JPH08287931A - Fuel cell power generation equipment - Google Patents

Fuel cell power generation equipment

Info

Publication number
JPH08287931A
JPH08287931A JP7082203A JP8220395A JPH08287931A JP H08287931 A JPH08287931 A JP H08287931A JP 7082203 A JP7082203 A JP 7082203A JP 8220395 A JP8220395 A JP 8220395A JP H08287931 A JPH08287931 A JP H08287931A
Authority
JP
Japan
Prior art keywords
oxygen concentration
fuel cell
exhaust gas
control
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7082203A
Other languages
Japanese (ja)
Other versions
JP3584531B2 (en
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP08220395A priority Critical patent/JP3584531B2/en
Publication of JPH08287931A publication Critical patent/JPH08287931A/en
Application granted granted Critical
Publication of JP3584531B2 publication Critical patent/JP3584531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a fuel cell power generation equipment by which cost of the whole power generation equipment is reduced and size reduction and simplification can be attained by controlling the oxygen concentration of cathode exhaust gas to be supplied to a reformer by operation of a single apparatus. CONSTITUTION: A fuel cell power generation equipment is provided with a low temperature blower 17c to supply combustion exhaust gas to the cathode side of a fuel cell by pressurizing the combustion exhaust gas 5 from which moisture is removed, an oxygen densitometer 21 to measure the oxygen concentration in the combustion exhaust gas and a control device 20 to control rotating speed of the low temperature blower. The rotating speed of the low temperature blower is controlled from an output command (x) of the fuel cell and the measured oxygen concentration O2 so that the oxygen concentration in the combustion exhaust gas falls within a prescribed range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
を用いた燃料電池発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation facility using a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図3に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池11とを備えており、改
質器で作られたアノードガス2は燃料電池に供給され、
燃料電池内でその大部分(例えば80%)を消費した
後、アノード排ガス4として改質器の燃焼室Coに供給
される。改質器10ではアノード排ガス中の可燃成分
(水素、一酸化炭素、メタン等)がカソード排ガスによ
り燃焼し、高温の燃焼ガスにより改質室Reを加熱し改
質室の燃料を改質する。改質室を出た燃焼排ガス5は空
気予熱器13b、凝縮器16a、気水分離器15を通っ
て水分を除去され、低温ブロア17cで加圧され、ター
ビン圧縮機12から供給される加圧空気6と合流してカ
ソードガス3となり、燃料電池のカソード側に必要な二
酸化炭素を供給する。燃料電池内でその一部が反応した
カソードガス(カソード排ガス7)は、高温ブロア17
bにより燃料電池の上流側に一部が循環され、残りの一
部7aは改質器に燃焼用空気として供給され、残り7b
はタービン圧縮機12で圧力を回収されて系外に排出さ
れる。なお、図3において、13aは燃料予熱器、14
は脱硫器、16bは加熱器、17dは空気ブロアであ
る。
2. Description of the Related Art Molten carbonate fuel cells have characteristics that conventional power generators do not have, such as high efficiency and little impact on the environment, and they are attracting attention as a power generation system following hydropower, thermal power, and nuclear power. Is currently being researched and developed all over the world. Particularly in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen as shown in FIG. A fuel cell 11 for generating power from an anode gas 2 and a cathode gas 3 containing oxygen is provided, and the anode gas 2 produced by the reformer is supplied to the fuel cell,
After consuming most (for example, 80%) in the fuel cell, it is supplied to the combustion chamber Co of the reformer as the anode exhaust gas 4. In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned by the cathode exhaust gas, and the high temperature combustion gas heats the reforming chamber Re to reform the fuel in the reforming chamber. The combustion exhaust gas 5 that has exited the reforming chamber has its water content removed through the air preheater 13b, the condenser 16a, and the steam separator 15, and is pressurized by the low temperature blower 17c and supplied from the turbine compressor 12. It joins with the air 6 to become the cathode gas 3, and supplies necessary carbon dioxide to the cathode side of the fuel cell. The cathode gas (cathode exhaust gas 7), a part of which has reacted in the fuel cell, is the high temperature blower 17
b, a part is circulated upstream of the fuel cell, the remaining part 7a is supplied to the reformer as combustion air, and the remaining part 7b
The pressure is recovered by the turbine compressor 12 and discharged to the outside of the system. In FIG. 3, 13a is a fuel preheater, and 14 is a fuel preheater.
Is a desulfurizer, 16b is a heater, and 17d is an air blower.

【0003】[0003]

【発明が解決しようとする課題】かかる従来の燃料電池
発電設備では、改質器10から出る燃焼排ガス5の酸素
濃度を、十分低い濃度(例えば約3%)に制御する必要
がある。このため、従来は、図4に示すように、低温ブ
ロア17cを一定回転数で回転し、その下流側に設けた
流量調節弁19aにより燃焼排ガス5の循環流量を調節
して、燃焼排ガス5の酸素濃度O2 を制御し、同時に余
分な燃焼排ガス5を流量調節弁19bにより低温ブロア
17cの上流側に戻して低温ブロア17cの吐出圧Pを
一定に制御していた。
In such a conventional fuel cell power generation facility, it is necessary to control the oxygen concentration of the combustion exhaust gas 5 emitted from the reformer 10 to a sufficiently low concentration (for example, about 3%). For this reason, conventionally, as shown in FIG. 4, the low temperature blower 17c is rotated at a constant rotation speed, and the circulation flow rate of the combustion exhaust gas 5 is adjusted by the flow rate control valve 19a provided on the downstream side of the low temperature blower 17c. The oxygen concentration O 2 was controlled, and at the same time, the excess combustion exhaust gas 5 was returned to the upstream side of the low temperature blower 17c by the flow rate control valve 19b, and the discharge pressure P of the low temperature blower 17c was controlled to be constant.

【0004】すなわち、図3の設備において、流量調節
弁19aを開いて燃焼排ガス5の循環流量を増加させる
と、改質器10を介して吸引されるカソード排ガス7a
の流量が増加し、全体として循環流量が増大するため燃
焼排ガス5の酸素濃度も増大し、逆に流量調節弁19a
を閉じると、カソード排ガス7aの流量が減少し酸素濃
度も低下するので、流量調節弁19aと流量調節弁19
bにより燃焼排ガス5の酸素濃度を制御することができ
る。
That is, in the equipment shown in FIG. 3, when the flow control valve 19a is opened to increase the circulation flow rate of the combustion exhaust gas 5, the cathode exhaust gas 7a sucked through the reformer 10 is introduced.
Of the combustion exhaust gas 5 increases, and the oxygen concentration of the combustion exhaust gas 5 also increases, and conversely, the flow control valve 19a increases.
Closed, the flow rate of the cathode exhaust gas 7a decreases and the oxygen concentration also decreases. Therefore, the flow rate control valve 19a and the flow rate control valve 19
The oxygen concentration of the combustion exhaust gas 5 can be controlled by b.

【0005】しかし、かかる従来の手段では、燃焼排ガ
ス5の酸素濃度を制御するために、2つの弁19a,1
9bと酸素濃度計及び圧力計を用い、かつ濃度による流
量制御と圧力制御を行う必要があるため、制御が複雑で
ある問題点があった。また3つの機器(2つの流量調節
弁と低温ブロア)を運転するためプラントの運転性向上
の弊害となり、かつ発電設備全体のコスト低減、コンパ
クト化、シンプル化に反する要因となっていた。
However, in such conventional means, in order to control the oxygen concentration of the combustion exhaust gas 5, two valves 19a, 1
9b and an oxygen concentration meter and a pressure gauge are used, and it is necessary to perform flow rate control and pressure control depending on the concentration, so that there is a problem that the control is complicated. In addition, since three devices (two flow rate control valves and a low temperature blower) are operated, this is a detrimental factor in improving the operability of the plant, and is a factor against the cost reduction, compactness and simplification of the entire power generation equipment.

【0006】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、単一
機器の運転により、改質器に供給するカソード排ガスの
酸素濃度を制御することができ、これにより発電設備全
体のコスト低減、コンパクト化、シンプル化が可能とな
る燃料電池発電設備を提供することにある。
The present invention was devised to solve such problems. That is, the object of the present invention is to control the oxygen concentration of the cathode exhaust gas supplied to the reformer by operating a single device, which enables cost reduction, compactness, and simplification of the entire power generation facility. To provide a fuel cell power generation facility.

【0007】[0007]

【課題を解決するための手段】本発明によれば、水分を
除去した燃焼排ガスを加圧して燃料電池のカソード側に
供給する低温ブロアと、燃焼排ガス中の酸素濃度を計測
する酸素濃度計と、低温ブロアの回転速度を制御する制
御装置とを備え、燃料電池の出力指令xと計測された酸
素濃度O2 から燃焼排ガス中の酸素濃度が所定の範囲に
なるように低温ブロアの回転速度を制御する、ことを特
徴とする燃料電池発電設備が提供される。
According to the present invention, a low temperature blower for pressurizing the combustion exhaust gas from which water has been removed and supplying it to the cathode side of the fuel cell, and an oxygen concentration meter for measuring the oxygen concentration in the combustion exhaust gas are provided. A control device for controlling the rotation speed of the low temperature blower, and adjusts the rotation speed of the low temperature blower so that the oxygen concentration in the combustion exhaust gas is within a predetermined range from the output command x of the fuel cell and the measured oxygen concentration O 2. There is provided a fuel cell power generation facility characterized by controlling.

【0008】本発明の好ましい実施例によれば、前記制
御装置による制御は、先行制御と補正制御とからなり、
先行制御は、出力指令xからこれに対応する回転速度R
PMを関数F1 (x)により算出するステップS1と、
直前の修正回転速度ΔRPMを加算するステップS2と
からなり、補正制御は、S3からS6までの4ステップ
からなり、S3において出力指令xからこれに対応する
酸素濃度O2 を関数F 2 (x)により算出し、S4にお
いて前記酸素濃度O2 から酸素濃度計による実測濃度O
2 を減算し、S5において減算した酸素濃度O2 から修
正回転速度ΔRPMを関数F3 (O2 )により算出し、
S6において修正回転速度ΔRPMを微分積分制御し、
減算結果をステップS2の修正回転速度ΔRPMとして
書き換える。
According to a preferred embodiment of the present invention, said control
The control by the control device consists of advance control and correction control,
The preceding control is based on the output command x and the corresponding rotation speed R
PM is the function F1Step S1 calculated by (x),
Step S2 of adding the immediately preceding modified rotation speed ΔRPM
Compensation control consists of 4 steps from S3 to S6
And corresponds to this from the output command x in S3
Oxygen concentration O2The function F 2Calculated by (x), and in S4
And the oxygen concentration O2From O measured by oxygen concentration meter
2And the oxygen concentration O subtracted in S52From Osamu
Positive rotation speed ΔRPM is the function F3(O2),
In S6, the modified rotation speed ΔRPM is subjected to differential integration control,
The result of the subtraction is used as the corrected rotation speed ΔRPM in step S2.
rewrite.

【0009】[0009]

【作用】上記本発明の構成によれば、従来の3つの機器
(2つの流量調節弁と低温ブロア)と濃度計及び圧力計
の代わりに低温ブロアと濃度計のみを備え、燃料電池の
出力指令xと計測された酸素濃度O2 から燃焼排ガス中
の酸素濃度が所定の範囲になるように低温ブロアの回転
速度を制御するので、2つの流量調節弁と圧力計を省略
することができ、これにより発電設備全体のコスト低
減、コンパクト化、シンプル化が可能となる。
According to the above-mentioned structure of the present invention, the fuel cell output command is provided with only the low temperature blower and the concentration meter instead of the conventional three devices (two flow rate control valves and the low temperature blower) and the concentration meter and the pressure gauge. Since the rotation speed of the low temperature blower is controlled so that the oxygen concentration in the combustion exhaust gas falls within a predetermined range from the oxygen concentration O 2 measured as x, the two flow rate control valves and the pressure gauge can be omitted. As a result, it is possible to reduce the cost of the entire power generation facility, make it compact, and simplify it.

【0010】また、本発明の好ましい実施例のように、
制御装置による回転数制御を、先行制御と補正制御とか
ら構成し、先行制御を、出力指令xからこれに対応する
回転速度RPMを関数F1 (x)により算出するステッ
プS1と、直前の修正回転速度ΔRPMを加算するステ
ップS2とから構成すれば、出力指令に基づく先行制御
により遅れが少ない迅速な制御を行うことができ、更に
実測した酸素濃度に基づく補正制御によりきめ細かい制
御を行うことができる。
Further, as in the preferred embodiment of the present invention,
The rotational speed control by the control device is composed of the advance control and the correction control, and the advance control is step S1 of calculating the rotation speed RPM corresponding to this from the output command x by the function F 1 (x), and the immediately preceding correction. If configured with step S2 of adding the rotation speed ΔRPM, it is possible to perform rapid control with less delay by the advance control based on the output command, and further perform fine control by correction control based on the actually measured oxygen concentration. .

【0011】[0011]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。図1は、本発明による燃料
電池発電設備の図4と同様の部分構成図である。この図
において、本発明の燃料電池発電設備は、凝縮器16a
と気水分離器15により水分を除去した燃焼排ガス5を
加圧して燃料電池のカソード側に供給する低温ブロア1
7cと、燃焼排ガス5中の酸素濃度を計測する酸素濃度
計21と、低温ブロア17cの回転速度を制御する制御
装置20とを備えている。この制御装置20は、燃料電
池の出力指令xと酸素濃度計21により計測された酸素
濃度O 2 から燃焼排ガス中の酸素濃度が所定の範囲にな
るように低温ブロア17cの回転速度を制御するように
なっている。その他の構成機器は、前述した従来の図3
及び図4と同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will now be described with reference to the drawings.
I will explain. In addition, the common parts in each figure are the same.
It is used with the number 1 attached. FIG. 1 shows a fuel according to the present invention.
It is a partial block diagram similar to FIG. 4 of a battery power generation facility. This figure
In the fuel cell power generation equipment of the present invention, the condenser 16a
And the combustion exhaust gas 5 from which water has been removed by the steam separator 15.
Low temperature blower 1 which is pressurized and supplied to the cathode side of the fuel cell
7c and the oxygen concentration for measuring the oxygen concentration in the combustion exhaust gas 5
Control for controlling the rotation speed of the total 21 and the low temperature blower 17c
And a device 20. This control device 20 is
Oxygen measured by pond output command x and oximeter 21
Concentration O 2The oxygen concentration in the combustion exhaust gas falls within the specified range.
Control the rotation speed of the low temperature blower 17c
Has become. Other components are shown in FIG.
And is similar to FIG.

【0012】上述した構成により、図1の燃料電池発電
設備では、図3及び図4における従来の3つの機器(2
つの流量調節弁19a,19bと低温ブロア17c)と
濃度計及び圧力計の代わりに低温ブロア17cと濃度計
21のみを備え、燃料電池の出力指令xと計測された酸
素濃度O2 から燃焼排ガス中の酸素濃度が所定の範囲に
なるように低温ブロア17cの回転速度を制御するの
で、2つの流量調節弁19a,19bと圧力計を省略す
ることができ、これにより発電設備全体のコスト低減、
コンパクト化、シンプル化が可能となる。なお、この制
御における酸素濃度が所定の範囲は、例えば3%±0.
5%程度とするのがよい。
With the configuration described above, the fuel cell power generation facility of FIG. 1 has three conventional devices (2
Instead of the two flow rate control valves 19a and 19b, the low temperature blower 17c), the concentration meter and the pressure gauge, only the low temperature blower 17c and the concentration meter 21 are provided, and the output command x of the fuel cell and the measured oxygen concentration O 2 Since the rotation speed of the low temperature blower 17c is controlled so that the oxygen concentration of the power supply is within a predetermined range, the two flow rate control valves 19a and 19b and the pressure gauge can be omitted, thereby reducing the cost of the entire power generation facility.
It is possible to make it compact and simple. Note that the predetermined range of the oxygen concentration in this control is, for example, 3% ± 0.
It is good to set it to about 5%.

【0013】図2は、本発明による制御装置のブロック
線図である。この図において、本発明による制御装置2
0による制御は、先行制御と補正制御とからなり、先行
制御は、出力指令xからこれに対応する回転速度RPM
を関数F1 (x)により算出するステップS1と、直前
の修正回転速度ΔRPMを加算するステップS2とから
なる。この先行制御により、出力指令xが急に変化した
場合でも、遅れが少ない迅速な制御を行うことができ
る。
FIG. 2 is a block diagram of the control device according to the present invention. In this figure, the control device 2 according to the invention
The control by 0 consists of advance control and correction control, and the advance control is based on the output command x and the corresponding rotation speed RPM.
Is calculated by the function F 1 (x), and step S2 for adding the immediately preceding corrected rotational speed ΔRPM. With this advance control, even if the output command x suddenly changes, quick control with a small delay can be performed.

【0014】また、補正制御は、S3からS6までの4
ステップからなり、S3において出力指令xからこれに
対応する酸素濃度O2 を関数F2 (x)により算出し、
S4において前記酸素濃度O2 から酸素濃度計による実
測濃度O2 を減算し、S5において減算した酸素濃度O
2 から修正回転速度ΔRPMを関数F3 (O2 )により
算出し、S6において修正回転速度ΔRPMを微分積分
制御し、減算結果をステップS2の修正回転速度ΔRP
Mとして書き換えるようになっている。関数F
1 (x)、F2 (x)、及びF3 (O2 )は、図2に模
式的に示す傾向を示すがこれらの関数は、予め計算又は
試験により設定し、かつ適宜実測値を基に書き換えるの
がよい。この構成により、実測した酸素濃度に基づく補
正制御によりきめ細かい制御を行うことができる。
Further, the correction control is performed in 4 from S3 to S6.
It consists of steps, and the output command x is changed to this in S3.
Corresponding oxygen concentration O2The function F2Calculated by (x),
In S4, the oxygen concentration O2From the oximeter
Measuring density O2And the oxygen concentration O subtracted in S5
2From the corrected rotation speed ΔRPM to the function F3(O2)
Calculate and differentially integrate the corrected rotation speed ΔRPM in S6
The subtraction result is controlled and the corrected rotation speed ΔRP in step S2 is controlled.
It is designed to be rewritten as M. Function F
1(X), F2(X), and F3(O2) Is shown in FIG.
These functions are calculated in advance or
Set by test and rewrite based on actual measurement
Is good. With this configuration, compensation based on the measured oxygen concentration is performed.
Fine control can be performed by the positive control.

【0015】なお、本発明は上述した実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々変更できるこ
とは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0016】[0016]

【発明の効果】上述したように、本発明の燃料電池発電
設備は、単一機器の運転により、改質器に供給するカソ
ード排ガスの酸素濃度を制御することができ、これによ
り発電設備全体のコスト低減、コンパクト化、シンプル
化が可能となり、かつ出力指令に基づく先行制御により
遅れが少ない迅速な制御を行うことができ、更に実測し
た酸素濃度に基づく補正制御によりきめ細かい制御を行
うことができる、等の優れた効果を有する。
As described above, in the fuel cell power generation equipment of the present invention, the oxygen concentration of the cathode exhaust gas supplied to the reformer can be controlled by operating a single device. Cost reduction, compactness, and simplification are possible, and advanced control based on the output command enables quick control with less delay, and correction control based on the actually measured oxygen concentration enables fine control. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池発電設備の部分構成図で
ある。
FIG. 1 is a partial configuration diagram of a fuel cell power generation facility according to the present invention.

【図2】本発明による制御装置のブロック線図である。FIG. 2 is a block diagram of a control device according to the present invention.

【図3】従来の燃料電池発電設備の全体構成図である。FIG. 3 is an overall configuration diagram of a conventional fuel cell power generation facility.

【図4】図3の部分構成図である。FIG. 4 is a partial configuration diagram of FIG. 3.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 8 蒸気 10 改質器 11 燃料電池 12 タービン圧縮機 13a 燃料予熱器 13b 空気予熱器 14 脱硫器 15 気水分離器 16a 凝縮器 16b 加熱器 17a 燃料ブロア 17b 高温ブロア 17c 低温ブロア 17d 空気ブロア 19a、19b 流量制御弁 20 制御装置 21 酸素濃度計 1 Fuel Gas 2 Anode Gas 3 Cathode Gas 4 Anode Exhaust Gas 5 Combustion Exhaust Gas 6 Air 7 Cathode Exhaust Gas 8 Steam 10 Reformer 11 Fuel Cell 12 Turbine Compressor 13a Fuel Preheater 13b Air Preheater 14 Desulfurizer 15 Air Water Separator 16a Condenser 16b Heater 17a Fuel blower 17b High temperature blower 17c Low temperature blower 17d Air blower 19a, 19b Flow control valve 20 Controller 21 Oxygen concentration meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水分を除去した燃焼排ガスを加圧して燃
料電池のカソード側に供給する低温ブロアと、燃焼排ガ
ス中の酸素濃度を計測する酸素濃度計と、低温ブロアの
回転速度を制御する制御装置とを備え、燃料電池の出力
指令xと計測された酸素濃度O2 から燃焼排ガス中の酸
素濃度が所定の範囲になるように低温ブロアの回転速度
を制御する、ことを特徴とする燃料電池発電設備。
1. A low-temperature blower that pressurizes the combustion exhaust gas from which water has been removed and supplies it to the cathode side of a fuel cell, an oxygen concentration meter that measures the oxygen concentration in the combustion exhaust gas, and control that controls the rotation speed of the low-temperature blower. And a device for controlling the rotation speed of the low-temperature blower so that the output command x of the fuel cell and the measured oxygen concentration O 2 cause the oxygen concentration in the combustion exhaust gas to fall within a predetermined range. Power generation equipment.
【請求項2】 前記制御装置による制御は、先行制御と
補正制御とからなり、先行制御は、出力指令xからこれ
に対応する回転速度RPMを関数F1 (x)により算出
するステップS1と、直前の修正回転速度ΔRPMを加
算するステップS2とからなり、 補正制御は、S3からS6までの4ステップからなり、
S3において出力指令xからこれに対応する酸素濃度O
2 を関数F2 (x)により算出し、S4において前記酸
素濃度O2 から酸素濃度計による実測濃度O2 を減算
し、S5において減算した酸素濃度O2 から修正回転速
度ΔRPMを関数F3 (O2 )により算出し、S6にお
いて修正回転速度ΔRPMを微分積分制御し、減算結果
をステップS2の修正回転速度ΔRPMとして書き換え
る、ことを特徴とする請求項1に記載の燃料電池発電設
備。
2. The control by the control device comprises advance control and correction control, and the advance control calculates step S1 of a rotation speed RPM corresponding to the output command x from a function F 1 (x), Step S2 of adding the immediately preceding modified rotation speed ΔRPM, and correction control consists of four steps from S3 to S6.
In S3, the oxygen concentration O corresponding to the output command x
2 was calculated by the function F 2 (x), the oxygen concentration O 2 the measured concentration O 2 by the oxygen concentration meter is subtracted from the S4, the function F 3 the corrected rotation speed ΔRPM oxygen concentration O 2 obtained by subtracting the S5 ( 2. The fuel cell power generation equipment according to claim 1, wherein the corrected rotation speed ΔRPM is calculated by O 2 ), the correction rotation speed ΔRPM is differentially integrated and controlled in S6, and the subtraction result is rewritten as the correction rotation speed ΔRPM in step S2.
JP08220395A 1995-04-07 1995-04-07 Fuel cell power generation equipment Expired - Fee Related JP3584531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08220395A JP3584531B2 (en) 1995-04-07 1995-04-07 Fuel cell power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08220395A JP3584531B2 (en) 1995-04-07 1995-04-07 Fuel cell power generation equipment

Publications (2)

Publication Number Publication Date
JPH08287931A true JPH08287931A (en) 1996-11-01
JP3584531B2 JP3584531B2 (en) 2004-11-04

Family

ID=13767874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08220395A Expired - Fee Related JP3584531B2 (en) 1995-04-07 1995-04-07 Fuel cell power generation equipment

Country Status (1)

Country Link
JP (1) JP3584531B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
US6797419B2 (en) 2001-09-03 2004-09-28 Fujitsu Limited Electronic apparatus powered by fuel cell having oxygen density detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
US6797419B2 (en) 2001-09-03 2004-09-28 Fujitsu Limited Electronic apparatus powered by fuel cell having oxygen density detector

Also Published As

Publication number Publication date
JP3584531B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US9638102B2 (en) Power generation system and method for starting power generation system
KR101795195B1 (en) Power generation system and method for operating power generation system
JP4664585B2 (en) Combined power generation system of fuel cell and gas turbine
JPH08287931A (en) Fuel cell power generation equipment
JP3212181B2 (en) Method and apparatus for controlling combustion air amount of fuel cell fuel off-gas
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP3331576B2 (en) Fuel cell power generation equipment
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP3513933B2 (en) Fuel cell power generator
JP2004342389A (en) Fuel cell device
JPH0729586A (en) Fuel cell operation method
JP6771962B2 (en) Fuel cell control device and control method and power generation system
JP2004199978A (en) Fuel cell combined cycle power generation system
JPH06150952A (en) Flow control method and device at fuel cell start
JP6290558B2 (en) Control apparatus and method, and combined power generation system including the same
JPH0722049A (en) Fuel cell testing device
JPH08339815A (en) Fuel cell power generation device
JPS58133784A (en) Control system of fuel cell power generating plant
JPH0778626A (en) Fuel cell power-generating device
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPH11135139A (en) Combined power generating system of fuel cell and gas turbine
JPS58133783A (en) Fuel cell power generating system
JPH06333584A (en) Fuel cell generating device
KR20220070612A (en) Fuel cell system using steam reformer system
GB2622994A (en) Method for controlling a stack temperature of a fuel cell stack in a fuel cell device, fuel cell device, computer unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

LAPS Cancellation because of no payment of annual fees