JPH08291363A - Welded joint with high fatigue strength and its production - Google Patents

Welded joint with high fatigue strength and its production

Info

Publication number
JPH08291363A
JPH08291363A JP9212895A JP9212895A JPH08291363A JP H08291363 A JPH08291363 A JP H08291363A JP 9212895 A JP9212895 A JP 9212895A JP 9212895 A JP9212895 A JP 9212895A JP H08291363 A JPH08291363 A JP H08291363A
Authority
JP
Japan
Prior art keywords
welded joint
fatigue strength
heat treatment
steel
high fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9212895A
Other languages
Japanese (ja)
Other versions
JP3436823B2 (en
Inventor
Atsuhiko Yoshie
淳彦 吉江
Rikio Chijiiwa
力雄 千々岩
Makoto Tefun
誠 手墳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09212895A priority Critical patent/JP3436823B2/en
Publication of JPH08291363A publication Critical patent/JPH08291363A/en
Application granted granted Critical
Publication of JP3436823B2 publication Critical patent/JP3436823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve the fatigue strength of a welded joint by forming the structure of the heat affected zone of a welded joint of a steel, containing specific amounts of C, Si, Mn, Al, and Fe, so that it is composed of lath-like or granular ferrite and cementite and further contains martensite under specific conditions. CONSTITUTION: The heat affected zone of a welded joint of a steel, having a composition consisting of, by weight, 0.02-0.35% C, 0.02-2.5% Si, 0.3-3.5% Mn, 0.002-0.1% Al, and the balance essentially Fe, has a structure composed of lath-like or granular ferrite and cementite and further containing martensite of <=800nm maximum size by 0.2-5% area ratio. This structure can be obtained by subjecting the heat affected zone to heating up to a temp. of inequality I at <=0.5 deg.C/s temp. rise rate and then to a temp. not higher than the Ms point at a cooling rate of inequality II. In the inequalities, each symbol of element represents its content (wt.%), and HR, TH, and CR mean temp. rise rate ( deg.C/s), heating temp. ( deg.C), and cooling rate ( deg.C/s), respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は構造物に部材として使用
される鋼材の高疲労強度溶接継手及び溶接継手を高疲労
強度化する熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high fatigue strength welded joint of a steel material used as a member in a structure and a heat treatment method for increasing the fatigue strength of the welded joint.

【0002】[0002]

【従来の技術】船舶、海洋構造物、橋梁さらに陸上構造
物のように変動荷重を受ける構造物では溶接部や構造上
の応力集中部から疲労亀裂が発生・伝播し、構造物を破
壊させる原因となる。そのため例えば、特公昭54−3
0386号公報に見られるような設計上、施工上応力集
中を避ける種々の手法がとられてきた。しかし、このよ
うな方法では構造物の設計・施工に大きな制約をもたら
したり、構造物の重量を増加させる等の欠点があるた
め、設計・施工に頼ることなく、鋼材自身の疲労強度を
高める方法が望まれてきた。このような鋼材の疲労強度
を高める方法として、特公平3−61748号公報、特
開平3−291355号公報等がある。前者の技術は比
較的C含有の高い鋼への適用に限られているため、その
適用先は自動車部品等の強度部材に限られ、前記の構造
物への適用は困難であった。後者の技術では板厚方向に
不均質な材質を有するため、使用法に大きな制約がある
という欠点があった。
2. Description of the Related Art In structures such as ships, offshore structures, bridges, and land structures that are subject to fluctuating loads, fatigue cracks are generated and propagated from welded parts and structural stress concentration parts, causing the structure to break. Becomes Therefore, for example, Japanese Patent Publication Sho 54-3
Various techniques have been taken for avoiding stress concentration during construction in design as seen in Japanese Patent No. 0386. However, such a method has drawbacks such as great restrictions on the design and construction of the structure and an increase in the weight of the structure. Therefore, a method of increasing the fatigue strength of the steel itself without relying on the design and construction. Has been desired. As a method for increasing the fatigue strength of such a steel material, there are Japanese Patent Publication No. 3-61748 and Japanese Patent Laid-Open No. 3-291355. Since the former technique is limited to application to steel having a relatively high C content, its application is limited to strength members such as automobile parts, and it is difficult to apply it to the above-mentioned structures. The latter technique has a drawback in that the method of use is largely restricted because it has an inhomogeneous material in the plate thickness direction.

【0003】一方、マルテンサイトを含有する混合組織
鋼の例としては、特開昭57−108241号公報に見
られるように、フェライトとマルテンサイトの混合組織
鋼があるが、この鋼は基本的にいわゆる薄板であり、強
度−伸びバランスに優れることは示されているものの、
疲労強度を向上させる効果はない。同様な鋼の例として
は、特開昭57−1375422公報、特開昭58−6
937号公報等がある。又、マルテンサイトを含有する
複合組織厚鋼板の例としては、特開昭58−93814
号公報、特開昭62−174322号公報があるが、い
ずれも低降伏比を目的としたもので疲労強度を向上させ
る効果はない。
On the other hand, as an example of a mixed structure steel containing martensite, there is a mixed structure steel of ferrite and martensite as shown in JP-A-57-108241, but this steel is basically It is a so-called thin plate, and although it has been shown to have excellent strength-elongation balance,
There is no effect of improving fatigue strength. Examples of similar steels include JP-A-57-1375422 and JP-A-58-6.
No. 937, etc. Further, as an example of a steel plate having a complex structure containing martensite, Japanese Patent Laid-Open No. 58-93814 is known.
Japanese Patent Laid-Open No. 62-174322 and Japanese Laid-Open Patent Publication No. 62-174322 all aim at a low yield ratio and have no effect of improving fatigue strength.

【0004】実際の構造物の疲労破壊事故は大半が溶接
継手部より発生しており、鋼自身の疲労強度を高めるよ
りはむしろ溶接継手の疲労強度を高める必要がある。こ
のため、特開平5−345928号公報のように溶接熱
影響部の疲労強度を高めるような鋼材が報告されてい
る。しかし、この方法では熱処理時の昇温速度が低く、
粗大な組織が形成しやすくなるため、疲労強度があまり
向上しないという欠点がある。
Most of the fatigue fracture accidents of actual structures occur from the welded joint portion, and it is necessary to increase the fatigue strength of the welded joint rather than the fatigue strength of the steel itself. For this reason, a steel material has been reported that enhances the fatigue strength of the weld heat affected zone, as disclosed in JP-A-5-345928. However, in this method, the rate of temperature rise during heat treatment is low,
Since a coarse structure is likely to be formed, there is a drawback that the fatigue strength is not improved so much.

【0005】[0005]

【発明が解決しようとする課題】本発明は、溶接継手の
金属組織を制御することにより鋼材の溶接継手を高疲労
強度化する方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for increasing the fatigue strength of a welded joint made of steel by controlling the metallographic structure of the welded joint.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明は溶接継手の金属組織の状態を規定するこ
とにより、母材成分や溶接法の制約を受けない高疲労強
度溶接継手及び溶接継手を高疲労強度化する熱処理方法
を提供するものである。即ち要旨とするところは、 (1)重量%で C :0.02%〜0.35% Si:0.02%〜2.5% Mn:0.30%〜3.5% Al:0.002%〜0.10% 残部がFe及び不可避的不純物からなる鋼の溶接継手の
熱影響部で、ラス状もしくは粒状のフェライトとセメン
タイトからなり、さらに面積率で0.2%以上5%以下
かつ最大径が800nm以下であるマルテンサイトを含む
ことを特徴とする疲労強度の高い溶接継手。
In order to solve such a problem, the present invention defines a state of the metallographic structure of a welded joint so as to provide a high fatigue strength welded joint which is not restricted by a base material composition and a welding method. It is intended to provide a heat treatment method for increasing the fatigue strength of a welded joint. That is, the gist is as follows: (1)% by weight C: 0.02% to 0.35% Si: 0.02% to 2.5% Mn: 0.30% to 3.5% Al: 0. 002% to 0.10% The heat-affected zone of a welded joint of steel with the balance being Fe and unavoidable impurities, consisting of lath-like or granular ferrite and cementite, and having an area ratio of 0.2% or more and 5% or less. A welded joint with high fatigue strength, which contains martensite having a maximum diameter of 800 nm or less.

【0007】(2)重量%で C :0.02%〜0.35% Si:0.02%〜2.5% Mn:0.30%〜3.5% Al:0.002%〜0.10% 残部がFe及び不可避的不純物からなる鋼の溶接継手の
熱影響部を0.5℃/s以上の昇温度速度で(1)式の
温度範囲まで加熱した後、(2)式を満たす冷却速度で
Ms点以下まで冷却することを特徴とする溶接継手を高
疲労強度化する熱処理方法。 710−11Mn−17Ni+28Si+ 100V+31Mo+13W+20×HR ≦TH ≦ 730−11Mn−17Ni+28Si+ 100V+31Mo+13W+30×HR ……………(1) ただし、各元素名は含有量(wt%)、HRは昇温速度
(℃/s)、TH は加熱温度(℃)を示す。 1/[C+Mn/6+Si/24+(Cr+Mo+V)/5+(Ni+Cu)/15] ≦CR≦ 50/[C+Mn/6+Si/24+(Cr+Mo+V)/5+(Ni+Cu)/15] ……………(2) ただし、各元素名は含有量(wt%)、CRは冷却速度
(℃/s)を示す。
(2) In% by weight C: 0.02% to 0.35% Si: 0.02% to 2.5% Mn: 0.30% to 3.5% Al: 0.002% to 0 10% After heating the heat-affected zone of a welded joint of steel consisting of the balance Fe and unavoidable impurities at a temperature rising rate of 0.5 ° C./s or more to the temperature range of equation (1), A heat treatment method for increasing fatigue strength of a welded joint, which comprises cooling to a Ms point or lower at a cooling rate to be satisfied. 710-11Mn-17Ni + 28Si + 100V + 31Mo + 13W + 20 × HR ≦ T H ≦ 730-11Mn-17Ni + 28Si + 100V + 31Mo + 13W + 30 × HR ............... (1) where each element name the content (wt%), HR the heating rate (° C. / s ) And T H indicate heating temperature (° C.). 1 / [C + Mn / 6 + Si / 24 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15] ≦ CR ≦ 50 / [C + Mn / 6 + Si / 24 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15] ………… (2) , Each element name indicates the content (wt%), and CR indicates the cooling rate (° C / s).

【0008】(3)重量%で Nb:0.002%〜0.10% Ti:0.002%〜0.10% の1種又は2種を含有することを特徴とする(1)又は
(2)記載の高疲労強度溶接継手及び溶接継手の熱処理
方法。
(3) One or two of Nb: 0.002% to 0.10% and Ti: 0.002% to 0.10% in terms of weight% (1) or ( 2) The high fatigue strength welded joint and the heat treatment method for the welded joint as described above.

【0009】(4)重量%で Cu:0.05%〜3.0%、 Ni:0.05%〜
10.0%、Cr:0.05%〜10.0%、 Mo:
0.05%〜3.5%、Co:0.05%〜10.0
%、 W :0.05%〜2.0%の1種又は2種以上
を含有することを特徴とする(1)〜(3)のいずれか
1項記載の高疲労強度溶接継手及び溶接継手の熱処理方
法。
(4) Cu: 0.05% to 3.0% and Ni: 0.05% by weight
10.0%, Cr: 0.05% to 10.0%, Mo:
0.05% to 3.5%, Co: 0.05% to 10.0
%, W: 0.05% to 2.0% of one type or two or more types of high fatigue strength welded joints and welded joints according to any one of (1) to (3). Heat treatment method.

【0010】(5)重量%で、V:0.002%〜0.
10%を含有することを特徴とする(1)〜(4)のい
ずれか1項記載の高疲労強度溶接継手及び溶接継手の熱
処理方法。
(5) V: 0.002% to 0.
10% is contained, The high fatigue strength welded joint of any one of (1)-(4), and the heat treatment method of a welded joint.

【0011】(6)重量%で、B:0.0003%〜
0.0025%を含有することを特徴とする(1)〜
(5)のいずれか1項記載の高疲労強度溶接継手及び溶
接継手の熱処理方法。
(6) B: 0.0003% by weight
It is characterized by containing 0.0025% (1) ~
(5) A high fatigue strength welded joint according to any one of (5) and a heat treatment method for the welded joint.

【0012】(7)重量%で REM:0.002%〜0.10%、Ca:0.000
3%〜0.0030%の1種又は2種を含有することを
特徴とする(1)〜(6)のいずれか1項記載の高疲労
強度溶接継手及び溶接継手の熱処理方法にある。
(7) REM: 0.002% to 0.10%, Ca: 0.000% by weight
3% -0.0030% of 1 type or 2 types are contained, It exists in the high fatigue strength welded joint of any one of (1)-(6), and the heat treatment method of a welded joint.

【0013】疲労強度を表す指標として疲労限があり、
一般に疲労限は引張試験で得られる引張強度あるいは降
伏強度が高いほど一様に高くなる傾向がある。通常の鋼
の疲労限は、例えば下式のような降伏強度の関数として
報告されている(高橋他:日本機械学会論文集,第38
巻,310号,昭和47年,p.1154)。 σ0 =0.382σy +23.9 ただし、σ0 :疲労限(kgf/mm2 )、σy :降伏強度
(kgf/mm2 )。よって通常はσy が決まれば、この式か
ら予測される値以上の疲労限しか得られない。ただし本
式の適用範囲はσy ≧45kgf/mm2 である。
There is a fatigue limit as an index showing fatigue strength,
In general, the fatigue limit tends to increase uniformly as the tensile strength or yield strength obtained in a tensile test increases. The fatigue limit of ordinary steel has been reported as a function of the yield strength, such as the following formula (Takahashi et al., Proc. Of the Japan Society of Mechanical Engineers, No. 38).
Vol. 310, 1972, p. 1154). σ 0 = 0.382 σ y +23.9 where σ 0 : fatigue limit (kgf / mm 2 ), σ y : yield strength (kgf / mm 2 ). Therefore, normally, if σ y is determined, only the fatigue limit greater than the value predicted from this equation can be obtained. However, the applicable range of this formula is σ y ≧ 45 kgf / mm 2 .

【0014】又、ラス状フェライトとは焼入れ組織を透
過電子顕微鏡で観察する際に認められるラス状フェライ
ト組織のことであり、焼戻し等の熱処理を受けているた
め固溶Cが炭化物として析出してセメンタイトとフェラ
イトが分離しているものである。又フェライトラス間に
層状に存在するセメンタイトとは図1に示すごとく、フ
ェライトのラス間に沿って析出したセメンタイトを意味
する。金属組織の分率は、厚鋼板より採取した試料を透
過電子顕微鏡で撮影した写真を元に面積率を測定した。
又マルテンサイトの径は、個々のマルテンサイトの最大
径をもって定義した。
Lath-like ferrite is a lath-like ferrite structure observed when observing the quenched structure with a transmission electron microscope. Since it is subjected to heat treatment such as tempering, solid solution C precipitates as carbides. Cementite and ferrite are separated. As shown in FIG. 1, cementite which exists between ferrite laths in a layered form means cementite precipitated along the ferrite laths. For the fraction of the metal structure, the area ratio was measured based on a photograph taken by a transmission electron microscope of a sample taken from a thick steel plate.
The diameter of martensite was defined as the maximum diameter of each martensite.

【0015】[0015]

【作用】以下本発明について詳細に説明する。本発明の
根幹をなす技術思想は以下のとおりである。引張強度6
0kg/mm2 以上の厚鋼板は、通常焼入れ焼戻し又は圧延
後の直接焼入れと焼戻しにより製造される場合が多く、
その金属組織はマルテンサイトあるいはベイナイトある
いはそれらの混合組織となる場合が多い。又、引張強度
50kg/mm2 以上60kg/mm2 未満の鋼は、通常圧延ま
まあるいは焼きならしあるいは圧延後の加速冷却により
製造される場合が多く、その金属組織はフェライト−パ
ーライトあるいはフェライト−ベイナイトの混合組織と
なる場合が多い。これらの鋼は高強度である故に比較的
高い疲労強度を有してはいるが、上記の式から予想され
るように、同一降伏強度であれば成分系によらずほぼ同
様の疲労強度となるため、金属組織を制御しても同一の
降伏強度でより高疲労強度を得ることはできなかった。
The present invention will be described in detail below. The technical idea that forms the basis of the present invention is as follows. Tensile strength 6
Steel plates of 0 kg / mm 2 or more are usually manufactured by quenching and tempering or by direct quenching after rolling and tempering.
The metal structure is often martensite, bainite, or a mixed structure thereof. In addition, steel having a tensile strength of 50 kg / mm 2 or more and less than 60 kg / mm 2 is usually produced as-rolled or by normalizing or by accelerated cooling after rolling, and its metallographic structure is ferrite-pearlite or ferrite-bainite. Often has a mixed structure. These steels have relatively high fatigue strength because of their high strength, but as expected from the above equation, if the yield strength is the same, the fatigue strength is almost the same regardless of the constituent system. Therefore, even if the metal structure was controlled, it was not possible to obtain higher fatigue strength with the same yield strength.

【0016】しかるに、本発明者らは少量の微細なマル
テンサイトが分散した組織を有する鋼が著しく疲労強度
が高いことを見出した。この鋼の金属組織は基本的にフ
ェライト及びセメンタイトからなる鋼であり、特に通常
の焼入れ−焼戻し後の組織のように幅が0.5ミクロン
程度の微細なラス状のフェライトとその内部又はラス境
界にセメンタイトが分散している場合に、その効果がよ
り顕著である。通常は焼入れ−焼戻し後の金属組織では
変態したままのマルテンサイトはフェライトとセメンタ
イト等の炭化物に分解してしまい認められないが、所定
の温度以上に加熱後急冷することにより、ラス状フェラ
イト+セメンタイトからなる組織中に変態ままマルテン
サイトを面積率で0.5%以上含ませれば、疲労強度の
上昇は顕著である。これは微細に分散した変態ままのマ
ルテンサイトの周囲に多くの転位が存在し、疲労亀裂が
進行する際の亀裂先端の応力集中を緩和するためである
と考えられる。
However, the present inventors have found that a steel having a structure in which a small amount of fine martensite is dispersed has remarkably high fatigue strength. The metallographic structure of this steel is basically a steel consisting of ferrite and cementite, and in particular, it is a fine lath-like ferrite with a width of about 0.5 micron and its internal or lath boundary like the structure after ordinary quenching-tempering. The effect is more remarkable when cementite is dispersed in. Normally, in the metal structure after quenching-tempering, martensite as transformed remains decomposed into carbides such as ferrite and cementite, but it is not recognized, but by heating above a prescribed temperature and then rapidly cooling, lath ferrite + cementite When the martensite in an area ratio of 0.5% or more is contained in the structure consisting of, the fatigue strength is remarkably increased. It is considered that this is because many dislocations exist around the finely dispersed martensite as it is, and the stress concentration at the crack tip is relaxed when the fatigue crack progresses.

【0017】本発明者らは厚鋼板の高疲労強度化に関す
る上記のような新しい発見に基づき、鋼の化学成分、溶
接継手の金属組織及びそれを得るための溶接後の熱処理
条件を詳細に調査した結果、特許請求の範囲第1項から
第7項に示したような高疲労強度溶接継手及びその製造
方法を見出した。以下に化学成分及び金属組織の限定理
由を詳細に説明する。まず本発明鋼の成分の限定理由に
ついて述べる。
The inventors of the present invention have made a detailed investigation of the chemical composition of steel, the metallurgical structure of the welded joint, and the heat treatment conditions after welding to obtain the same, based on the above-mentioned new discoveries concerning the high fatigue strength of thick steel plates. As a result, the inventors have found a high fatigue strength welded joint and a method for manufacturing the same as set forth in claims 1 to 7. The reasons for limiting the chemical composition and the metal structure will be described in detail below. First, the reasons for limiting the components of the steel of the present invention will be described.

【0018】Cは、溶接継手を強化するのに有効な元素
であり、0.02%未満では十分な強度が得られない。
一方、その含有量が0.35%を超えると、溶接性を劣
化させる。
C is an element effective for strengthening the welded joint, and if it is less than 0.02%, sufficient strength cannot be obtained.
On the other hand, if its content exceeds 0.35%, the weldability is deteriorated.

【0019】Siは脱酸元素として、又溶接継手の強化
元素として有効であるが、0.02%未満の含有量では
その効果はない。一方、2.5%を超えると、溶接継手
の表面性状を損なう。
Si is effective as a deoxidizing element and as a strengthening element for welded joints, but if the content is less than 0.02%, it is not effective. On the other hand, if it exceeds 2.5%, the surface quality of the welded joint is impaired.

【0020】Mnは溶接継手の強化に有効な元素であ
り、0.30%未満では十分な効果が得られない。一
方、その含有量が3.5%を超えると溶接継手の加工性
を劣化させる。
Mn is an element effective in strengthening the welded joint, and if it is less than 0.30%, a sufficient effect cannot be obtained. On the other hand, if its content exceeds 3.5%, the workability of the welded joint is deteriorated.

【0021】Alは脱酸元素として添加される。0.0
02%未満の含有量ではその効果がなく、0.1%を超
えると、溶接継手の表面性状を損なう。
Al is added as a deoxidizing element. 0.0
If the content is less than 02%, there is no effect, and if it exceeds 0.1%, the surface quality of the welded joint is impaired.

【0022】Ti及びNbはいずれも微量の添加で結晶
粒の微細化と析出硬化の面で有効に機能するが、添加量
が少ないとその効果が得られず、又過度の量の添加は溶
接部の靭性を劣化させるため、Nb,Tiともその添加
量をTi:0.002%〜0.10%、Nb:0.00
2%〜0.10%の範囲に限定する。
Both Ti and Nb function effectively in terms of grain refinement and precipitation hardening by adding a small amount, but if the addition amount is too small, the effect cannot be obtained. In order to deteriorate the toughness of the part, the addition amount of both Nb and Ti is Ti: 0.002% to 0.10%, Nb: 0.00
It is limited to the range of 2% to 0.10%.

【0023】Cu,Ni,Cr,Mo,Co,Wはいず
れも溶接継手の焼入れ性を向上させる元素である。本発
明における場合、その添加により鋼の強度を高めること
ができるが、添加量が少ないとその焼入れ性向上効果が
得られず、又過度の量の添加は溶接性を損なうため、添
加量をCu:0.05%〜3.0%、Ni:0.05%
〜10.0%、Cr:0.05%〜10.0%、Mo:
0.05%〜3.5%、Co:0.05%〜10.0
%、W:0.05%〜2.0%の範囲に限定する。
Cu, Ni, Cr, Mo, Co and W are all elements for improving the hardenability of the welded joint. In the case of the present invention, the strength of the steel can be increased by the addition thereof, but if the addition amount is small, the effect of improving the hardenability cannot be obtained, and addition of an excessive amount impairs weldability. : 0.05% to 3.0%, Ni: 0.05%
~ 10.0%, Cr: 0.05% ~ 10.0%, Mo:
0.05% to 3.5%, Co: 0.05% to 10.0
%, W: limited to the range of 0.05% to 2.0%.

【0024】Vは、析出硬化により溶接継手の強度を高
めるのに有効であるが、添加量が少ないとその効果が得
られず、又過度の量の添加は溶接継手の靭性を損なうた
め、その添加量を0.002%〜0.10%の範囲に限
定する。
V is effective in increasing the strength of the welded joint by precipitation hardening, but if the addition amount is small, the effect cannot be obtained, and if the addition amount is excessive, the toughness of the welded joint is impaired. The addition amount is limited to the range of 0.002% to 0.10%.

【0025】Bは鋼の焼入れ性を向上させる元素であ
る。本発明における場合、その添加により溶接継手の強
度を高めることができるが、添加量が少ないと焼入れ性
が向上せず、又過度の添加はBの析出物を増加させて溶
接継手の靭性を損なうためその含有量を0.0003%
〜0.0025%の範囲とする。
B is an element that improves the hardenability of steel. In the case of the present invention, the addition thereof can increase the strength of the welded joint, but if the addition amount is small, the hardenability does not improve, and excessive addition increases the precipitates of B and impairs the toughness of the welded joint. Therefore, its content is 0.0003%
To 0.0025%.

【0026】REMとCaはSと無害化に有効であが、
添加量が少ないとSは有害のまま残り、又過度の添加は
靭性を損なうため、REM:0.002%〜0.10
%、Ca:0.0003%〜0.0030%の範囲で添
加する。
Although REM and Ca are effective in detoxifying S,
If the addition amount is small, S remains harmful, and excessive addition impairs toughness. Therefore, REM: 0.002% to 0.10.
%, Ca: added in the range of 0.0003% to 0.0030%.

【0027】次に、本発明における金属組織の限定条件
について述べる。前述のように本発明は基本的にフェラ
イトとセメンタイトの混合組織よりなるもので、その中
に面積率で0.2%以上5%以下のマルテンサイトを含
むものである。焼入れままマルテンサイトのように、セ
メンタイト等の炭化物が析出していない組織が主体の場
合は硬度が過大で疲労特性は不良である。フェライトの
形態は粒状、ラス状いずれの場合でも効果が認められる
が、特にマルテンサイトを焼戻した場合に見られるがご
とく、フェライトの形態が幅0.5ミクロン程度以下の
ラス状の場合に効果が顕著である。又、セメンタイトの
形状もフェライトラス間に層状に配列し、さらに面積率
で1%以上の量を含む場合に疲労強度が顕著に上昇す
る。しかし40%を超えると靭性が劣化する場合もあ
る。このようなフェライトラス間にセメンタイトが層状
に配列する場合の効果は主たる組織がパーライト組織の
場合にも認められる。
Next, the limiting conditions of the metal structure in the present invention will be described. As described above, the present invention basically comprises a mixed structure of ferrite and cementite, and contains martensite in an area ratio of 0.2% or more and 5% or less. If the structure is mainly a structure in which carbides such as cementite are not precipitated, such as martensite as quenched, the hardness is excessive and the fatigue properties are poor. The effect of ferrite is recognized in both granular and lath shapes, but it is particularly effective when the ferrite shape is lath with a width of about 0.5 micron or less, as is seen when tempering martensite. It is remarkable. Further, when the shape of cementite is also arranged in layers between the ferrite laths and the area ratio is 1% or more, the fatigue strength is remarkably increased. However, if it exceeds 40%, the toughness may deteriorate. The effect obtained when the cementite is arranged in layers between the ferrite laths is recognized even when the main structure is a pearlite structure.

【0028】このように疲労強度が上昇する理由は、微
細に分散した変態ままのマルテンサイトの周囲に多くの
転位が存在し、疲労亀裂が進行する際の亀裂先端の応力
集中を緩和するためである。疲労亀裂の進展は焼入れま
まの硬いマルテンサイトがある程度の量含まれていれば
抑制されるが、微細なラスの各境界にそれが存在する場
合に著しく疲労強度が上昇する。又微細なラスの各境界
にセメンタイトが層状に配列しかつマルテンサイトが分
散している場合には、相乗効果により疲労亀裂の進展が
抑制されるためさらに疲労亀裂進展抵抗が増す。マルテ
ンサイト量が面積率で0.2%以下では効果が小さく、
又5%以上では靭性を阻害するようになるため、その範
囲を0.2%以上5%以下に定める。さらにマルテンサ
イトが微細なほど上記の効果は顕著であるため、マルテ
ンサイトの最大径を800nm以下と定める。
The reason why the fatigue strength is increased in this way is that there are many dislocations around the finely dispersed martensite that has been transformed, and the stress concentration at the crack tip when the fatigue crack progresses is relaxed. is there. The development of fatigue cracks is suppressed if a certain amount of as-quenched hard martensite is contained, but the fatigue strength increases remarkably when it exists at each boundary of fine laths. Further, when cementite is arranged in layers at each boundary of fine laths and martensite is dispersed, fatigue crack growth resistance is further increased because fatigue crack growth is suppressed by a synergistic effect. If the area ratio of martensite is 0.2% or less, the effect is small,
If it is 5% or more, the toughness is impaired, so the range is set to 0.2% or more and 5% or less. Further, the finer the martensite, the more remarkable the above effect, so the maximum diameter of martensite is set to 800 nm or less.

【0029】鋼の成分、板厚、溶接方法にかかわらず上
記のような金属組織を得るためには、溶接後に溶接継手
を所定の温度域まで急速加熱した後に、再び急速冷却す
ることにより得られる。加熱時の昇温速度HRが不足す
るとマルテンサイトが粗大に成長し、その最大径も80
0nmを超えてしまう。よって、昇温速度の下限を0.5
℃/sと限定する。又加熱温度域が低すぎると十分にオ
ーステナイトへ逆変態しないためマルテンサイトの量が
不足する。又高すぎるとマルテンサイト量が過大とな
り、さらに個々のマルテンサイトの最大径も増加してし
まう。マルテンサイトの量や大きさは昇温速度と加熱温
度域の相互の影響を受けるため、昇温速度と加熱温度域
を(1)式の範囲内に限定する。又加熱後の冷却速度が
(2)式の下限未満ではオーステナイトが十分にマルテ
ンサイトへ変態しないためマルテンサイトの量が不足す
る。又(2)式の上限を超えるとマルテンサイト量が過
大となるため冷却速度を(2)式の範囲内とする。
In order to obtain the above metallographic structure regardless of the composition of steel, plate thickness and welding method, the welded joint is rapidly heated to a predetermined temperature range after welding and then rapidly cooled again. . If the heating rate HR during heating is insufficient, martensite grows coarsely and its maximum diameter is 80
It exceeds 0 nm. Therefore, the lower limit of the heating rate is 0.5
Limited to ° C / s. On the other hand, if the heating temperature range is too low, the amount of martensite will be insufficient because the alloy will not sufficiently undergo reverse transformation to austenite. On the other hand, if it is too high, the amount of martensite becomes excessive, and the maximum diameter of each martensite also increases. Since the amount and size of martensite are influenced by the heating rate and the heating temperature range, the heating rate and the heating temperature range are limited within the range of the formula (1). If the cooling rate after heating is less than the lower limit of the expression (2), the amount of martensite is insufficient because austenite does not sufficiently transform into martensite. If the upper limit of the expression (2) is exceeded, the amount of martensite becomes excessive, so the cooling rate is set within the range of the expression (2).

【0030】[0030]

【実施例】次に、本発明を実施例に基づいて詳細に説明
する。まず、表1に示す成分の鋼について表2に示す溶
接条件でT字隅肉溶接を施し、この溶接継手を表3中に
示す条件で熱処理を施した。この溶接継手より図2に示
す疲労試験片を作成した。これを応力比=0で異なる大
きさの繰り返し引張荷重を与えてS−N線図を求めた。
表3中には、熱処理後の金属組織及び、疲労試験により
求まった疲労限を記載した。金属組織の分率は溶接継手
より採取した試料を透過電子顕微鏡で撮影した写真を元
に面積率を測定した。
EXAMPLES Next, the present invention will be described in detail based on examples. First, the steel having the components shown in Table 1 was subjected to T-shaped fillet welding under the welding conditions shown in Table 2, and this welded joint was subjected to heat treatment under the conditions shown in Table 3. A fatigue test piece shown in FIG. 2 was prepared from this welded joint. This was subjected to repeated tensile loads of different magnitudes at a stress ratio of 0 to obtain an SN diagram.
In Table 3, the metal structure after heat treatment and the fatigue limit obtained by the fatigue test are described. The fraction of the metallographic structure was measured based on a photograph taken with a transmission electron microscope of a sample taken from the welded joint.

【0031】表3に示したように、同一の鋼を同一の溶
接条件で溶接した後に、本発明の熱処理をした場合は、
しない場合に比して、微細なマルテンサイトが分散して
おり、疲労限も顕著に上昇している。又、図3のS−N
線図で比較しても、本発明の熱処理の有無によりS−N
線図は明瞭に分離でき、本発明の溶接継手の疲労強度は
大幅に上昇していることがわかる。
As shown in Table 3, when the same steel was welded under the same welding conditions and then subjected to the heat treatment of the present invention,
Fine martensite is dispersed and the fatigue limit is remarkably increased as compared with the case where it is not. Also, SN of FIG.
Even if they are compared in the diagrams, S-N depends on the presence or absence of the heat treatment of the present invention
The diagrams can be clearly separated, and it can be seen that the fatigue strength of the welded joint of the present invention is significantly increased.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】以上の如く本発明によれば、金属組織を
制御することにより高疲労強度化した溶接継手が得ら
れ、構造物用部材として使用されるに最適な鋼材を提供
することができる。
As described above, according to the present invention, a welded joint having a high fatigue strength can be obtained by controlling the metal structure, and a steel material optimal for use as a structural member can be provided. .

【図面の簡単な説明】[Brief description of drawings]

【図1】焼入れ組織の透過電子顕微鏡写真の模式図であ
る。
FIG. 1 is a schematic diagram of a transmission electron micrograph of a quenched structure.

【図2】溶接継手疲労試験片。FIG. 2 is a welded joint fatigue test piece.

【図3】S−N線図の例。FIG. 3 is an example of an SN diagram.

【符号の説明】[Explanation of symbols]

1 マルテンサイト・ラス 2 ラス間層状セメンタイト・ラス 3 残留オーステナイト 4 粒内セメンタイト 1 Martensite lath 2 Interlath layered cementite lath 3 Retained austenite 4 Intragrain cementite

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 C22C 38/14 38/54 38/54 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/14 C22C 38/14 38/54 38/54

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.02%〜0.35% Si:0.02%〜2.5% Mn:0.30%〜3.5% Al:0.002%〜0.10% 残部がFe及び不可避的不純物からなる鋼の溶接継手の
熱影響部で、ラス状もしくは粒状のフェライトとセメン
タイトからなり、さらに面積率で0.2%以上5%以下
かつ最大径が800nm以下であるマルテンサイトを含む
ことを特徴とする疲労強度の高い溶接継手。
1. C: 0.02% to 0.35% Si: 0.02% to 2.5% Mn: 0.30% to 3.5% Al: 0.002% to 0. 10% The heat-affected zone of a welded joint of steel with the balance Fe and unavoidable impurities, consisting of lath-shaped or granular ferrite and cementite, and having an area ratio of 0.2% to 5% and a maximum diameter of 800 nm or less. A welded joint with high fatigue strength, which is characterized by containing martensite.
【請求項2】 重量%で C :0.02%〜0.35% Si:0.02%〜2.5% Mn:0.30%〜3.5% Al:0.002%〜0.10% 残部がFe及び不可避的不純物からなる鋼の溶接継手の
熱影響部を0.5℃/s以上の昇温度速度で(1)式の
温度範囲まで加熱した後、(2)式を満たす冷却速度で
Ms点以下まで冷却することを特徴とする溶接継手を高
疲労強度化する熱処理方法。 710−11Mn−17Ni+28Si+ 100V+31Mo+13W+20×HR ≦TH ≦ 730−11Mn−17Ni+28Si+ 100V+31Mo+13W+30×HR ……………(1) ただし、各元素名は含有量(wt%)、HRは昇温速度
(℃/s)、TH は加熱温度(℃)を示す。 1/[C+Mn/6+Si/24+(Cr+Mo+V)/5+(Ni+Cu)/15] ≦CR≦ 50/[C+Mn/6+Si/24+(Cr+Mo+V)/5+(Ni+Cu)/15] ……………(2) ただし、各元素名は含有量(wt%)、CRは冷却速度
(℃/s)を示す。
2. C: 0.02% to 0.35% Si: 0.02% to 2.5% Mn: 0.30% to 3.5% Al: 0.002% to 0. 10% After the heat-affected zone of the welded joint of steel consisting of Fe and unavoidable impurities is heated to the temperature range of equation (1) at a temperature rising rate of 0.5 ° C / s or more, equation (2) is satisfied. A heat treatment method for increasing fatigue strength of a welded joint, which comprises cooling to a Ms point or lower at a cooling rate. 710-11Mn-17Ni + 28Si + 100V + 31Mo + 13W + 20 × HR ≦ T H ≦ 730-11Mn-17Ni + 28Si + 100V + 31Mo + 13W + 30 × HR ............... (1) where each element name the content (wt%), HR the heating rate (° C. / s ) And T H indicate heating temperature (° C.). 1 / [C + Mn / 6 + Si / 24 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15] ≦ CR ≦ 50 / [C + Mn / 6 + Si / 24 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15] ………… (2) , Each element name indicates the content (wt%), and CR indicates the cooling rate (° C / s).
【請求項3】 重量%で Nb:0.002%〜0.10% Ti:0.002%〜0.10% の1種又は2種を含有することを特徴とする請求項1又
は2記載の高疲労強度溶接継手及び溶接継手の熱処理方
法。
3. The composition according to claim 1 or 2, characterized by containing one or two of Nb: 0.002% to 0.10% and Ti: 0.002% to 0.10% by weight. High fatigue strength welded joint and heat treatment method for welded joint.
【請求項4】 重量%で Cu:0.05%〜3.0%、 Ni:0.05%〜10.0%、 Cr:0.05%〜10.0%、 Mo:0.05%〜3.5%、 Cr:0.05%〜10.0%、 Mo:0.05%〜3.5%、 Co:0.05%〜10.0%、 W :0.05%〜0.5% の1種又は2種以上を含有することを特徴とする請求項
1〜3のいずれか1項記載の高疲労強度溶接継手及び溶
接継手の熱処理方法。
4. By weight%, Cu: 0.05% to 3.0%, Ni: 0.05% to 10.0%, Cr: 0.05% to 10.0%, Mo: 0.05%. ~ 3.5%, Cr: 0.05% to 10.0%, Mo: 0.05% to 3.5%, Co: 0.05% to 10.0%, W: 0.05% to 0 0.5% of 1 type (s) or 2 or more types are contained, The high fatigue strength welded joint of any one of Claims 1-3, and the heat treatment method of a welded joint.
【請求項5】 重量%で、V:0.002%〜0.10
%を含有することを特徴とする請求項1〜4のいずれか
1項記載の高疲労強度溶接継手及び溶接継手の熱処理方
法。
5. V: 0.002% to 0.10.
% Is contained, The high fatigue strength welded joint according to any one of claims 1 to 4, and the heat treatment method for the welded joint.
【請求項6】 重量%で、B:0.0003%〜0.0
025%を含有することを特徴とする請求項1〜5のい
ずれか1項記載の高疲労強度溶接継手及び溶接継手の熱
処理方法。
6. B: 0.0003% to 0.0 by weight.
025% is contained, The high fatigue strength welded joint of any one of Claims 1-5, and the heat treatment method of a welded joint.
【請求項7】 重量%で REM:0.002%〜0.10%、Ca:0.000
3%〜0.0030%の1種又は2種を含有することを
特徴とする請求項1〜6のいずれか1項記載の高疲労強
度溶接継手及び溶接継手の熱処理方法。
7. REM: 0.002% to 0.10%, Ca: 0.000 in% by weight.
3% -0.0030% of 1 type or 2 types are contained, The high fatigue strength welded joint of any one of Claims 1-6, and the heat treatment method of a welded joint.
JP09212895A 1995-04-18 1995-04-18 High fatigue strength welded joint and its heat treatment method Expired - Fee Related JP3436823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09212895A JP3436823B2 (en) 1995-04-18 1995-04-18 High fatigue strength welded joint and its heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09212895A JP3436823B2 (en) 1995-04-18 1995-04-18 High fatigue strength welded joint and its heat treatment method

Publications (2)

Publication Number Publication Date
JPH08291363A true JPH08291363A (en) 1996-11-05
JP3436823B2 JP3436823B2 (en) 2003-08-18

Family

ID=14045806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09212895A Expired - Fee Related JP3436823B2 (en) 1995-04-18 1995-04-18 High fatigue strength welded joint and its heat treatment method

Country Status (1)

Country Link
JP (1) JP3436823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194306A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194306A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same
EP3159565A4 (en) * 2014-06-18 2018-03-14 NTN Corporation Constant velocity universal joint outer joint member and manufacturing method for same
US10352369B2 (en) 2014-06-18 2019-07-16 Ntn Corporation Constant velocity universal joint outer joint member and manufacturing method for same

Also Published As

Publication number Publication date
JP3436823B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
EP0649915B1 (en) High-strength martensitic stainless steel and method for making the same
CA2280923C (en) High-tensile-strength steel and method of manufacturing the same
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
US9790579B2 (en) High tensile strength steel plate having excellent weld heat-affected zone low-temperature toughness and method for producing same
EP2267177B1 (en) High-strength steel plate and producing method therefor
JP5281413B2 (en) High strength bolt excellent in delayed fracture resistance and method for manufacturing the same
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP5151693B2 (en) Manufacturing method of high-strength steel
JPH11229075A (en) High strength steel excellent in delayed breakdown resistance, and its production
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2688312B2 (en) High strength and high toughness steel plate
KR100415673B1 (en) High strength ferritic duplex steel having a superior delayed fracture resistance and enlongation percentage and bolt made the steel and method for manufacturing working product by using the steel
JP3436823B2 (en) High fatigue strength welded joint and its heat treatment method
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JPH07109544A (en) Low yield ratio thick steel plate good in toughness
JPH048486B2 (en)
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees