JPH0829145A - Inspection of surface defect - Google Patents

Inspection of surface defect

Info

Publication number
JPH0829145A
JPH0829145A JP6186799A JP18679994A JPH0829145A JP H0829145 A JPH0829145 A JP H0829145A JP 6186799 A JP6186799 A JP 6186799A JP 18679994 A JP18679994 A JP 18679994A JP H0829145 A JPH0829145 A JP H0829145A
Authority
JP
Japan
Prior art keywords
received light
defect
detected
frequency
defect portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6186799A
Other languages
Japanese (ja)
Inventor
Ryuji Sakida
隆二 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6186799A priority Critical patent/JPH0829145A/en
Publication of JPH0829145A publication Critical patent/JPH0829145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for inspecting a surface, which can inspect defect of the surface effectively and highly accurately in a short time and can discriminates the kind of the defect. CONSTITUTION:In a scanning step, laser light is made to scan on a substance under inspection 6 with a polygon scanner 2. In the step for detecting the amount of received light, the reflected light of the laser light from the substance under inspection 6 is received with photodetectors 9 and 10, and the electric signal of the received light is obtained. The ordinary defective part of the substance under inspection is detected in a detection storage step based on the electric signal of the received light. In the detection storage step, the size and the position of the detected ordinary defective part are stored in a defective size memory in the main scanning direction, a defective position memory in the main scanning direction and a defective position memory in the secondary scanning direction. In an image pickup step, the image of the ordinary defective part, which is detected and stored, is picked up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被検物の表面欠陥の検査
を行なう表面欠陥検査法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection method for inspecting a surface defect of an object.

【0002】■

【従来の技術】鋼板、プラスチックフィルム、紙など各
種の被検物の表面欠陥の検査方法としては、被検物にレ
ーザ光を照射し、その反射光或いは透過光の強度の変化
を検出するレーザ走査検査法と、被検物を撮像し得られ
る画像データに基づいて、画像処理を行なって欠陥の判
定をする画像処理法とが知られている。この内、レーザ
走査法による表面欠陥の検査では、微小な欠陥を検出感
度よく検出することができる。また、画像処理法による
と、視覚的情報を得ることにより、画像データから欠陥
の特徴量を算出して、例えば表面のむらのような空間的
に低周波の欠陥と、傷のように空間的に高周波の欠陥と
を識別し、欠陥の種類ごとの判定基準を設けることが容
易に行なえる。
2. Description of the Related Art As a method of inspecting surface defects of various kinds of test objects such as steel plates, plastic films and papers, a laser is used which irradiates the test object with laser light and detects a change in intensity of reflected light or transmitted light. Known are a scanning inspection method and an image processing method in which image processing is performed to determine a defect based on image data obtained by capturing an image of a test object. Of these, in the inspection of surface defects by the laser scanning method, minute defects can be detected with high detection sensitivity. In addition, according to the image processing method, the feature amount of a defect is calculated from image data by obtaining visual information, and a spatially low frequency defect such as surface unevenness and a spatial defect such as a scratch are spatially calculated. It is easy to identify a high-frequency defect and set a criterion for each defect type.

【0003】[0003]

【発明が解決しようとする課題】ところで、前述のレー
ザ走査検査法では、視覚的な情報が得にくく、欠陥の種
類の判定が精度よく行なえないという問題があり、画像
処理法では、微小な欠陥を検出しようとすると、データ
数が膨大になって大きなメモリ容量が必要になり、検査
時間も長くなるという問題がある。
By the way, the above-described laser scanning inspection method has a problem that it is difficult to obtain visual information and the type of defect cannot be accurately determined. However, there is a problem in that the number of data becomes huge, a large memory capacity is required, and the inspection time becomes long.

【0004】本発明は、前述したような表面欠陥検査の
現状に鑑みてなされたものであり、その目的は、表面欠
陥の検査を、短時間で効率的に且つ高精度で行い、欠陥
の種類の判別も行なうことが可能な表面検査法を提供す
ることにある。
The present invention has been made in view of the current state of surface defect inspection as described above, and an object of the present invention is to perform surface defect inspection efficiently in a short time and with high precision, and It is to provide a surface inspection method that can also determine

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の発明は、偏光器によってレーザ光を
被検物上で走査する走査ステップと、前記レーザ光の前
記被検物からの反射光もしくは透過光を受光し、受光電
気信号を得る受光量検出ステップと、該受光量検出ステ
ップで得られる受光電気信号に基づいて、前記被検物の
通常欠陥部を検出し、検出された通常欠陥部の大きさと
位置を記憶する検出記憶ステップと、該検出記憶ステッ
プで検出記憶された通常欠陥部の撮像を行なう撮像ステ
ップとを有することを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 comprises: a scanning step of scanning a laser beam on a test object by a polarizer; and the test object of the laser beam. The reflected light or the transmitted light from the received light is received, and a received light amount detection step for obtaining a received light electric signal, and based on the received light electric signal obtained in the received light amount detection step, a normal defective portion of the test object is detected and detected. The present invention is characterized by including a detection storage step of storing the size and position of the generated normal defect portion and an imaging step of capturing an image of the normal defect portion detected and stored in the detection storage step.

【0006】同様に前記目的を達成するために、請求項
2記載の発明は、偏光器によってレーザ光を被検物上で
走査する走査ステップと、前記レーザ光の前記被検物か
らの反射光もしくは透過光を受光し、受光電気信号を得
る受光量検出ステップと、前記受光量検出ステップで得
られる受光電気信号を、ローパスフィルタを通過させる
高周波領域遮断ステップと、該高周波領域遮断ステップ
で得られる出力信号に基づいて、前記被検物の低周波欠
陥部を検出し、検出された低周波欠陥部の大きさと位置
を記憶する検出記憶ステップと、該検出記憶ステップで
検出記憶された低周波欠陥部の撮像を行なう撮像ステッ
プとを有することを特徴とするものである。
[0006] Similarly, in order to achieve the above object, the invention according to claim 2 comprises a scanning step of scanning a laser beam on a test object by a polarizer, and a reflected light of the laser beam from the test object. Alternatively, it is obtained in a received light amount detection step of receiving transmitted light to obtain a received light electric signal, a high frequency region blocking step of passing the received light electrical signal obtained in the received light amount detection step through a low pass filter, and a high frequency region blocking step. A detection storage step of detecting a low frequency defect portion of the test object based on the output signal and storing the size and position of the detected low frequency defect portion, and a low frequency defect detected and stored in the detection storage step. And an imaging step of imaging the part.

【0007】同様に前記目的を達成するために、請求項
3記載の発明は、偏光器によってレーザ光を被検物上で
走査する走査ステップと、前記レーザ光の前記被検物か
らの反射光もしくは透過光を受光し、受光電気信号を得
る受光量検出ステップと、該受光量検出ステップで得ら
れる受光電気信号を、微分回路を通過させる低周波領域
遮断ステップと、該低周波領域遮断ステップで得られる
出力信号に基づいて、前記被検物の高周波欠陥部を検出
し、検出された高周波欠陥部の大きさと位置を記憶する
検出記憶ステップと、該検出記憶ステップで検出記憶さ
れた高周波欠陥部の撮像を行なう撮像ステップとを有す
ることを特徴とするものである。
[0007] Similarly, in order to achieve the above object, the invention according to claim 3 comprises a scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a reflected light of the laser beam from the object to be inspected. Alternatively, a received light amount detection step of receiving transmitted light to obtain a received light electrical signal, a low frequency region blocking step of passing the received light electrical signal obtained in the received light amount detection step through a differentiating circuit, and a low frequency region blocking step. A detection storage step of detecting a high-frequency defect portion of the test object based on the obtained output signal and storing the size and position of the detected high-frequency defect portion, and a high-frequency defect portion detected and stored in the detection storage step. And an image capturing step for capturing the image.

【0008】同様に前記目的を達成するために、請求項
4記載の発明は、偏光器によってレーザ光を被検物上で
走査する走査ステップと、前記レーザ光の前記被検物か
らの反射光もしくは透過光を受光し、受光電気信号を得
る受光量検出ステップと、該受光量検出ステップで得ら
れる受光電気信号を二分し、一方をローパスフィルタを
通過させる高周波領域遮断ステップと、前記受光量検出
ステップで得られる受光電気信号の前記二分された一方
の出力信号に基づいて、前記被検物の低周波欠陥部を、
他方の出力信号に基づいて前記被検物の通常欠陥部をそ
れぞれ検出し、検出された欠陥部の大きさと位置を記憶
する検出記憶ステップと、該検出記憶ステップで検出記
憶された欠陥部の撮像を行なう撮像ステップとを有する
ことを特徴とするものである。
[0008] Similarly, in order to achieve the above object, the invention according to claim 4 comprises a scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a reflected light of the laser beam from the object to be inspected. Alternatively, a received light amount detection step of receiving transmitted light to obtain a received light electrical signal, a high frequency region blocking step of dividing the received light electrical signal obtained in the received light amount detection step into one and passing one through a low pass filter, and the received light amount detection Based on the one output signal of the one half of the received electric signal obtained in step, the low frequency defect portion of the test object,
Detecting and storing a normal defective portion of the test object based on the other output signal, and storing the size and position of the detected defective portion, and imaging the defective portion detected and stored in the detecting and storing step. And an imaging step for performing.

【0009】同様に前記目的を達成するために、請求項
5記載の発明は、偏光器によってレーザ光を被検物上で
走査する走査ステップと、前記レーザ光の前記被検物か
らの反射光もしくは透過光を受光し、受光電気信号を得
る受光量検出ステップと、該受光量検出ステップで得ら
れる受高電気信号を二分し、一方をローパスフィルタを
通過させて高周波領域を遮断し、他方を微分回路を通過
させて低周波領域を遮断する周波数領域遮断ステップ
と、該周波数領域遮断ステップで得られる出力信号に基
づいて、低周波欠陥部と高周波欠陥部とをそれぞれ検出
し、検出された欠陥部の大きさと位置を記憶する検出記
憶ステップと、該検出記憶ステップで検出記憶された欠
陥部の撮像を行なう撮像ステップとを有することを特徴
とするものである。
[0009] Similarly, in order to achieve the above object, the invention according to claim 5 is a scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a reflected light of the laser beam from the object to be inspected. Alternatively, the transmitted light is received and a received light amount detection step for obtaining a received light electric signal and the received electric signal obtained in the received light amount detection step are divided into two, one is passed through a low-pass filter to block the high frequency region, and the other is A frequency domain blocking step of blocking a low frequency domain by passing through a differentiating circuit, and a low frequency defective section and a high frequency defective section are respectively detected based on the output signal obtained in the frequency domain blocking step, and the detected defect is detected. It is characterized by including a detection storage step of storing the size and position of a copy, and an imaging step of imaging the defective part detected and stored in the detection storage step.

【0010】同様に前記目的を達成するために、請求項
6記載の発明は、請求項1ないし請求項5の何れかに記
載の表面欠陥検査方法に対して、前記撮像ステップで得
られた欠陥画像データから抽出された特徴量を入力層
に、欠陥の種類を出力層にしたニューラルネットワーク
識別ステップを有することを特徴とするものである。
[0010] Similarly, in order to achieve the above object, the invention according to claim 6 is the same as the surface defect inspection method according to any one of claims 1 to 5, wherein the defect obtained in the imaging step is used. The present invention is characterized by having a neural network identification step in which a feature amount extracted from image data is used as an input layer and a defect type is used as an output layer.

【0011】[0011]

【作用】請求項1記載の発明では、走査ステップで、偏
光器によってレーザ光が被検物上で走査され、受光量検
出ステップで、レーザ光の被検物からの反射光もしくは
透過光が受光されて受光電気信号が得られ、該受光電気
信号に基づいて、検出記憶ステップで、被検物の通常欠
陥部が検出され、検出記憶ステップで、検出された通常
欠陥部の大きさと位置が記憶され、撮像ステップで検出
記憶された通常欠陥部の撮像が行なわれる。
According to the first aspect of the invention, in the scanning step, the laser light is scanned by the polarizer by the polarizer, and in the light receiving amount detecting step, the reflected light or the transmitted light of the laser light from the object is received. The received light electrical signal is obtained, and the normal defective portion of the test object is detected in the detection and storage step based on the received light electrical signal, and the size and position of the detected normal defective portion is stored in the detection and storage step. Then, the normal defective portion detected and stored in the imaging step is imaged.

【0012】請求項2記載の発明では、走査ステップ
で、偏光器によってレーザ光が被検物上で走査され、受
光量検出ステップで、レーザ光の被検物からの反射光も
しくは透過光が受光されて受光電気信号が得られ、高周
波領域遮断ステップで、該受光電気信号をローパスフィ
ルタを通過させることにより、受光電気信号から低周波
成分が抽出される。そして、ローパスフィルタの出力信
号に基づいて、検出記憶ステップで、被検物の低周波欠
陥部が検出され、検出記憶ステップで、検出された低周
波欠陥部の大きさと位置が記憶され、撮像ステップで検
出記憶された低周波欠陥部の撮像が行なわれる。
According to the second aspect of the invention, in the scanning step, the laser light is scanned on the object by the polarizer, and in the step of detecting the amount of received light, the reflected light or the transmitted light of the laser light from the object is received. Thus, the received light electric signal is obtained, and the low frequency component is extracted from the received light electric signal by passing the received light electric signal through the low-pass filter in the high frequency region blocking step. Then, based on the output signal of the low-pass filter, in the detection storage step, the low-frequency defect portion of the test object is detected, and in the detection storage step, the size and position of the detected low-frequency defect portion are stored, and the imaging step An image of the low-frequency defect portion detected and stored at is picked up.

【0013】請求項3記載の発明では、走査ステップ
で、偏光器によってレーザ光が被検物上で走査され、受
光量検出ステップで、レーザ光の被検物からの反射光も
しくは透過光が受光されて受光電気信号が得られ、低周
波領域遮断ステップで、該受光電気信号を微分回路を通
過させることにより、受光電気信号から高周波成分が抽
出される。そして、微分回路の出力信号に基づいて、検
出記憶ステップで、被検物の高周波欠陥部が検出され、
検出記憶ステップで、検出された高周波欠陥部の大きさ
と位置が記憶され、撮像ステップで検出記憶された高周
波欠陥部の撮像が行なわれる。
According to the third aspect of the invention, in the scanning step, the laser light is scanned by the polarizer by the polarizer, and in the light receiving amount detecting step, the reflected light or the transmitted light of the laser light from the object is received. Thus, the received light electric signal is obtained, and the high frequency component is extracted from the received light electric signal by passing the received light electric signal through the differentiating circuit in the low frequency region blocking step. Then, based on the output signal of the differentiating circuit, in the detection storage step, the high frequency defect portion of the test object is detected,
In the detection and storage step, the size and position of the detected high frequency defect portion are stored, and the high frequency defect portion detected and stored in the imaging step is imaged.

【0014】請求項4記載の発明では、走査ステップ
で、偏光器によってレーザ光が被検物上で走査され、受
光量検出ステップで、レーザ光の被検物からの反射光も
しくは透過光が受光されて受光電気信号が得られ、受光
電気信号が二分されて、一方の受光電気信号を、高周波
領域遮断ステップで、ローパスフィルタを通過させるこ
とにより、受光電気信号から低周波成分が抽出される。
そして、検出記憶ステップにおいて、受光量検出ステッ
プで得られる受光電気信号の二分された一方の出力信号
に基づいて、被検物の低周波欠陥部が、他方の出力信号
に基づいて被検物の通常欠陥部がそれぞれ検出され、検
出された欠陥部の大きさと位置が記憶され、撮像ステッ
プで検出記憶された低周波欠陥部と通常欠陥部の撮像が
行なわれる。
According to the fourth aspect of the invention, in the scanning step, the laser light is scanned by the polarizer on the test object, and in the light receiving amount detecting step, the reflected light or the transmitted light of the laser light from the test object is received. Thus, the received light electric signal is obtained, the received light electric signal is divided into two, and one of the received light electric signal is passed through the low-pass filter in the high frequency region blocking step, whereby the low frequency component is extracted from the received light electric signal.
Then, in the detection storage step, based on one of the two divided output signals of the received light electrical signal obtained in the received light amount detection step, the low-frequency defect portion of the test object is detected based on the other output signal of the test object. The normal defect portion is detected, the size and position of the detected defect portion are stored, and the low frequency defect portion and the normal defect portion detected and stored in the imaging step are imaged.

【0015】請求項5記載の発明では、走査ステップ
で、偏光器によってレーザ光が被検物上で走査され、受
光量検出ステップで、レーザ光の被検物からの反射光も
しくは透過光が受光されて受光電気信号が得られ、受光
電気信号が二分されて、一方の受光電気信号を、高周波
領域遮断ステップで、ローパスフィルタを通過させるこ
とにより、受光電気信号から低周波成分が抽出され、他
方の受光電気信号を、低周波領域遮断ステップで、微分
回路を通過させることにより、受光電気信号から高周波
成分が抽出される。そして、検出記憶ステップにおい
て、受光量検出ステップで得られる受光電気信号の二分
された一方の出力信号に基づいて、被検物の低周波欠陥
部が、他方の出力信号に基づいて被検物の高周波欠陥部
がそれぞれ検出され、検出された欠陥部の大きさと位置
が記憶され、撮像ステップで検出記憶された低周波欠陥
部と高周波欠陥部の撮像が行なわれる。
According to the fifth aspect of the present invention, in the scanning step, the laser light is scanned by the polarizer on the test object, and in the received light amount detecting step, the reflected light or the transmitted light of the laser light from the test object is received. The received light electric signal is obtained, the received light electric signal is divided into two, and one of the received light electric signals is passed through the low-pass filter in the high frequency region blocking step, whereby the low frequency component is extracted from the received light electric signal, and the other is received. The high-frequency component is extracted from the received light electric signal by passing the received light electric signal of (1) through the differentiating circuit in the low frequency region blocking step. Then, in the detection storage step, based on one of the two divided output signals of the received light electrical signal obtained in the received light amount detection step, the low-frequency defect portion of the test object is detected based on the other output signal of the test object. Each high-frequency defect portion is detected, the size and position of the detected defect portion are stored, and the low-frequency defect portion and the high-frequency defect portion detected and stored in the imaging step are imaged.

【0016】請求項6記載の発明では、請求項1ないし
請求項5の何れかに記載の発明において、撮像ステップ
で得られた欠陥画像データから抽出された特徴量を入力
層に、欠陥の種類を出力層にしたニューラルネットワー
クによって、欠陥の形状や等級などの欠陥の種類が識別
される。
According to a sixth aspect of the invention, in the invention according to any one of the first to fifth aspects, the feature amount extracted from the defect image data obtained in the imaging step is used as an input layer, and the type of the defect. The type of defect such as the shape and grade of the defect is identified by the neural network having the output layer as the output layer.

【0017】[0017]

【実施例】【Example】

[第1の実施例]本発明の第1の実施例を図1ないし図
6を参照して説明する。図1は本実施例のレーザ走査検
査法の説明図、図2は本実施例の画像検査法の説明図、
図3は本実施例のビーム直径とサンプリングピッチの関
係を示す説明図、図4は本実施例の信号処理の説明図、
図5は本実施例に使用する信号処理装置の構成を示すブ
ロック図、図6は本実施例のラベリング処理の説明図で
ある。
[First Embodiment] A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram of a laser scanning inspection method of this embodiment, FIG. 2 is an explanatory diagram of an image inspection method of this embodiment,
FIG. 3 is an explanatory diagram showing the relationship between the beam diameter and the sampling pitch of this embodiment, and FIG. 4 is an explanatory diagram of the signal processing of this embodiment.
FIG. 5 is a block diagram showing the configuration of the signal processing apparatus used in this embodiment, and FIG. 6 is an explanatory diagram of the labeling processing of this embodiment.

【0018】本実施例では、鋼板、プラスチックフィル
ム、紙などの被検物の表面欠陥の検査を二段階で行い、
先ず、レーザ走査検査法により予め設定した所定以上の
欠陥を検出し、次にレーザ走査検査法で得られた欠陥部
について、レーザ検査法の検査情報に基づいて、CCD
カメラなどでの撮像検査が行なわれる。先ず、レーザ走
査検査法について説明する。図3に示すように、被検物
6を横幅WTが300mm、縦幅Lが300mmの正方
形シートとし、大きさ20μm程度の欠陥を検出するも
のとする。この場合に使用するレーザ光源を波長633
nmのHe−Neレーザ光を照射するレーザ光源とし、
レーザビームの直径を40μm程度に絞って使用する
と、レーザビームの直径の半分程度の欠陥部を検出する
ことができる。
In the present embodiment, the inspection of the surface defects of the test object such as steel plate, plastic film and paper is carried out in two steps,
First, a laser scanning inspection method detects a predetermined number of defects or more, and then, with respect to a defective portion obtained by the laser scanning inspection method, based on inspection information of the laser inspection method, a CCD
An imaging inspection with a camera or the like is performed. First, the laser scanning inspection method will be described. As shown in FIG. 3, it is assumed that the inspection object 6 is a square sheet having a width WT of 300 mm and a length L of 300 mm, and a defect having a size of about 20 μm is detected. The laser light source used in this case has a wavelength of 633.
As a laser light source for irradiating a He-Ne laser beam of nm,
When the diameter of the laser beam is narrowed down to about 40 μm and used, it is possible to detect a defect portion of about half the diameter of the laser beam.

【0019】レーザ走査検査は、図1に示すように、レ
ーザ光源1からのレーザ光を、焦点距離fが390m
m、回転数Rが6000rpm、面数Nが8のポリゴン
スキャナ2で偏向して、被検物6上を走査させる。この
場合のサンプリングピッチは、図3に示すように、主走
査方向サンプリングピッチP1が20μmに、副走査方
向サンプリングピッチP2が10μmに設定される。そ
して、検査パラメータとして、一回の主走査時間t(s
ec)、検査時間T(sec)、主走査線速度V(mm
/sec)、主走査方向サンプリング周波数S(MH
z)は、例えば(1)式〜(4)式に示すように設定さ
れる。
In the laser scanning inspection, as shown in FIG. 1, the laser light from the laser light source 1 has a focal length f of 390 m.
The polygon scanner 2 having m, a rotation speed R of 6000 rpm, and a surface number N of 8 is deflected to scan the inspection object 6. As shown in FIG. 3, the sampling pitch in this case is set such that the main scanning direction sampling pitch P1 is 20 μm and the sub scanning direction sampling pitch P2 is 10 μm. Then, as the inspection parameter, one main scanning time t (s
ec), inspection time T (sec), main scanning linear velocity V (mm
/ Sec), main scanning direction sampling frequency S (MH
z) is set as shown in, for example, equations (1) to (4).

【0020】 t=60/(RN) ・・・ (1) T=(L/P2)t=(300000/10)(60/6000.8) =3.75sec ・・・ (2) V=2f(dθ/dt)=2f(2πR/60)=(πRf/15) ・・・ (3) S=V/P1=(πRf/15P1)=(π6000・390000)/ (15・20)=25MHz ・・・ (4)T = 60 / (RN) (1) T = (L / P2) t = (300000/10) (60 / 6000.8) = 3.75 sec (2) V = 2f (Dθ / dt) = 2f (2πR / 60) = (πRf / 15) (3) S = V / P1 = (πRf / 15P1) = (π6000.3900000) / (15.20) = 25 MHz・ ・ (4)

【0021】図1に戻って、被検物6からの反射光7
は、光導棒8に入射され光導棒8の両端に配された受光
器9、10に導かれ光電変換される。被検物6上に欠陥
が存在すると、該欠陥によるレーザ光の散乱によって、
受光器9、10に到達する光量が減少するので、欠陥を
検出することができる。
Returning to FIG. 1, the reflected light 7 from the test object 6
Is incident on the light guide rod 8 and is guided to the light receivers 9 and 10 arranged at both ends of the light guide rod 8 to undergo photoelectric conversion. When a defect is present on the object 6 to be inspected, scattering of laser light by the defect causes
Since the amount of light reaching the light receivers 9 and 10 decreases, it is possible to detect a defect.

【0022】本実施例では、図5に示すような信号処理
装置14を使用しており、受光器9、10の出力信号は
OR回路21に入力され、OR回路21から出力される
和信号がコンパレータ22の一方の入力端子に入力さ
れ、コンパレータ22の他方の入力端子には、所定の閾
値Th1のレベル信号が入力されている。従って、図4
に示すように、OR回路21から出力される和信号が、
閾値Th1を下回って欠陥信号Fが検出されると、被検
物6上に欠陥が存在すると判定され、コンパレータ22
から欠陥信号が出力される。信号処理装置14には、主
走査方向のサンプリング回数をアドレスデータとして計
数する主走査方向アドレスカウンタ23と、図1に示す
トリガー用PD4の検出信号をアドレスデータとして計
数する副走査方向アドレスカウンタ24とが設けられ、
また、主走査方向欠陥位置メモリ25と、副走査方向欠
陥位置メモリ26とが設けられている。そして、欠陥信
号が検出されると、主走査方向アドレスカウンタ23と
副走査方向アドレスカウンタ24のアドレスデータN
1、N2が、それぞれ主走査方向欠陥位置メモリ25と
副走査方向欠陥位置メモリ26とに書込まれる。
In this embodiment, the signal processing device 14 as shown in FIG. 5 is used. The output signals of the photo detectors 9 and 10 are input to the OR circuit 21, and the sum signal output from the OR circuit 21 is A level signal having a predetermined threshold value Th1 is input to one input terminal of the comparator 22 and the other input terminal of the comparator 22. Therefore, FIG.
As shown in, the sum signal output from the OR circuit 21 is
When the defect signal F is detected below the threshold Th1, it is determined that there is a defect on the test object 6, and the comparator 22
A defect signal is output from. The signal processing device 14 includes a main scanning direction address counter 23 that counts the number of samplings in the main scanning direction as address data, and a sub scanning direction address counter 24 that counts the detection signal of the trigger PD 4 shown in FIG. 1 as address data. Is provided,
Further, a main scanning direction defect position memory 25 and a sub scanning direction defect position memory 26 are provided. When the defect signal is detected, the address data N of the main scanning direction address counter 23 and the sub scanning direction address counter 24
1 and N2 are written in the main scanning direction defect position memory 25 and the sub scanning direction defect position memory 26, respectively.

【0023】また、信号処理装置14には欠陥サイズカ
ウンタ27と、主走査方向欠陥サイズメモリ28とが設
けられ、コンパレータ22から欠陥信号が出力される
と、欠陥サイズカウンタ27が図4に示す欠陥サイズN
3を計数し、この計数値が主走査方向欠陥サイズメモリ
28に書込まれる。
Further, the signal processing device 14 is provided with a defect size counter 27 and a defect size memory 28 in the main scanning direction, and when a defect signal is output from the comparator 22, the defect size counter 27 will show the defect shown in FIG. Size N
3 is counted, and this count value is written in the main scanning direction defect size memory 28.

【0024】このようにして、欠陥が検出された場合、
N1で欠陥の横方向位置が、N2で欠陥の縦方向位置
が、N3で欠陥の横方向の大きさが判定される。欠陥に
対する欠陥信号が、複数回の主走査にわたって検出され
る場合には、アドレスデータN1、N2、欠陥サイズN
3を基にして、図6に示すように、ラベリング処理が行
なわれ、各欠陥にラベル値が与えられる。ラベリング処
理後には、各欠陥に外接する四角形の端点が演算され、
各欠陥に対して図6に示すデータT1〜T4がメモリに
書込まれる。
In this way, when a defect is detected,
The lateral position of the defect is determined at N1, the vertical position of the defect at N2, and the lateral size of the defect at N3. When a defect signal for a defect is detected over a plurality of main scans, address data N1, N2, defect size N
Based on 3, the labeling process is performed as shown in FIG. 6, and the label value is given to each defect. After the labeling process, the quadrangular endpoints that circumscribe each defect are calculated,
Data T1 to T4 shown in FIG. 6 are written in the memory for each defect.

【0025】安定した製造工程においては、図3に示す
サイズの被検物6に発生する欠陥数は数個程度であるこ
とが知られているので、本実施例では、高速にラベリン
グ処理が実行可能であり、欠陥発生時のみにデータの書
込が行なわれるので、メモリ容量を大きくする必要はな
い。
In the stable manufacturing process, it is known that the number of defects generated in the test object 6 having the size shown in FIG. 3 is about several. Therefore, in this embodiment, the labeling process is executed at high speed. Since it is possible and data is written only when a defect occurs, it is not necessary to increase the memory capacity.

【0026】以上に説明したレーザ走査検査法で、欠陥
の位置と光学的なサイズとが検出されるが、本実施例で
は、さらにレーザ走査検査法で検出された欠陥に対し
て、レーザ走査検査法で得られた欠陥情報に基づいて、
該欠陥をCCDなどで撮像する撮像検査法によって欠陥
の種類を識別している。
Although the position and the optical size of the defect are detected by the laser scanning inspection method described above, in the present embodiment, the laser scanning inspection is further performed on the defect detected by the laser scanning inspection method. Based on the defect information obtained by the method,
The type of defect is identified by an imaging inspection method in which the defect is imaged with a CCD or the like.

【0027】次に、本実施例の撮像検査法を説明する。
レーザ走査検査法で、欠陥の位置と光学的なサイズとが
検出された被検物6に対して、該欠陥部を2個のCCD
11、12によって撮像する。この場合、主走査方向サ
ンプリングピッチ20μm(CCD11、12の画素数
を7500)とし、副走査方向のサンプリングピッチが
10μmとなるように、被検物6を移動させ、レーザ走
査検査法と同一のサンプリングピッチが設定される。そ
して、主走査方向欠陥位置メモリ25及び副走査方向欠
陥位置メモリ26から、レーザ走査検査法で検出した欠
陥の座標データが読み出され、読み出された座標位置に
ついてCCD11、12による撮像検査が行なわれる。
この撮像検査で得られる視覚的情報に基づいて、目視検
査員は、欠陥の特徴量や種類を判定し経験的な基準情報
に照らして被検物の良否の判定を行なう。
Next, the imaging inspection method of this embodiment will be described.
For the inspection object 6 whose position and optical size have been detected by the laser scanning inspection method, the defective portion is provided with two CCDs.
Images are picked up by 11 and 12. In this case, the sampling pitch is set to 20 μm in the main scanning direction (the number of pixels of the CCDs 11 and 12 is 7500), the test object 6 is moved so that the sampling pitch in the sub scanning direction is 10 μm, and the same sampling as in the laser scanning inspection method is performed. The pitch is set. Then, the coordinate data of the defect detected by the laser scanning inspection method is read from the defect position memory 25 in the main scanning direction and the defect position memory 26 in the sub-scanning direction, and the CCD 11 and 12 perform an image inspection on the read coordinate position. Be done.
Based on the visual information obtained by this imaging inspection, the visual inspector determines the feature amount and type of the defect, and determines the quality of the inspection object based on the empirical reference information.

【0028】例えば、300mm×300mmの被検物
6上の20μm程度の直径の欠陥の検出を撮像検査法の
みで行なおうとすると、主走査方向のサンプリングピッ
チを20μm、副走査方向のサンプリングピッチを10
μmにする必要があり、1画素を8ビットで表すとする
と、データ数が450万個になり、必要なメモリ容量が
膨大なものとなり、データ処理のための時間も長くな
る。しかし、本発明によると、予めレーザ走査検査法
で、空間的に高周波から低周波にわたる所定以上の通常
欠陥とその位置を確認し、得られた通常欠陥部に対して
撮像検査を行なうので、必要なメモリ容量を低減するこ
とができ、データ処理の時間を短縮することが可能にな
る。
For example, if a defect having a diameter of about 20 μm on a test object 6 of 300 mm × 300 mm is to be detected only by the imaging inspection method, the sampling pitch in the main scanning direction is 20 μm and the sampling pitch in the sub scanning direction is 10
.mu.m is required, and if one pixel is represented by 8 bits, the number of data becomes 4.5 million, the required memory capacity becomes enormous, and the time for data processing becomes long. However, according to the present invention, a laser scanning inspection method is used in advance to confirm spatially a predetermined number or more of normal defects ranging from a high frequency to a low frequency and their positions, and perform an image inspection on the obtained normal defect portion. The memory capacity can be reduced, and the data processing time can be shortened.

【0029】このように、本実施例によると、レーザ走
査検査法で、高周波から低周波にわたる通常欠陥の位置
と光学的なサイズとを検出し、検出された通常欠陥部に
ついて撮像検査を行なうので、短時間で欠陥部の撮像デ
ータを得て、被検物6の表面欠陥を適確に把握すること
ができ、被検物6の良否の判定を精度よく効率的に行な
うことが可能になる。
As described above, according to the present embodiment, the position and the optical size of the normal defect ranging from high frequency to low frequency are detected by the laser scanning inspection method, and the image inspection is performed on the detected normal defect portion. It is possible to obtain the imaging data of the defective portion in a short time, to accurately grasp the surface defect of the inspection object 6, and to judge the quality of the inspection object 6 accurately and efficiently. .

【0030】[第2の実施例]本発明の第2の実施例を
図7および図8を参照して説明する。図7は本実施例の
検出対象となる低周波欠陥の特性図、図8は本実施例に
使用する信号処理装置の構成を示すブロック図で、図5
と同一部分には同一符号が付されている。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a characteristic diagram of a low frequency defect which is a detection target of this embodiment, and FIG. 8 is a block diagram showing a configuration of a signal processing device used in this embodiment.
The same reference numerals are given to the same parts.

【0031】本実施例の信号処理回路15は、図8に示
すように、すでに図5を参照して説明した第1の実施例
の信号処理回路14に対して、OR回路21とコンパレ
ータ22間にローパスフィルタ15が接続されている。
本実施例の信号処理回路15のその他の部分の構成は、
すでに図5を参照して説明した第1の実施例の信号処理
回路14と同一である。ところで、被検物の表面の欠陥
が、むらのような空間的に周波数の低い低周波欠陥で
は、OR回路21から出力される和信号の強度と、被検
物の主走査方向との間には、図7に示すような関係があ
る。このような特性の欠陥信号F1を検出するために
は、閾値レベルTh1を正常な信号レベルに近付ける必
要があり、ノイズを検出する可能性がある。このため
に、本実施例ではローパスフィルタ15を設けて、和信
号の高周波成分を遮断している。
As shown in FIG. 8, the signal processing circuit 15 of the present embodiment differs from the signal processing circuit 14 of the first embodiment already described with reference to FIG. The low-pass filter 15 is connected to.
The configuration of the other parts of the signal processing circuit 15 of this embodiment is as follows.
This is the same as the signal processing circuit 14 of the first embodiment already described with reference to FIG. By the way, in the case where the defect on the surface of the object to be inspected is a low frequency defect having a spatially low frequency such as unevenness, the intensity of the sum signal output from the OR circuit 21 and the main scanning direction of the object to be inspected. Have a relationship as shown in FIG. In order to detect the defect signal F1 having such a characteristic, it is necessary to bring the threshold level Th1 close to a normal signal level, and noise may be detected. Therefore, in this embodiment, the low-pass filter 15 is provided to block the high frequency component of the sum signal.

【0032】このようにして、本実施例ではレーザ走査
検査において、OR回路21から出力される和信号をロ
ーパスフィルタ15に通して、高周波成分を遮断するこ
とにより、被検物の表面むらなどの空間的に低周波の低
周波欠陥を、ノイズを検出することなく高精度で検出
し、検出された低周波欠陥部について撮像検査を行なう
ので、短時間で低周波欠陥部の撮像データを得て、被検
物6の表面欠陥を適確に把握することができ、被検物6
の良否の判定を精度よく効率的に行なうことが可能にな
る。
As described above, in the present embodiment, in the laser scanning inspection, the sum signal output from the OR circuit 21 is passed through the low-pass filter 15 to block high-frequency components, so that the surface unevenness of the object to be inspected or the like. Spatial low-frequency low-frequency defects are detected with high accuracy without detecting noise, and the image inspection of the detected low-frequency defects is performed. The surface defect of the inspection object 6 can be accurately grasped, and the inspection object 6
It is possible to accurately and efficiently determine whether the quality of the item is good or bad.

【0033】[第3の実施例]本発明の第3の実施例を
図9および図10を参照して説明する。図9は本実施例
の検出対象となる高周波欠陥の特性図、図10は本実施
例に使用する信号処理装置の構成を示すブロック図であ
り、図5と同一部分には同一符号が付されている。
[Third Embodiment] A third embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 9 is a characteristic diagram of a high frequency defect to be detected in this embodiment, and FIG. 10 is a block diagram showing a configuration of a signal processing device used in this embodiment. The same parts as those in FIG. ing.

【0034】本実施例の信号処理回路16は、図10に
示すように、すでに図5を参照して説明した第1の実施
例の信号処理回路14に対して、OR回路21とコンパ
レータ22間に微分回路20が接続されている。本実施
例の信号処理回路16のその他の部分の構成は、すでに
図5を参照して説明した第1の実施例の信号処理回路1
4と同一である。ところで、被検物の表面の欠陥が、傷
のような空間的に周波数の高い高周波欠陥では、OR回
路21から出力される和信号の強度と被検物の主走査方
向との間には、図9に示すような関係がある。このよう
な特性の欠陥信号F2を高精度で検出するために、本実
施例では微分回路20を設けて、和信号の低周波成分を
遮断している。
As shown in FIG. 10, the signal processing circuit 16 of the present embodiment is different from the signal processing circuit 14 of the first embodiment already described with reference to FIG. 5 between the OR circuit 21 and the comparator 22. Differentiating circuit 20 is connected to. The configuration of the other parts of the signal processing circuit 16 of this embodiment is the same as that of the signal processing circuit 1 of the first embodiment already described with reference to FIG.
Same as 4. By the way, in the case where a defect on the surface of the object to be inspected is a high frequency defect having a high spatial frequency such as a flaw, between the intensity of the sum signal output from the OR circuit 21 and the main scanning direction of the object to be inspected, There is a relationship as shown in FIG. In order to detect the defect signal F2 having such a characteristic with high accuracy, the differentiating circuit 20 is provided in the present embodiment to cut off the low frequency component of the sum signal.

【0035】このようにして、本実施例ではレーザ走査
検査において、OR回路21から出力される和信号を微
分回路20に通して、低周波成分を遮断することによ
り、被検物の傷などの空間的に高周波の高周波欠陥を高
精度で検出し、検出された高周波欠陥部について撮像検
査を行なうので、短時間で高周波欠陥部の撮像データを
得て、被検物6の表面欠陥を適確に把握することがで
き、被検物6の良否の判定を精度よく効率的に行なうこ
とが可能になる。
As described above, in the present embodiment, in the laser scanning inspection, the sum signal output from the OR circuit 21 is passed through the differentiating circuit 20 to cut off the low frequency components, so that the flaw of the object to be inspected or the like is detected. High-frequency defects of high frequency are detected spatially with high accuracy, and the image inspection of the detected high-frequency defects is performed. Therefore, the imaging data of the high-frequency defects can be obtained in a short time, and the surface defects of the inspection object 6 can be accurately determined. Therefore, the quality of the object 6 can be accurately and efficiently determined.

【0036】[第4の実施例]本発明の第4の実施例を
図11を参照して説明する。図11は本実施例の信号処
理装置の構成を示すブロック図で、図5及び図8と同一
部分には同一符号が付されている。
[Fourth Embodiment] A fourth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a block diagram showing the configuration of the signal processing apparatus of this embodiment, and the same parts as those in FIGS. 5 and 8 are designated by the same reference numerals.

【0037】本実施例の信号処理装置19では、図11
に示すように、OR回路21から出力される和信号を二
分し、その一方を第2の実施例で使用した信号処理回路
15からOR回路21を除いた回路15Aのローパスフ
ィルタ15に入力し、他方を第1の実施例で使用した信
号処理回路14からOR回路21を除いた回路14Aの
コンパレータ22に入力している。
In the signal processing device 19 of this embodiment, as shown in FIG.
As shown in (1), the sum signal output from the OR circuit 21 is divided into two, and one of them is input to the low-pass filter 15 of the circuit 15A excluding the OR circuit 21 from the signal processing circuit 15 used in the second embodiment, The other is input to the comparator 22 of the circuit 14A in which the OR circuit 21 is removed from the signal processing circuit 14 used in the first embodiment.

【0038】本実施例では、第1の実施例で説明した表
面の通常欠陥の検査と、第2の実施例で説明した表面の
むらのような低周波欠陥の検査とが同時に行なわれる。
その動作はすでに第1の実施例及び第2の実施例でそれ
ぞれ説明した通りである。
In this embodiment, the normal defect inspection of the surface described in the first embodiment and the low frequency defect inspection such as the surface unevenness described in the second embodiment are simultaneously performed.
The operation is as described in the first and second embodiments.

【0039】このように、本実施例によると、レーザ走
査検査において、OR回路21から出力される和信号を
二分し、その一方については、ローパスフィルタ15を
通して、高周波成分を遮断することにより、被検物の表
面むらなどの空間的に低周波の低周波欠陥をノイズを検
出することなく高精度に検出し、他方については、高周
波から低周波にわたる通常欠陥を検出する。そして、検
出された低周波欠陥部と通常欠陥部とについて撮像検査
を行なうので、短時間で通常欠陥部と低周波欠陥部との
撮像データを得て、被検物6の表面欠陥を適確に把握す
ることができ、被検物6の良否の判定を精度よく効率的
に行なうことが可能になる。
As described above, according to the present embodiment, in the laser scanning inspection, the sum signal output from the OR circuit 21 is divided into two parts, and one of them is passed through the low-pass filter 15 to block the high frequency component, and thereby A low-frequency defect having a spatially low frequency such as surface unevenness of an inspection object is detected with high accuracy without detecting noise, and on the other hand, a normal defect ranging from high frequency to low frequency is detected. Then, since the image inspection is performed on the detected low-frequency defect portion and the normal defect portion, the image data of the normal defect portion and the low-frequency defect portion is obtained in a short time, and the surface defect of the inspection object 6 can be accurately determined. Therefore, the quality of the object 6 can be accurately and efficiently determined.

【0040】[第5の実施例]本発明の第5の実施例を
図12を参照して説明する。図12は本実施例の信号処
理装置の構成を示すブロック図で、図8及び図10と同
一部分には同一符号が付されている。
[Fifth Embodiment] A fifth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a block diagram showing the configuration of the signal processing apparatus of this embodiment, and the same parts as those in FIGS. 8 and 10 are designated by the same reference numerals.

【0041】本実施例の信号処理装置30では、図12
に示すように、OR回路21から出力される和信号を二
分し、その一方を第4の実施例で説明した回路15Aの
ローパスフィルタ15に入力し、他方を第3の実施例で
使用した信号処理回路16からOR回路21を除いた回
路16Aの微分回路20に入力している。
In the signal processing device 30 of this embodiment, FIG.
As shown in FIG. 7, the sum signal output from the OR circuit 21 is divided into two, one of which is input to the low-pass filter 15 of the circuit 15A described in the fourth embodiment, and the other is a signal used in the third embodiment. It is input to the differentiating circuit 20 of the circuit 16A except the OR circuit 21 from the processing circuit 16.

【0042】本実施例では、第2の実施例で説明した表
面のむらのような低周波欠陥の検査と、第3の実施例で
説明した表面の傷のような高周波欠陥の検査とが同時に
行なわれる。その動作はすでに第2の実施例及び第3の
実施例でそれぞれ説明した通りである。
In this embodiment, the inspection of low frequency defects such as surface irregularities described in the second embodiment and the inspection of high frequency defects such as surface scratches described in the third embodiment are performed simultaneously. Be done. The operation is as described in the second and third embodiments.

【0043】このように、本実施例によると、レーザ走
査検査において、OR回路21から出力される和信号を
二分し、その一方については、ローパスフィルタ15を
通して、高周波成分を遮断することにより、被検物の表
面むらなどの空間的に低周波の低周波欠陥を、ノイズを
検出することなく高精度で検出し、他方については、微
分回路20を通して、低周波成分を遮断することによ
り、被検物の表面傷などの空間的に高周波の高周波欠陥
を高精度で検出することができる。そして、検出された
低周波欠陥部と高周波欠陥部とについて撮像検査を行な
うので、短時間で低周波欠陥部と高周波欠陥部との撮像
データを得て、被検物6の表面欠陥を適確に把握するこ
とができ、被検物6の良否の判定を精度よく効率的に行
なうことが可能になる。
As described above, according to the present embodiment, in the laser scanning inspection, the sum signal output from the OR circuit 21 is divided into two, and one of them is passed through the low-pass filter 15 to cut off a high frequency component, so that A low-frequency defect having a spatially low frequency such as surface unevenness of the inspection object is detected with high accuracy without detecting noise, and the other is cut off by passing through the differentiating circuit 20 to remove the low-frequency component. It is possible to detect spatially high frequency high frequency defects such as surface scratches of objects with high accuracy. Then, since the image inspection is performed on the detected low frequency defect portion and high frequency defect portion, the image data of the low frequency defect portion and the high frequency defect portion can be obtained in a short time, and the surface defect of the inspection object 6 can be accurately determined. Therefore, the quality of the object 6 can be accurately and efficiently determined.

【0044】[第6の実施例]本発明の第6の実施例
を、図13ないし図15を参照して説明する。図13は
本実施例の形状カテゴリーの特性図、図14は本実施例
の形状認識用のニューラルネットワークの構造図、図1
5は等級のカテゴリーの特性図である。
[Sixth Embodiment] A sixth embodiment of the present invention will be described with reference to FIGS. 13 is a characteristic diagram of the shape category of the present embodiment, FIG. 14 is a structural diagram of a shape recognition neural network of the present embodiment, and FIG.
5 is a characteristic diagram of grade categories.

【0045】第6の実施例では、すでに説明した第1の
実施例ないし第5の実施例の何れかのレーザ走査検査法
と撮像検査法とが利用され、次いで撮像検査法で得られ
た撮像データから得られる特徴量に基づいて、ニューラ
ルネットワークで形状のカテゴリーを識別し、決定木を
使用して各欠陥形状ごとの細分類が行なわれる。例え
ば、撮像データから特徴量として面積と幅/長さとが求
められ、得られた特徴量が図14に示すニューラルネッ
トワークに入力される。このニューラルネットワーク
は、入力層のユニット数が、特徴量を成分とする特徴ベ
クトルの次元数に、中間層のユニット数が識別平面数
に、出力層のユニット数が形状のカテゴリー数にそれぞ
れ一致され、入力される特徴量に対して、図13の識別
特性に従って点、面、線のカテゴリーの分類を行なう。
このようにして識別された形状のカテゴリーは、点、
線、面の特性を判断する図示せぬ判断ツリーによって、
各欠陥形状ごとに細分類される。
In the sixth embodiment, the laser scanning inspection method and the imaging inspection method of any of the first to fifth embodiments already described are used, and then the image obtained by the imaging inspection method is used. On the basis of the feature amount obtained from the data, a shape category is identified by a neural network, and a decision tree is used to perform fine classification for each defect shape. For example, the area and the width / length are obtained as the feature amount from the imaged data, and the obtained feature amount is input to the neural network shown in FIG. In this neural network, the number of units in the input layer is matched with the number of dimensions of the feature vector that has the feature quantity as the component, the number of units in the intermediate layer is matched with the number of identification planes, and the number of units in the output layer is matched with the number of shape categories. The input feature quantity is classified into points, planes, and lines according to the identification characteristics shown in FIG.
The categories of shapes identified in this way are points,
By a judgment tree (not shown) that judges the characteristics of lines and surfaces,
Each defect shape is subdivided.

【0046】また、等級認識用のニュートラルネットワ
ークを使用して、欠陥の等級認識を行なう場合には、特
徴量として面積と濃度平均値を求め、これらの特徴量に
対して、図15の識別特性に従って、図14の場合と類
似の図示せぬニューラルネットワークを使用して、欠陥
の等級を軽、中、重の3段階で分類する。
Further, when the class recognition of defects is performed using the neutral network for class recognition, the area and density average value are obtained as the feature quantity, and the discrimination characteristics of FIG. 15 are obtained for these feature quantities. According to the above, a neural network (not shown) similar to the case of FIG. 14 is used to classify the defects into three grades of light, medium, and heavy.

【0047】このように、本実施例によると、第1の実
施例ないし第5の実施例でそれぞれ得られる効果に加え
て、表面欠陥の形状や等級を、自動的に適確に分類する
ことができ、検査員による経験的な処理や修正操作が不
要になり、被検物6の良否の判定能力を大幅に向上させ
ることが可能になる。
As described above, according to this embodiment, in addition to the effects obtained in the first to fifth embodiments, the shapes and grades of surface defects are automatically and accurately classified. Therefore, empirical processing and correction operation by an inspector are not required, and the ability to determine the quality of the inspection object 6 can be significantly improved.

【0048】[0048]

【発明の効果】請求項1記載の発明によると、レーザ光
が被検物上で走査され、レーザ光の被検物からの反射光
もしくは透過光が受光され、該受光電気信号に基づい
て、被検物の通常欠陥部が検出され、該通常欠陥部の大
きさと位置が記憶され、該通常欠陥部のみの撮像が行な
われるので、被検物の表面欠陥検査を短時間で効率的に
且つ適確に行なうことが可能になる。請求項2記載の発
明によると、レーザ光が被検物上で走査され、レーザ光
の被検物からの反射光もしくは透過光が受光され、該受
光電気信号から低周波成分が抽出され、該低周波成分に
基づいて、被検物の低周波欠陥部が検出され、該低周波
欠陥部の大きさと位置が記憶され、該低周波欠陥部のみ
の撮像検査が行なわれるので、被検物の空間的に低周波
の表面欠陥検査を短時間で効率的に且つ適確に行なうこ
とが可能になる。請求項3記載の発明によると、レーザ
光が被検物上で走査され、レーザ光の被検物からの反射
光もしくは透過光が受光され、該受光電気信号から高周
波成分が抽出され、該高周波成分に基づいて、被検物の
高周波欠陥部が検出され、該高周波欠陥部の大きさと位
置が記憶され、該高周波欠陥部のみの撮像検査が行なわ
れるので、被検物の空間的に高周波の表面欠陥検査を短
時間で効率的に且つ適確に行なうことが可能になる。請
求項4記載の発明によると、レーザ光が被検物上で走査
され、レーザ光の被検物からの反射光もしくは透過光が
受光され、受光電気信号が二分されて、一方の受光電気
信号を、ローパスフィルタを通過させることにより、受
光電気信号から低周波成分が抽出され、受光電気信号の
二分された一方の出力信号に基づいて、被検物の低周波
欠陥部が、他方の出力信号に基づいて被検物の通常欠陥
部がそれぞれ検出され、検出された欠陥部の大きさと位
置が記憶され、該低周波欠陥部と該通常欠陥部のみの撮
像検査が行なわれるので、被検物の表面の通常欠陥部及
び空間的に低周波の欠陥部の検査を短時間で効率的に且
つ適確に行なうことが可能になる。請求項5記載の発明
によると、レーザ光が被検物上で走査され、レーザ光の
被検物からの反射光もしくは透過光が受光され、該受光
電気信号が二分されて、一方の受光電気信号を、ローパ
スフィルタを通過させることにより、受光電気信号から
低周波成分が抽出され、他方の受光電気信号を、微分回
路を通過させることにより、受光電気信号から高周波成
分が抽出され、受光電気信号の二分された一方の出力信
号に基づいて、被検物の低周波欠陥部が、他方の出力信
号に基づいて被検物の高周波欠陥部がそれぞれ検出さ
れ、検出された欠陥部の大きさと位置が記憶され、該低
周波欠陥部と該高周波欠陥部のみの撮像検査が行なわれ
るので、被検物の表面の空間的に低周波の欠陥部と高周
波の欠陥部の検査を短時間で効率的に且つ適確に行なう
ことが可能になる。請求項6記載の発明によると、請求
項1ないし請求項5の何れかに記載の発明の効果に加え
て、撮像により得られた欠陥画像データから抽出された
特徴量を入力層に、欠陥の種類を出力層にしたニューラ
ルネットワークによって、欠陥の形状や等級などの欠陥
の種類の識別を自動的に適確に行なうことが可能にな
る。
According to the first aspect of the invention, the laser light is scanned on the object to be inspected, and the reflected light or the transmitted light of the laser light from the object to be inspected is received, and based on the received light electric signal, Since the normal defect portion of the test object is detected, the size and position of the normal defect portion are stored, and only the normal defect portion is imaged, the surface defect inspection of the test object can be performed efficiently in a short time. It becomes possible to do it accurately. According to the second aspect of the present invention, the laser light is scanned on the test object, the reflected light or the transmitted light of the laser light from the test object is received, and the low frequency component is extracted from the received electric signal. The low-frequency defect portion of the test object is detected based on the low-frequency component, the size and position of the low-frequency defect portion are stored, and the imaging inspection of only the low-frequency defect portion is performed. It becomes possible to perform a spatially low frequency surface defect inspection efficiently and accurately in a short time. According to the third aspect of the present invention, the laser light is scanned on the test object, the reflected light or the transmitted light of the laser light from the test object is received, the high frequency component is extracted from the received electric signal, and the high frequency component is extracted. A high-frequency defect portion of the test object is detected based on the component, the size and position of the high-frequency defect portion are stored, and imaging inspection of only the high-frequency defect portion is performed. It becomes possible to perform surface defect inspection efficiently and accurately in a short time. According to the invention of claim 4, the laser light is scanned on the object to be detected, the reflected light or the transmitted light of the laser light from the object is received, the received light electric signal is divided into two, and one received electric signal is received. , A low-frequency component is extracted from the received light electrical signal by passing through a low-pass filter, and based on the one output signal of the received light electrical signal halved, the low-frequency defective portion of the test object outputs the other output signal. The normal defect portion of the inspection object is detected based on the above, the size and position of the detected defect portion are stored, and the image inspection of only the low frequency defect portion and the normal defect portion is performed. It is possible to efficiently and appropriately inspect the normal defect portion and the spatially low frequency defect portion on the surface of the. According to the invention described in claim 5, the laser light is scanned on the object to be detected, the reflected light or the transmitted light of the laser light from the object is received, the received light electric signal is divided into two, and one of the received light electricity is received. By passing the signal through the low-pass filter, the low-frequency component is extracted from the received light electrical signal, and by passing the other received light electrical signal through the differentiating circuit, the high-frequency component is extracted from the received light electrical signal. Based on one of the two output signals, the low-frequency defect part of the test object is detected, and the high-frequency defect part of the test object is detected based on the other output signal, and the size and position of the detected defect part are detected. Is stored and the imaging inspection of only the low-frequency defect portion and the high-frequency defect portion is performed, so that the inspection of the spatially low-frequency defect portion and the high-frequency defect portion of the surface of the test object can be performed efficiently in a short time. And accurately Door is possible. According to the invention described in claim 6, in addition to the effect of the invention described in any one of claims 1 to 5, the feature amount extracted from the defect image data obtained by imaging is input to the input layer to detect the defect. The neural network with the type as the output layer makes it possible to automatically and accurately identify the type of defect such as the shape and grade of the defect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のレーザ走査検査法の説
明図である。
FIG. 1 is an explanatory diagram of a laser scanning inspection method according to a first embodiment of the present invention.

【図2】同実施例の画像検査法の説明図である。FIG. 2 is an explanatory diagram of an image inspection method of the same embodiment.

【図3】同実施例のビーム直径とサンプリングピッチの
関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a beam diameter and a sampling pitch in the example.

【図4】同実施例の信号処理の説明図である。FIG. 4 is an explanatory diagram of signal processing according to the same embodiment.

【図5】同実施例に使用する信号処理装置の構成を示す
ブロック図である。
FIG. 5 is a block diagram showing a configuration of a signal processing device used in the embodiment.

【図6】同実施例のラベリング処理の説明図である。FIG. 6 is an explanatory diagram of a labeling process of the embodiment.

【図7】本発明の第2の実施例の検出対象となる低周波
欠陥の特性図である。
FIG. 7 is a characteristic diagram of a low frequency defect which is a detection target of the second embodiment of the present invention.

【図8】同実施例に使用する信号処理装置の構成を示す
ブロック図である。
FIG. 8 is a block diagram showing a configuration of a signal processing device used in the embodiment.

【図9】本発明の第3の実施例の検出対象となる高周波
欠陥の特性図である。
FIG. 9 is a characteristic diagram of a high frequency defect which is a detection target in the third embodiment of the present invention.

【図10】同実施例に使用する信号処理装置の構成を示
すブロック図である。
FIG. 10 is a block diagram showing a configuration of a signal processing device used in the embodiment.

【図11】本発明の第4の実施例の信号処理装置の構成
を示すブロック図である。
FIG. 11 is a block diagram showing a configuration of a signal processing device according to a fourth exemplary embodiment of the present invention.

【図12】本発明の第5の実施例の信号処理装置の構成
を示すブロック図である。
FIG. 12 is a block diagram showing a configuration of a signal processing device according to a fifth exemplary embodiment of the present invention.

【図13】本発明の第6の実施例の形状カテゴリーの特
性図である。
FIG. 13 is a characteristic diagram of a shape category according to the sixth embodiment of the present invention.

【図14】同実施例の形状認識用のニューラルネットワ
ークの構造図である。
FIG. 14 is a structural diagram of a neural network for shape recognition of the embodiment.

【図15】同実施例の等級のカテゴリーの特性図であ
る。
FIG. 15 is a characteristic diagram of grade categories in the example.

【符号の説明】 1 レーザ光源 2 ポリゴンスキャナ 8 光導棒 9、10 受光器 15 ローパスフィルタ 20 微分回路 22 コンパレータ 25 主操作方向欠陥位置メモリ 26 副操作方向欠陥位置メモリ 28 主操作方向欠陥サイズメモリ[Explanation of reference numerals] 1 laser light source 2 polygon scanner 8 optical rod 9, 10 light receiver 15 low-pass filter 20 differentiating circuit 22 comparator 25 main operation direction defect position memory 26 sub operation direction defect position memory 28 main operation direction defect size memory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 偏光器によってレーザ光を被検物上で走
査する走査ステップと、 前記レーザ光の前記被検物からの反射光もしくは透過光
を受光し、受光電気信号を得る受光量検出ステップと、 該受光量検出ステップで得られる受光電気信号に基づい
て、前記被検物の通常欠陥部を検出し、検出された通常
欠陥部の大きさと位置を記憶する検出記憶ステップと、 該検出記憶ステップで検出記憶された通常欠陥部の撮像
を行なう撮像ステップとを有することを特徴とする表面
欠陥検査方法。
1. A scanning step of scanning a laser beam on a test object by a polarizer, and a received light amount detecting step of receiving reflected light or transmitted light of the laser beam from the test object to obtain a received light electric signal. A detection storage step of detecting a normal defect portion of the test object based on the received light electric signal obtained in the received light amount detection step, and storing the size and position of the detected normal defect portion; An image pickup step of picking up an image of the normal defect portion detected and stored in the step, and a surface defect inspection method.
【請求項2】 偏光器によってレーザ光を被検物上で走
査する走査ステップと、 前記レーザ光の前記被検物からの反射光もしくは透過光
を受光し、受光電気信号を得る受光量検出ステップと、 前記受光量検出ステップで得られる受光電気信号を、ロ
ーパスフィルタを通過させる高周波領域遮断ステップ
と、 該高周波領域遮断ステップで得られる出力信号に基づい
て、前記被検物の低周波欠陥部を検出し、検出された低
周波欠陥部の大きさと位置を記憶する検出記憶ステップ
と、 該検出記憶ステップで検出記憶された低周波欠陥部の撮
像を行なう撮像ステップとを有することを特徴とする表
面欠陥検査方法。
2. A scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a received light amount detecting step of receiving a reflected light or a transmitted light of the laser beam from the object to obtain a received light electric signal. A high-frequency region blocking step of passing a received light electrical signal obtained in the received light amount detecting step through a low-pass filter, and a low-frequency defect portion of the test object based on the output signal obtained in the high-frequency region blocking step. A surface having a detection storage step of storing the size and position of the detected low-frequency defect portion, and an imaging step of imaging the low-frequency defect portion detected and stored in the detection storage step. Defect inspection method.
【請求項3】 偏光器によってレーザ光を被検物上で走
査する走査ステップと、 前記レーザ光の前記被検物からの反射光もしくは透過光
を受光し、受光電気信号を得る受光量検出ステップと、 該受光量検出ステップで得られる受光電気信号を、微分
回路を通過させる低周波領域遮断ステップと、 該低周波領域遮断ステップで得られる出力信号に基づい
て、前記被検物の高周波欠陥部を検出し、検出された高
周波欠陥部の大きさと位置を記憶する検出記憶ステップ
と、 該検出記憶ステップで検出記憶された高周波欠陥部の撮
像を行なう撮像ステップとを有することを特徴とする表
面欠陥検査方法。
3. A scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a received light amount detecting step of receiving a reflected light or a transmitted light of the laser beam from the object to obtain a received light electric signal. A low-frequency region blocking step of passing a received light electrical signal obtained in the received light amount detecting step through a differentiating circuit, and an output signal obtained in the low-frequency region blocking step. Surface defect, which includes a detection storage step of detecting the high frequency defect portion and storing the size and position of the detected high frequency defect portion, and an imaging step of capturing an image of the high frequency defect portion detected and stored in the detection storage step. Inspection methods.
【請求項4】 偏光器によってレーザ光を被検物上で走
査する走査ステップと、 前記レーザ光の前記被検物からの反射光もしくは透過光
を受光し、受光電気信号を得る受光量検出ステップと、 該受光量検出ステップで得られる受光電気信号を二分
し、一方をローパスフィルタを通過させる高周波領域遮
断ステップと、 前記受光量検出ステップで得られる受光電気信号の前記
二分された一方の出力信号に基づいて、前記被検物の低
周波欠陥部を、他方の出力信号に基づいて前記被検物の
通常欠陥部をそれぞれ検出し、検出された欠陥部の大き
さと位置を記憶する検出記憶ステップと、 該検出記憶ステップで検出記憶された欠陥部の撮像を行
なう撮像ステップとを有することを特徴とする表面欠陥
検査方法。
4. A scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a received light amount detecting step of receiving reflected light or transmitted light of the laser beam from the object to be inspected to obtain a received light electric signal. A high-frequency region blocking step of dividing the received light electric signal obtained in the received light amount detection step into one and passing one through a low-pass filter; and one of the two divided output signals of the received light electric signal obtained in the received light amount detection step. Based on the above, a low-frequency defect portion of the test object, a detection storage step for detecting the normal defect portion of the test object based on the other output signal, and storing the size and position of the detected defect portion. And an imaging step of imaging the defective portion detected and stored in the detection and storage step.
【請求項5】 偏光器によってレーザ光を被検物上で走
査する走査ステップと、 前記レーザ光の前記被検物からの反射光もしくは透過光
を受光し、受光電気信号を得る受光量検出ステップと、 該受光量検出ステップで得られる受高電気信号を二分
し、一方をローパスフィルタを通過させて高周波領域を
遮断し、他方を微分回路を通過させて低周波領域を遮断
する周波数領域遮断ステップと、 該周波数領域遮断ステップで得られる出力信号に基づい
て、低周波欠陥部と高周波欠陥部とをそれぞれ検出し、
検出された欠陥部の大きさと位置を記憶する検出記憶ス
テップと、 該検出記憶ステップで検出記憶された欠陥部の撮像を行
なう撮像ステップとを有することを特徴とする表面欠陥
検査方法。
5. A scanning step of scanning a laser beam on an object to be inspected by a polarizer, and a received light amount detecting step of receiving a reflected light or a transmitted light of the laser beam from the object to obtain a received light electric signal. And a frequency domain cutoff step of dividing the received electric signal obtained in the received light amount detection step into two, passing one through a low pass filter to cut off a high frequency area and passing the other through a differentiating circuit to cut off a low frequency area. And detecting a low frequency defect portion and a high frequency defect portion, respectively, based on the output signal obtained in the frequency domain cutoff step,
A surface defect inspection method comprising: a detection storage step of storing the size and position of the detected defect portion; and an imaging step of capturing an image of the defect portion detected and stored in the detection storage step.
【請求項6】 前記撮像ステップで得られた欠陥画像デ
ータから抽出された特徴量を入力層に、欠陥の種類を出
力層にしたニューラルネットワーク識別ステップを有す
ることを特徴とする請求項1ないし請求項5の何れかに
記載の表面欠陥検査方法。
6. The method according to claim 1, further comprising a neural network identification step in which the feature amount extracted from the defect image data obtained in the imaging step is an input layer and the type of defect is an output layer. Item 6. The surface defect inspection method according to any one of Items 5.
JP6186799A 1994-07-16 1994-07-16 Inspection of surface defect Pending JPH0829145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186799A JPH0829145A (en) 1994-07-16 1994-07-16 Inspection of surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186799A JPH0829145A (en) 1994-07-16 1994-07-16 Inspection of surface defect

Publications (1)

Publication Number Publication Date
JPH0829145A true JPH0829145A (en) 1996-02-02

Family

ID=16194794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186799A Pending JPH0829145A (en) 1994-07-16 1994-07-16 Inspection of surface defect

Country Status (1)

Country Link
JP (1) JPH0829145A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098653A (en) * 2000-09-26 2002-04-05 Ishida Co Ltd X-ray inspection device
WO2006137385A1 (en) * 2005-06-21 2006-12-28 Gunze Limited Film inspection apparatus and method
JP2007003208A (en) * 2005-06-21 2007-01-11 Gunze Ltd Film inspection device and film inspection method
JP2010210568A (en) * 2009-03-12 2010-09-24 Hitachi High-Technologies Corp Defect inspection device and method
CN103529052A (en) * 2012-07-04 2014-01-22 富士胶片株式会社 Surface inspection apparatus and method, and solution casting method and equipment
CN116503427A (en) * 2023-06-27 2023-07-28 深圳市合成快捷电子科技有限公司 Rapid segmentation method for defective area of flexible circuit board based on computer vision

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098653A (en) * 2000-09-26 2002-04-05 Ishida Co Ltd X-ray inspection device
WO2006137385A1 (en) * 2005-06-21 2006-12-28 Gunze Limited Film inspection apparatus and method
JP2007003208A (en) * 2005-06-21 2007-01-11 Gunze Ltd Film inspection device and film inspection method
JP2010210568A (en) * 2009-03-12 2010-09-24 Hitachi High-Technologies Corp Defect inspection device and method
CN103529052A (en) * 2012-07-04 2014-01-22 富士胶片株式会社 Surface inspection apparatus and method, and solution casting method and equipment
JP2014013186A (en) * 2012-07-04 2014-01-23 Fujifilm Corp Surface inspection device and method of flow casting support, and solution film forming method and equipment
CN103529052B (en) * 2012-07-04 2018-04-06 富士胶片株式会社 Surface examining device and method, solution film-forming method and equipment
CN116503427A (en) * 2023-06-27 2023-07-28 深圳市合成快捷电子科技有限公司 Rapid segmentation method for defective area of flexible circuit board based on computer vision
CN116503427B (en) * 2023-06-27 2023-09-22 深圳市合成快捷电子科技有限公司 Rapid segmentation method for defective area of flexible circuit board based on computer vision

Similar Documents

Publication Publication Date Title
JP5572602B2 (en) Wafer defect classification
EP0179309B1 (en) Automatic defect detection system
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2742240B2 (en) Defect detection method in inspection of structure surface
JPH0341785B2 (en)
JP2004177284A (en) Defect inspecting apparatus and defect inspection method
JPS6361612B2 (en)
US7106432B1 (en) Surface inspection system and method for using photo detector array to detect defects in inspection surface
JPH06294749A (en) Flaw inspection method for plat glass
JPH0829145A (en) Inspection of surface defect
JP4504612B2 (en) Foreign matter inspection method and foreign matter inspection device
JPH01257250A (en) Discriminating method for sort of defect in disk surface inspecting apparatus
JP3905741B2 (en) Optical member inspection method
JPS59138904A (en) Checking method of surface defect of running plate body
JP2006275867A (en) Terahertz light inspection apparatus
CN111638226B (en) Detection method, image processor and detection system
Batchelor et al. Defect detection on the internal surfaces of hydraulics cylinders for motor vehicles
JPH11352073A (en) Foreign matter inspection method and apparatus thereof
US5402228A (en) On-line dirt counter
KR102618194B1 (en) Semiconductor package board processing hole 3d automatic process inspection method and system
JPS63284455A (en) Surface defect inspection device
JPH05280959A (en) Defect inspecton device
JPH0921761A (en) Surface fault inspecting apparatus
JP3339128B2 (en) Defect inspection method and apparatus used for its implementation
CA2080587C (en) On-line dirt counter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A7423