterioration of iHc due to the coarsening of the crystal particles due to the ultrafine particles is suppressed, and the magnetic characteristics due to the sintering are suppressed. Variation, cracks, cracks, and deformation can be reduced. The method of the present invention is effectively applied not only to Sr-based ferrite magnets but also to oxide permanent magnets such as Ba-based ferrite magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸化物永久磁石の製造方法の実施
例1の焼成プロファイルの説明図である。
FIG. 1 is an explanatory diagram of a firing profile of Example 1 of a method for manufacturing an oxide permanent magnet according to the present invention.

【図2】本発明に係る酸化物永久磁石の製造方法の実施
例2、3における焼成プロファイルの説明図である。
FIG. 2 is an explanatory view of a firing profile in Examples 2 and 3 of the method for producing an oxide permanent magnet according to the present invention.

【図3】実施例1〜3における従来例の焼成プロファイ
ルの説明図である。
FIG. 3 is an explanatory diagram of a firing profile of a conventional example in Examples 1 to 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 仮焼成したフェライト粉末を粉砕して微
粉末とし、該微粉末を磁場中にて成形した後、本焼成し
て酸化物永久磁石を製造する方法において、本焼成の昇
温時の少なくとも700 〜900 ℃の温度範囲での昇温速度
を0.1 〜2℃/分とし、次いで900 ℃超の保持温度で加
熱保持を行うことを特徴とする酸化物永久磁石の製造方
法。
1. A method for producing an oxide permanent magnet by pulverizing a calcinated ferrite powder into a fine powder, molding the fine powder in a magnetic field, and then subjecting the fine powder to a fine powder in the magnetic field. At a temperature rising rate of at least 700 to 900 ° C. of 0.1 to 2 ° C./min, and then heating and holding at a holding temperature of more than 900 ° C., a method for producing an oxide permanent magnet.
【請求項2】 仮焼成したフェライト粉末を粉砕して微
粉末とし、該微粉末を磁場中にて成形した後、本焼成し
て酸化物永久磁石を製造する方法において、本焼成の昇
温時の700 〜900 ℃の温度範囲で少なくとも1回以上、
1時間以上の保持を行い、次いで900 ℃超の保持温度で
加熱保持を行うことを特徴とする酸化物永久磁石の製造
方法。
2. A method for producing an oxide permanent magnet by pulverizing a calcinated ferrite powder into a fine powder, molding the fine powder in a magnetic field, and then subjecting the powder to a permanent magnet to increase the temperature during the main firing. At least once in the temperature range of 700-900 ℃,
A method for producing an oxide permanent magnet, which comprises holding for 1 hour or more, and then heating and holding at a holding temperature of more than 900 ° C.
JP7098827A 1995-04-24 1995-04-24 Manufacture of oxide permanent magnet Withdrawn JPH08293424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7098827A JPH08293424A (en) 1995-04-24 1995-04-24 Manufacture of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7098827A JPH08293424A (en) 1995-04-24 1995-04-24 Manufacture of oxide permanent magnet

Publications (1)

Publication Number Publication Date
JPH08293424A true JPH08293424A (en) 1996-11-05

Family

ID=14230132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7098827A Withdrawn JPH08293424A (en) 1995-04-24 1995-04-24 Manufacture of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPH08293424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371312A (en) * 2020-10-15 2022-04-19 航天科工惯性技术有限公司 Torque device suitable for high-temperature environment and stabilization processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371312A (en) * 2020-10-15 2022-04-19 航天科工惯性技术有限公司 Torque device suitable for high-temperature environment and stabilization processing method

Similar Documents

Publication Publication Date Title
EP2881956B1 (en) Sintered ferrite magnet and its production method
KR101649242B1 (en) Method for producing sintered ferrite magnet, and sintered ferrite magnet
CN104230323B (en) M type calcium lanthanum cobalt permanent-magnet ferrite and preparation method thereof
CN104230326B (en) The preparation method of M type calcium permanent ferrite
EP2980809A2 (en) Mnbi-based magnetic substance, preparation method thereof, mnbi-based sintered magnet and preparation method thereof
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
CN109400139B (en) Preparation process of low-cost permanent magnetic ferrite material
CN104230325A (en) Preparation method of permanent magnetic ferrite pre-sintering material and preparation method of permanent magnetic ferrite
CN115340373B (en) Preparation method of hexagonal ferrite material based on low-purity iron concentrate raw material system
CN104230321B (en) M type calcium permanent ferrites and preparation method thereof
JPH10149910A (en) Ferrite magnet and its manufacturing method
CN112908676A (en) Permanent magnetic ferrite magnetic powder for dry pressing molding and preparation method thereof
CN104230322A (en) M-type calcium permanent magnetic ferrite and preparation method thereof
JP4877514B2 (en) Manufacturing method of sintered ferrite magnet
KR100707366B1 (en) Method for producing ferrite sintered compact
JPH08293424A (en) Manufacture of oxide permanent magnet
TWI758224B (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
KR102430475B1 (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
JP2008270785A (en) Method for manufacturing ferrite sintered magnet
JP2005032745A (en) Sintered ferrite magnet and its manufacturing method
KR20210043116A (en) Method for preparing ferrite sintered magnet
JPH045802A (en) Manufacture of oxide permanent magnet
KR102698851B1 (en) Manufacturing method of permanent magnet
CN116120049B (en) Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702