JPH08288280A - Transistor structure - Google Patents

Transistor structure

Info

Publication number
JPH08288280A
JPH08288280A JP7095128A JP9512895A JPH08288280A JP H08288280 A JPH08288280 A JP H08288280A JP 7095128 A JP7095128 A JP 7095128A JP 9512895 A JP9512895 A JP 9512895A JP H08288280 A JPH08288280 A JP H08288280A
Authority
JP
Japan
Prior art keywords
active region
field oxide
locos
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7095128A
Other languages
Japanese (ja)
Inventor
Shunichiro Ishigami
俊一郎 石神
Shigeki Komori
重樹 小森
Hisashi Furuya
久 降屋
Masahide Inuishi
昌秀 犬石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Electric Corp
Priority to JP7095128A priority Critical patent/JPH08288280A/en
Priority to KR1019960011937A priority patent/KR100206449B1/en
Publication of JPH08288280A publication Critical patent/JPH08288280A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To decrease a p-n-junction leakage current without enlarging elastic and plastic strains caused by compressive stress at the end brim of a field oxide film, even if integration and packaging density are made higher for obtaining hyper fine structure such as VSLI, ULSI, etc., and along with it, in the case of DRAMs, to decrease a refreshing frequency and to make refresh time longer. CONSTITUTION: Concerning to the structure of a transistor formed into the shape of a quadrangle on the surface of a silicon substrate by surrounding an active region 18 all around with a field oxide film 17, an active region 18 in the shape of a quadrangle is formed arranging its end brim (LOCOS end) 18a along crystal orientation in the direction <100> by tilting it by 45 deg. from silicon crystal orientation in the direction <110> of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、選択酸化素子分離(L
OCOS:LOCal Oxidation of Silicon)法によりシリ
コン基板表面に活性領域がフィールド酸化膜で四方を囲
まれ四角形のパターンに形成されたトランジスタ構造に
関する。更に詳しくは超大規模集積回路(VLSI)や
超々大規模集積回路(ULSI)に適するトランジスタ
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to selective oxidation element isolation (L
The present invention relates to a transistor structure in which an active region is surrounded by a field oxide film on all sides by a OCOS (LOCal Oxidation of Silicon) method and is formed in a rectangular pattern. More specifically, the present invention relates to a transistor structure suitable for a very large scale integrated circuit (VLSI) and a very large scale integrated circuit (ULSI).

【0002】[0002]

【従来の技術】LOCOS法は活性領域を簡単に分離し
て高密度化できるためバイポーラICやMOS・ICの
素子分離に通常採用されている。従来、図2及び図4に
示すように、LOCOS法で形成される活性領域18の
端縁18a(以下、LOCOS端18aという)は、四
角形のパターンの一辺であって、[110]のシリコン
結晶方位を向いており、四角形の各辺は<110>の方
向に揃っている。
2. Description of the Related Art The LOCOS method is usually adopted for element isolation of bipolar ICs and MOS ICs because the active regions can be easily isolated to increase the density. Conventionally, as shown in FIGS. 2 and 4, an edge 18a of an active region 18 formed by a LOCOS method (hereinafter referred to as a LOCOS edge 18a) is one side of a rectangular pattern, and has a [110] silicon crystal. The direction is azimuth, and the sides of the quadrangle are aligned in the <110> direction.

【0003】一方、このLOCOS構造では、図5
(d)に示すSiO2膜11が図5(e)に示す厚いフ
ィールド酸化膜17になるときに、このフィールド酸化
膜17の端縁が窒化膜12の端縁の下に潜り込んで体積
膨張し、これに起因して応力が生じることが知られてい
る。これまでこの応力の解析が顕微ラマン分光技術を用
いて行われている(例えば、K.Kobayashi,et al."Local
-Oxidation-Induced Stress Measured by Raman Microp
robe Spectroscopy" J.Electrochem.Soc.,Vol.137,No.
6, pp.1987-1989, June 1990)。この報告によれば、図
8に示すようにLOCOS端18a同士の間隔でもあ
る、活性領域18の幅Wが1.2μmのとき0.85/
cm、幅Wが2.2μmのとき0.65/cm、幅Wが
9.2μmのとき0.30/cmのラマンシフトをそれ
ぞれ生じている。このラマンシフトはシフト量が正の場
合には圧縮応力を表し、負の場合には引張応力を表すこ
とから同じ形状のLOCOSを形成した場合、活性領域
の幅Wが狭くなる程、換言すれば素子分離の幅を狭くし
て高集積化、高密度化する程、引張応力がそれ程変化し
ていないのとは対照的にその圧縮応力が高くなる傾向が
ある。この圧縮応力に起因してLOCOS端の直下のシ
リコンの結晶格子が弾性変形し、応力が降伏点を越える
と塑性変形、即ち結晶欠陥を生じる。またこの結晶欠陥
が増大すると、その理論的な解明は未だ十分になされて
いないが、pn接合のトランジスタでは逆バイアス電圧
を印加したときに流れるpn接合リーク電流が多くなる
ことが明らかになっている。
On the other hand, in this LOCOS structure, as shown in FIG.
When the SiO 2 film 11 shown in FIG. 5D becomes the thick field oxide film 17 shown in FIG. 5E, the edge of the field oxide film 17 goes under the edge of the nitride film 12 and expands in volume. It is known that stress is caused by this. Until now, the analysis of this stress has been performed using the Raman spectroscopy technique (for example, K. Kobayashi, et al. "Local
-Oxidation-Induced Stress Measured by Raman Microp
robe Spectroscopy "J. Electrochem. Soc., Vol.137, No.
6, pp. 1987-1989, June 1990). According to this report, as shown in FIG. 8, when the width W of the active region 18, which is also the distance between the LOCOS ends 18a, is 0.85 /
Raman shifts of 0.65 / cm when the width W is 2.2 μm and 0.30 / cm when the width W is 9.2 μm. This Raman shift represents a compressive stress when the shift amount is positive and a tensile stress when the shift amount is negative. Therefore, when the LOCOS having the same shape is formed, the width W of the active region becomes narrower, in other words, As the width of element isolation is narrowed to achieve higher integration and higher density, the compressive stress tends to increase as opposed to the tensile stress not changing so much. Due to this compressive stress, the crystal lattice of silicon immediately below the LOCOS edge elastically deforms, and when the stress exceeds the yield point, plastic deformation, that is, crystal defects occur. Further, if this crystal defect increases, it has been clarified that the pn junction leakage current flowing when a reverse bias voltage is applied increases in a pn junction transistor, though its theoretical elucidation has not yet been sufficiently clarified. .

【0004】一般に、このpn接合リーク電流Jは次の
式(1)で表される。 J = JL・L + JA・A …… (1) ここで、JLはLOCOS端の周辺成分、JAはLOCO
S(フィールド酸化膜)の面積成分、Lはパターン(活
性領域)の周辺長、Aはパターン(活性領域)の面積で
ある。上記結晶欠陥に起因したpn接合リーク電流は上
記式(1)のJL(LOCOS端の周辺成分)に甚大な
影響を及ぼすことは想像に難くない。
Generally, this pn junction leakage current J is expressed by the following equation (1). J = J L · L + J A · A (1) where J L is the peripheral component at the LOCOS edge and J A is the LOCO
The area component of S (field oxide film), L is the peripheral length of the pattern (active region), and A is the area of the pattern (active region). It is not difficult to imagine that the pn junction leakage current caused by the crystal defects has a great influence on J L (peripheral component at the LOCOS end) of the above formula (1).

【0005】[0005]

【発明が解決しようとする課題】ところで、四角形の活
性領域の各辺を<110>方向に揃えた従来のトランジ
スタ構造でVLSI,ULSI等の集積回路を作製した
ときには、これらの集積回路は活性領域がより一層微細
であることから、活性領域面積に比較して周辺長が圧倒
的に大きくなるため、式(1)は簡単に次の式(2)に
変形されることになってしまう。 J ≒ JL・L …… (2) 即ち、LOCOS端でのpn接合リーク電流を低く抑制
できないと、結果的にチップ全体のリーク電流が増加す
るという問題点があった。このLOCOS端でのリーク
電流を低く抑制しない条件でDRAM等のトランジスタ
を製造した場合には、このトランジスタは記憶として貯
えられた電荷の予期せぬ変化量が大きくなり、定期的に
電荷を補充する動作であるリフレッシュの頻度が多くな
り、リフレッシュタイム(リフレッシュ動作の間隔)が
短くなる欠点があった。
By the way, when an integrated circuit such as VLSI or ULSI is manufactured by a conventional transistor structure in which each side of a quadrangle active area is aligned in the <110> direction, these integrated circuits have the active area. Is much finer, the peripheral length becomes overwhelmingly larger than the area of the active region, and therefore the equation (1) is easily transformed into the following equation (2). J ≒ J L · L ...... ( 2) That is, if unable pn junction leakage current less inhibition of the LOCOS ends, resulting in the entire chip leakage current is disadvantageously increased. When a transistor such as a DRAM is manufactured under the condition that the leakage current at the LOCOS end is not suppressed to a low level, the transistor has a large amount of unexpected change in the electric charge stored as a memory, and the electric charge is periodically replenished. There is a drawback that the frequency of refresh operations is increased and the refresh time (interval between refresh operations) is shortened.

【0006】本発明の目的は、VLSI,ULSI等の
超微細構造にするために集積化及び実装密度を高めても
LOCOS端における弾性、塑性歪みを増大させずにp
n接合リーク電流を低減し得るトランジスタ構造を提供
することにある。本発明の別の目的は、DRAMの場
合、リフレッシュ頻度を減少してリフレッシュタイムを
増大できるトランジスタ構造を提供することにある。
It is an object of the present invention to increase the elasticity and plastic strain at the LOCOS edge without increasing the elasticity and plastic strain even if the integration and the packaging density are increased in order to obtain a VLSI, ULSI or other ultrafine structure.
It is to provide a transistor structure capable of reducing an n-junction leak current. Another object of the present invention is to provide a transistor structure that can reduce refresh frequency and increase refresh time in the case of DRAM.

【0007】[0007]

【課題を解決するための手段】図1及び図3に示すよう
に、本発明はシリコン基板10表面に活性領域18がフ
ィールド酸化膜17で四方を囲まれ四角形に形成された
トランジスタ構造の改良である。その特徴ある構成は、
上記四角形の活性領域18がその端縁(LOCOS端)
18aを上記基板10の<110>方向のシリコン結晶
方位から45゜傾けることにより<100>方向の結晶
方位に揃えて形成されたことにある。
As shown in FIGS. 1 and 3, the present invention is an improvement of a transistor structure in which an active region 18 is surrounded by a field oxide film 17 in a square shape on a surface of a silicon substrate 10. is there. Its characteristic configuration is
The quadrangular active area 18 has its edge (LOCOS edge).
18a is tilted by 45 degrees from the silicon crystal orientation of the <110> direction of the substrate 10 to be aligned with the crystal orientation of the <100> direction.

【0008】[0008]

【作用】ダイヤモンド構造であるシリコン単結晶におい
て、{100}、{110}及び{111}の面方位の
中で{111}面は最大の原子密度とヤング率をもつの
で、{111}面間の結合力は他の面の場合より小さ
い。即ち、シリコン単結晶では第一の劈開面は{11
1}面であり、第二の劈開面は{110}面である。そ
してこれらの面以外では通常劈開が起こらないことが知
られている。前述したように、従来のトランジスタ構造
では、図2及び図4に示すように四角形の活性領域18
の各辺、即ちLOCOS端18aを<110>方向に揃
えている。図5(e)に示すようにLOCOS端18a
で圧縮応力が発生した場合には、この応力発生面は上記
第一の劈開面である{111}面に一致するため、この
劈開面が滑り面となって、圧縮応力が加わると<110
>方向に結晶格子が変形して弾性歪み、究極的には塑性
変形が導入され、pn接合リーク電流の原因となる結晶
欠陥を生じると推察される。
In the silicon single crystal having the diamond structure, the {111} plane has the maximum atomic density and Young's modulus among the {100}, {110} and {111} plane orientations. Has less binding force than other surfaces. That is, in the silicon single crystal, the first cleavage plane is {11
1} plane, and the second cleavage plane is the {110} plane. It is known that cleavage usually does not occur except in these planes. As described above, in the conventional transistor structure, as shown in FIGS. 2 and 4, the rectangular active region 18 is formed.
, The LOCOS ends 18a are aligned in the <110> direction. As shown in FIG. 5E, the LOCOS end 18a
When a compressive stress is generated at, since the stress generating surface coincides with the {111} surface which is the first cleavage surface, the cleavage surface becomes a sliding surface, and when compressive stress is applied, <110
It is presumed that the crystal lattice is deformed in the> direction to elastically distort, and finally plastic deformation is introduced, resulting in a crystal defect causing a pn junction leakage current.

【0009】これに対して、本発明のトランジスタ構造
では、図1及び図3に示すように四角形の活性領域18
の各辺、即ちLOCOS端18aを<100>方向に揃
えたので、図5(e)に示すようにLOCOS端18a
で圧縮応力が発生した場合には、この応力発生面は滑り
面である{111}面に一致せず、圧縮応力が加わって
も結晶格子の変形量は小さく、塑性歪みに起因した結晶
欠陥が生じにくくなる。その結果、VLSI,ULSI
等の超微細構造にするために集積化及び実装密度を高め
た場合でも、逆バイアス電圧が印加したときのpn接合
リーク電流を低く抑えることができる。
On the other hand, in the transistor structure of the present invention, as shown in FIGS. 1 and 3, the rectangular active region 18 is formed.
Since the respective sides, that is, the LOCOS ends 18a are aligned in the <100> direction, as shown in FIG.
When a compressive stress is generated at, the stress generating surface does not coincide with the {111} plane that is a sliding surface, the deformation amount of the crystal lattice is small even when the compressive stress is applied, and the crystal defects due to the plastic strain are Less likely to occur. As a result, VLSI, ULSI
Even if the integration and the packaging density are increased to obtain an ultra-fine structure such as the above, the pn junction leakage current when the reverse bias voltage is applied can be suppressed to be low.

【0010】[0010]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例>p型で比抵抗が約10Ωcmの(100)面
方向のシリコンウェーハを用意し、図5(a)及び
(b)に示すように、ウェーハであるシリコン基板10
の全面を高温熱酸化して厚さ約30nmのSiO2膜1
1を形成し、そのSiO2膜11の上面にCVD法によ
り厚さ約50nmのシリコンの窒化膜(Si34)12
を形成した後、この窒化膜12の全面に感光性高分子の
フォトレジスト13を塗布した。図3の拡大図に示すよ
うに四角形のパターンの各辺がシリコン基板10の<1
00>方向に向いたマスク14をレジスト13の上に被
せ、マスク14を通して紫外線16を照射した。次いで
フォトレジスト13を感光し現像することにより、不要
のレジスト13を除去した。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. <Example> A p-type silicon wafer having a specific resistance of about 10 Ωcm in the (100) plane direction was prepared, and as shown in FIGS.
SiO 2 film 1 with a thickness of about 30 nm
1 is formed, and a silicon nitride film (Si 3 N 4 ) 12 having a thickness of about 50 nm is formed on the upper surface of the SiO 2 film 11 by the CVD method.
After forming, the photoresist 13 of photosensitive polymer was applied to the entire surface of the nitride film 12. As shown in the enlarged view of FIG. 3, each side of the square pattern has <1 of the silicon substrate 10.
The mask 14 facing the 00> direction was covered on the resist 13, and ultraviolet rays 16 were irradiated through the mask 14. Then, the photoresist 13 was exposed to light and developed to remove the unnecessary resist 13.

【0011】図5(c)に示すように、残ったレジスト
13を保護膜としてエッチングし不要部分の窒化膜12
を除去した後、レジストを全て除去し、チャネルカット
ドープによる素子間分離を行った。即ち、Bをイオン注
入して露出しているシリコン基板10の表面近くの正孔
の濃度を高めた。図5(d)〜(f)に示すように、湿
潤酸素雰囲気下、950℃の温度で熱処理して、残った
窒化膜12で覆われていない部分のSiO2膜11を5
00nmの厚さのフィールド酸化膜17に成長させた
後、窒化膜12とその下のSiO2膜11を除去し、活
性領域18がフィールド酸化膜17で四方を囲まれた図
3の拡大図に示すようなパターンを得た。
As shown in FIG. 5C, the remaining resist 13 is used as a protective film for etching to remove unnecessary portions of the nitride film 12.
After removing, all the resist was removed, and element isolation was performed by channel cut doping. That is, B was ion-implanted to increase the concentration of holes near the exposed surface of the silicon substrate 10. As shown in FIGS. 5D to 5F, heat treatment is performed at a temperature of 950 ° C. in a wet oxygen atmosphere to remove the remaining SiO 2 film 11 not covered with the nitride film 12 by 5 times.
After the field oxide film 17 having a thickness of 00 nm is grown, the nitride film 12 and the SiO 2 film 11 thereunder are removed, and the active region 18 is surrounded by the field oxide film 17 on all sides. A pattern as shown was obtained.

【0012】<比較例>図4の拡大図に示すように四角
形のパターンの各辺がシリコン基板の<110>方向に
向いたマスクをレジストの上に被せ、マスクを通して紫
外線を照射した以外は、実施例と同様にして活性領域が
フィールド酸化膜で四方を囲まれた図4の拡大図に示す
ようなパターンを得た。
<Comparative Example> As shown in the enlarged view of FIG. 4, except that a mask in which each side of a quadrangular pattern faces the <110> direction of the silicon substrate is placed on the resist and ultraviolet rays are radiated through the mask. In the same manner as in the example, a pattern having an active region surrounded by field oxide films on all sides was obtained as shown in the enlarged view of FIG.

【0013】<比較試験と評価>実施例及び比較例で得
られたシリコン基板10上の活性領域18にAsをイオ
ン注入してn−拡散領域を作った後、図示しないが、ポ
リシリコンにより電極を形成した。図3の拡大図に示す
パターンも図4の拡大図に示すパターンも、それぞれ活
性領域18の幅が2μm、長さが2.2mm、フィール
ド酸化膜17の幅が1μm、長さが2.2mmで同一で
あった。また活性領域、フィールド酸化膜の繰返し数も
1352本で同一に揃えた。これらのパターンのLOC
OS周辺長の合計及び活性領域の面積は実施例も比較例
も同一にした。実施例と比較例の各サンプルの全てのチ
ップにおいて、ポリシリコン電極とウェーハ裏面にそれ
ぞれ接触させた測定針との間に0〜10Vの逆バイアス
電圧を印加しpn接合リーク電流の変化を調べ、また逆
バイアス電圧を5Vに固定したまま、実施例と比較例の
各ウェーハを30〜125℃の範囲で温度変化させ、温
度によるpn接合リーク電流の変化を調べた。その結果
を図6及び図7にそれぞれ示す。図6から明らかなよう
に、実施例も比較例も逆バイアス電圧が高くなる程、p
n接合リーク電流の値Jは大きくなったが、実施例の印
加時のpn接合リーク電流の値Jは電圧の大小に拘わら
ず比較例のそれより小さかった。また図7から明らかな
ように、実施例も比較例もpn接合リーク電流のLOC
OS端の周辺成分の値JLは温度が低くなる程、小さく
なるが、実施例のLOCOS端の周辺成分の値JLは比
較例のそれより常に下回り、特に室温に近づく程、その
差が大きかった。
<Comparison Test and Evaluation> After ion-implanting As into the active region 18 on the silicon substrate 10 obtained in the examples and comparative examples to form an n-diffusion region, although not shown, electrodes made of polysilicon are used. Was formed. In both the pattern shown in the enlarged view of FIG. 3 and the pattern shown in the enlarged view of FIG. 4, the active region 18 has a width of 2 μm and a length of 2.2 mm, and the field oxide film 17 has a width of 1 μm and a length of 2.2 mm. Was the same. Further, the number of repetitions of the active region and the field oxide film was 1352, which were the same. LOC of these patterns
The total OS peripheral length and the area of the active region were the same in the examples and the comparative examples. In all the chips of each sample of the example and the comparative example, a reverse bias voltage of 0 to 10 V was applied between the polysilicon electrode and the measuring needle that was brought into contact with the back surface of the wafer, and changes in the pn junction leakage current were examined. Further, with the reverse bias voltage fixed at 5 V, the temperature of each wafer of the example and the comparative example was changed in the range of 30 to 125 ° C., and the change of the pn junction leakage current depending on the temperature was examined. The results are shown in FIGS. 6 and 7, respectively. As is clear from FIG. 6, as the reverse bias voltage becomes higher, p
Although the value J of the n-junction leak current was large, the value J of the pn-junction leak current at the time of application of the example was smaller than that of the comparative example regardless of the magnitude of the voltage. Further, as is clear from FIG. 7, the LOC of the pn junction leakage current in both the example and the comparative example.
The value J L of the peripheral component at the OS edge becomes smaller as the temperature becomes lower, but the value J L of the peripheral component at the LOCOS edge of the example is always lower than that of the comparative example, and the difference becomes particularly closer to room temperature. It was great.

【0014】[0014]

【発明の効果】以上述べたように、本発明によれば、四
角形の活性領域の端縁(LOCOS端)をシリコン基板
の<100>方向の結晶方位に揃えることにより、フィ
ールド酸化膜形成時の応力発生に起因したシリコン結晶
格子の弾性、塑性歪みを抑制することができる。この結
果、VLSI,ULSI等の超微細構造にするために集
積化及び実装密度を高めてもフィールド酸化膜の端縁に
おける圧縮応力に伴う弾性、塑性歪みを増大させずにp
n接合リーク電流を低減することができる。特に、トラ
ンジスタがDRAMの場合、リフレッシュ頻度を減少
し、リフレッシュタイムを増大させることができる。
As described above, according to the present invention, by aligning the edge (LOCOS edge) of the square active region with the crystal orientation of the <100> direction of the silicon substrate, the field oxide film is formed. The elasticity and plastic strain of the silicon crystal lattice due to the stress generation can be suppressed. As a result, even if the integration and the packaging density are increased to form an ultrafine structure such as VLSI or ULSI, elasticity and plastic strain associated with the compressive stress at the edge of the field oxide film are not increased, and p
The n-junction leakage current can be reduced. In particular, when the transistor is a DRAM, the refresh frequency can be reduced and the refresh time can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のLOCOS構造を結晶構造とともに示
す斜視図。
FIG. 1 is a perspective view showing a LOCOS structure of the present invention together with a crystal structure.

【図2】従来例のLOCOS構造を結晶構造とともに示
す斜視図。
FIG. 2 is a perspective view showing a LOCOS structure of a conventional example together with a crystal structure.

【図3】本発明のチップ形成したシリコンウェーハの平
面図。
FIG. 3 is a plan view of a chip-formed silicon wafer of the present invention.

【図4】従来例のチップ形成したシリコンウェーハの平
面図。
FIG. 4 is a plan view of a conventional silicon wafer on which chips are formed.

【図5】本発明実施例のLOCOS法による素子間分離
工程毎のシリコン基板の断面図。
FIG. 5 is a cross-sectional view of a silicon substrate in each element isolation process by the LOCOS method of the embodiment of the present invention.

【図6】実施例と比較例の逆バイアス電圧印加時のpn
接合リーク電流の変化を示す図。
FIG. 6 shows a pn when a reverse bias voltage is applied in the example and the comparative example.
The figure which shows the change of junction leak current.

【図7】実施例と比較例の温度によるpn接合リーク電
流の変化を示す図。
FIG. 7 is a diagram showing changes in pn junction leakage current according to temperature in Examples and Comparative Examples.

【図8】フィールド酸化膜の端縁が窒化膜の端縁の下に
潜り込むときの活性領域幅と応力との関係を示す図。
FIG. 8 is a diagram showing a relationship between an active region width and a stress when an edge of a field oxide film dives under an edge of a nitride film.

【符号の説明】[Explanation of symbols]

10 シリコン基板 11 SiO2膜 12 シリコンの窒化膜 17 フィールド酸化膜 18 活性領域 18a 活性領域の端縁(LOCOS端)10 Silicon substrate 11 SiO 2 film 12 Silicon nitride film 17 Field oxide film 18 Active region 18a Edge of active region (LOCOS edge)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 降屋 久 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 (72)発明者 犬石 昌秀 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社ULSI開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Furuya 1-297 Kitabukuro-cho, Omiya-shi, Saitama, Central Research Laboratory, Mitsubishi Materials Corporation (72) Inventor Masahide Inuishi 4-chome, Mizuhara, Itami-shi, Hyogo Mitsubishi Electric Co., Ltd. ULSI Development Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板(10)表面に活性領域(18)が
フィールド酸化膜(17)で四方を囲まれ四角形のパターン
に形成されたトランジスタ構造において、 前記四角形の活性領域(18)がその端縁(18a)を前記基板
(10)の<110>方向のシリコン結晶方位から45゜傾
けることにより<100>方向の結晶方位に揃えて形成
されたことを特徴とするトランジスタ構造。
1. A transistor structure in which an active region (18) is surrounded by a field oxide film (17) on all sides of a silicon substrate (10) and formed in a rectangular pattern, wherein the rectangular active region (18) is The edge (18a) is the substrate
A transistor structure characterized by being formed in alignment with the crystal orientation of the <100> direction by tilting 45 ° from the silicon crystal orientation of the <110> direction of (10).
JP7095128A 1995-04-20 1995-04-20 Transistor structure Withdrawn JPH08288280A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7095128A JPH08288280A (en) 1995-04-20 1995-04-20 Transistor structure
KR1019960011937A KR100206449B1 (en) 1995-04-20 1996-04-19 Transistor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7095128A JPH08288280A (en) 1995-04-20 1995-04-20 Transistor structure

Publications (1)

Publication Number Publication Date
JPH08288280A true JPH08288280A (en) 1996-11-01

Family

ID=14129193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7095128A Withdrawn JPH08288280A (en) 1995-04-20 1995-04-20 Transistor structure

Country Status (2)

Country Link
JP (1) JPH08288280A (en)
KR (1) KR100206449B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047167A1 (en) * 2000-12-08 2002-06-13 Hitachi, Ltd. Semiconductor device
JP2004104128A (en) * 2002-09-04 2004-04-02 Samsung Electronics Co Ltd Sram device formed on soi substrate
JP2006261695A (en) * 2006-05-22 2006-09-28 Toshiba Corp Manufacturing method of semiconductor device
JP2007221157A (en) * 2007-04-02 2007-08-30 Toshiba Corp Manufacturing method of semiconductor device
JP2008311673A (en) * 2000-12-08 2008-12-25 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP2010153889A (en) * 2010-02-10 2010-07-08 Toshiba Corp Method for manufacturing semiconductor device
US8183643B2 (en) 2000-09-28 2012-05-22 Oki Semiconductor Co., Ltd. Semiconductor device having silicide layer completely occupied amorphous layer formed in the substrate and an interface junction of (111) silicon plane
DE102004041346B4 (en) * 2003-08-26 2014-05-22 Kabushiki Kaisha Toshiba Method for producing a semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641365B1 (en) 2005-09-12 2006-11-01 삼성전자주식회사 Mos transistors having an optimized channel plane orientation, semiconductor devices including the same and methods of fabricating the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183643B2 (en) 2000-09-28 2012-05-22 Oki Semiconductor Co., Ltd. Semiconductor device having silicide layer completely occupied amorphous layer formed in the substrate and an interface junction of (111) silicon plane
WO2002047167A1 (en) * 2000-12-08 2002-06-13 Hitachi, Ltd. Semiconductor device
JP2003086708A (en) * 2000-12-08 2003-03-20 Hitachi Ltd Semiconductor device and manufacturing method thereof
US6982465B2 (en) 2000-12-08 2006-01-03 Renesas Technology Corp. Semiconductor device with CMOS-field-effect transistors having improved drain current characteristics
JP2008311673A (en) * 2000-12-08 2008-12-25 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP2004104128A (en) * 2002-09-04 2004-04-02 Samsung Electronics Co Ltd Sram device formed on soi substrate
DE102004041346B4 (en) * 2003-08-26 2014-05-22 Kabushiki Kaisha Toshiba Method for producing a semiconductor device
JP2006261695A (en) * 2006-05-22 2006-09-28 Toshiba Corp Manufacturing method of semiconductor device
JP2007221157A (en) * 2007-04-02 2007-08-30 Toshiba Corp Manufacturing method of semiconductor device
JP2010153889A (en) * 2010-02-10 2010-07-08 Toshiba Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR100206449B1 (en) 1999-07-01

Similar Documents

Publication Publication Date Title
US7244643B2 (en) Semiconductor device and manufacturing method thereof
US4272880A (en) MOS/SOS Process
JP2998832B2 (en) Semiconductor device pattern forming method
US20080173868A1 (en) Method and resulting structure for fabricating test key structures in dram structures
US9082875B2 (en) Methods for normalizing strain in semicondcutor devices and strain normalized semiconductor devices
JP2004111900A (en) Very fine soi mos fet, and manufacturing method thereof
JPH08288280A (en) Transistor structure
US4073055A (en) Method for manufacturing semiconductor devices
TW302517B (en)
Ikeda et al. Failure analysis of 6T SRAM on low-voltage and high-frequency operation
GB2077495A (en) V-mos field effect semiconductor device
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JP3079369B2 (en) Method for manufacturing semiconductor device
US6859023B2 (en) Evaluation method for evaluating insulating film, evaluation device therefor and method for manufacturing evaluation device
Maluenda et al. Homogeneity qualification of GaAs substrates for large scale integration applications
JPH0314228B2 (en)
JP3109566B2 (en) Evaluation method of semiconductor device
JP2001118788A (en) Manufacturing method of semiconductor element
KR20010040112A (en) X-ray mask having a lower stress in x-ray absorption pattern
Goser et al. Some methods for defining design rules
JPS5810857A (en) Complementary type mos semiconductor device
JPH0318027A (en) Isolation of micro element
JPH0574781A (en) Manufacture of semiconductor device
JPH04215451A (en) Semiconductor device
Kim et al. Electrical property study of line-edge roughness in top surface imaging process by silylation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702