JPH08285189A - Gas cylinder and its manufacture - Google Patents

Gas cylinder and its manufacture

Info

Publication number
JPH08285189A
JPH08285189A JP8022070A JP2207096A JPH08285189A JP H08285189 A JPH08285189 A JP H08285189A JP 8022070 A JP8022070 A JP 8022070A JP 2207096 A JP2207096 A JP 2207096A JP H08285189 A JPH08285189 A JP H08285189A
Authority
JP
Japan
Prior art keywords
outer shell
resin
gas
inner shell
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8022070A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
正信 小林
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8022070A priority Critical patent/JPH08285189A/en
Publication of JPH08285189A publication Critical patent/JPH08285189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE: To reduce weight, and enhance reliability excellent at falling impact by arranging an inner shell having gas barrier performance and an outer shell having withstand voltage performance, and forming its outer shell of CFRP by reinforcing resin by carbon fiber having tensile strength not less than a specific value. CONSTITUTION: A gas cylinder 1 is provided with an inner shell 2 having gas barrier performance and a lightweight outer shell 3 having withstand voltage performance to cover its inner shell 2. An FRP-made reinforcing layer 7 by compounding resin and woven fabric or the like by winding reinforcing fiber thread in a hoop shape, is formed in a barrel part A of the inner shell 2. On the other hand, the outer shell 3 is formed of CFRP by reinforcing resin by carbon fiber having tensile strength not less than 5500MPa. Therefore, weight is reduced, and excellent performance to falling impact is obtained, and it can be inexpensively manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、各種のガスボン
ベ、とくに自動車等に搭載するのに好適なガスボンベ、
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various gas cylinders, particularly gas cylinders suitable for mounting on automobiles and the like,
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】天然ガスの高圧ガスあるいはプロパン等
の液化ガスを燃料とする自動車には、燃料貯蔵の目的
で、耐圧ボンベが搭載されている。一般に、販売、使用
されている耐圧ボンベは、スチール、アルミ等の金属製
である。しかし、金属製の耐圧ボンベは厚肉であり重い
ので、作業性が悪く危険であるばかりか、運搬に要する
エネルギーが大きい、すなわち、自動車の燃費を低下さ
せるという欠点がある。さらに、ガス燃料の単位重量当
たりの発熱量は、ガソリンの約半分であるから、ガス自
動車が無補給で走行できる距離を、市販されているガソ
リン燃料自動車相当に高めるためには、ガソリン以上の
重量のガス燃料を搭載しなければならないという問題が
ある。
2. Description of the Related Art An automobile that uses high-pressure natural gas or liquefied gas such as propane as a fuel is equipped with a pressure-resistant cylinder for the purpose of fuel storage. Generally, pressure cylinders sold and used are made of metal such as steel and aluminum. However, since the metal pressure-resistant cylinder is thick and heavy, it not only has poor workability and is dangerous, but also has a drawback that it requires a large amount of energy for transportation, that is, it lowers fuel consumption of an automobile. In addition, the calorific value per unit weight of gas fuel is about half that of gasoline, so in order to increase the distance that a gas vehicle can run without replenishment to the level equivalent to that of a gasoline fuel vehicle on the market, There is a problem that the gas fuel must be installed.

【0003】このため、最近になり、軽量化を目的とし
て、アルミニウムまたはプラスチック製の内殻を、耐圧
性のFRP(繊維強化プラスチック)製の外殻で覆って
いるガスボンベが開発されつつある。このガスボンベ
は、本質的にプラスチックからなるものであるから金属
製のものにくらべてかなり軽量であり、これを自動車の
天然ガスボンベとして用いると、燃費の向上が期待でき
る。しかしながら、ボンベの重量の大半は外殻であるか
ら、外殻を極力軽量化したボンベの方がより軽量で好ま
しく、燃費の向上だけでなく、タイヤやブレーキシュー
の摩耗などの消耗費の軽減、ボンベ取扱い時の労力の軽
減や事故の減少なども期待できる。
For this reason, gas cylinders in which an inner shell made of aluminum or plastic is covered with an outer shell made of pressure-resistant FRP (fiber reinforced plastic) have recently been developed for the purpose of weight reduction. Since this gas cylinder is essentially made of plastic, it is considerably lighter than a metal cylinder, and if it is used as a natural gas cylinder for automobiles, it can be expected to improve fuel efficiency. However, since most of the weight of the cylinder is the outer shell, a cylinder with the outer shell made as light as possible is preferable because it is lighter in weight, not only improving fuel efficiency, but also reducing consumption costs such as wear of tires and brake shoes, It can be expected to reduce labor when handling cylinders and reduce accidents.

【0004】もう一つの自動車搭載用ボンベの問題点
は、落下衝撃による損傷である。組立工程、運搬過程に
おいてボンベの重量が重い故に、ボンベが落下して地面
等に衝突した際にボンベに働く衝撃エネルギー(衝撃エ
ネルギーはボンベの重量に比例して大きくなる)が大き
くなり、重いボンベ程落下衝撃による損傷が大きくな
る。
Another problem with the vehicle-mounted cylinder is damage caused by a drop impact. Since the weight of the cylinder is heavy during the assembly process and the transportation process, the impact energy (impact energy increases in proportion to the weight of the cylinder) acting on the cylinder when the cylinder falls and collides with the ground etc. becomes large, and the heavy cylinder is heavy. The greater the drop impact, the greater the damage.

【0005】さらに、FRPに強度の低い補強繊維を使
ったボンベは、肉厚がより厚くなるので、クラックの原
因となる成形時のボイドの除去が困難となるし、硬化時
に樹脂の発熱による暴走反応や内殻の損傷を回避するた
めに、硬化時間が長くなり生産性が低下するという問題
もある。
Further, since the cylinder using the reinforcing fiber having low strength for FRP has a thicker wall, it is difficult to remove voids which cause cracks during molding, and the resin is runaway due to heat generation during curing. In order to avoid the reaction and damage to the inner shell, there is a problem that the curing time becomes long and the productivity is lowered.

【0006】[0006]

【発明が解決しようとする課題】この発明の目的は、従
来のガスボンベの上述した問題点を解決し、軽量である
のはもちろんのこと、落下衝撃にも優れた、信頼性の高
いガスボンベを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of conventional gas cylinders and to provide a highly reliable gas cylinder which is not only lightweight but also excellent in drop impact. To do.

【0007】また、この発明の他の目的は、そのような
ガスボンベを低コストで製造する方法を提供することに
ある。
Another object of the present invention is to provide a method for manufacturing such a gas cylinder at low cost.

【0008】[0008]

【課題を解決するための手段】前述の如き問題を解決す
るために、本発明は、ガスバリア性の内殻と耐圧性の外
殻とを有し、外殻は、引張強度が5,500MPa以上
および/または表面比窒素濃度が0.02以上、表面比
酸素濃度が0.30以下である炭素繊維で樹脂を強化し
てなるCFRP(炭素繊維強化プラスチック)からなる
ことを特徴とするガスボンベを提供する。
In order to solve the above problems, the present invention has a gas barrier inner shell and a pressure resistant outer shell, and the outer shell has a tensile strength of 5,500 MPa or more. And / or a gas cylinder characterized by comprising CFRP (carbon fiber reinforced plastic) obtained by reinforcing a resin with carbon fibers having a surface specific nitrogen concentration of 0.02 or more and a surface specific oxygen concentration of 0.30 or less. To do.

【0009】また、この発明は、そのようなガスボンベ
を製造する方法として、ガスバリア性を有する内殻の周
りに、フィラメントワインディング法またはテープワイ
ンディング法を用いて耐圧性のCFRP製外殻を形成し
てガスボンベを製造するに際し、炭素繊維として、
(a)引張強度が5,500MPa以上および/または
(b)表面比窒素濃度が0.02以上、表面比酸素濃度
が0.30以下である炭素繊維を用いることを特徴とす
る方法を提供する。
Further, according to the present invention, as a method for producing such a gas cylinder, a pressure-resistant CFRP outer shell is formed around a gas barrier inner shell by a filament winding method or a tape winding method. When manufacturing a gas cylinder, as carbon fiber,
(A) A carbon fiber having a tensile strength of 5,500 MPa or more and / or (b) a surface specific nitrogen concentration of 0.02 or more and a surface specific oxygen concentration of 0.30 or less is used. .

【0010】この発明をその一実施態様に基づいて詳細
に説明するに、図1において、ガスボンベ1は、ガスバ
リア性を有する内殻2と、この内殻2を覆うように設け
た耐圧性の軽量外殻3とを有する。このガスボンベ1
は、全体として胴部Aと、それに続く鏡板部Bと、ノズ
ル取付用口金4およびそれに装着されたノズル5と、ボ
ンベ底部に設けられたボス6とを有している。
The present invention will be described in detail with reference to one embodiment thereof. In FIG. 1, a gas cylinder 1 includes an inner shell 2 having a gas barrier property, and a lightweight pressure-resistant material provided so as to cover the inner shell 2. And an outer shell 3. This gas cylinder 1
Has a body portion A as a whole, an end plate portion B following it, a nozzle mounting mouthpiece 4 and a nozzle 5 attached thereto, and a boss 6 provided at the bottom of the cylinder.

【0011】上記において、内殻は、ガス漏れを防ぐ作
用を持つ。また、後述するように、耐圧性の軽量外殻を
形成するときの芯体としても作用する。
In the above, the inner shell has a function of preventing gas leakage. Further, as will be described later, it also acts as a core when forming a lightweight outer shell having pressure resistance.

【0012】内殻は、極めて薄いアルミニウムやマグネ
シウム合金等の軽金属、あるいは、ポリエチレン、ポリ
プロピレン樹脂、ポリアミド樹脂、ABS樹脂、ポチブ
チレンテレフタレート樹脂、ポリアセタール樹脂、ポリ
カーボネート等の樹脂で作られていてもよい。耐衝撃性
に優れるという意味では、ABS樹脂が好ましい。ガス
バリア性に優れるという意味では(高密度)ポリエチレ
ンが好ましい。
The inner shell may be made of an extremely thin light metal such as aluminum or magnesium alloy, or a resin such as polyethylene, polypropylene resin, polyamide resin, ABS resin, potybutylene terephthalate resin, polyacetal resin or polycarbonate. ABS resin is preferable in terms of excellent impact resistance. (High density) polyethylene is preferable in terms of excellent gas barrier property.

【0013】そのような樹脂製の内殻は、周知のブロー
成形法によって製造できる。複合ブロー成形法を用い、
ガスシール性に優れる、たとえば、高密度ポリエチレン
樹脂の層で挟んだ多層構造とすることもできる。さら
に、内殻は、FRPで作られていてもよい。そのような
FRP製の内殻は、たとえば、ガラス繊維や炭素繊維な
どの無機繊維や、アラミド繊維やポリエチレン繊維など
の有機繊維の、繊維長2〜10mm程度の短繊維を含む
樹脂を射出成形することによって製造することができ
る。
Such a resin inner shell can be manufactured by a well-known blow molding method. Using the composite blow molding method,
A gas-sealing property may be excellent, for example, a multi-layer structure sandwiched between high-density polyethylene resin layers may be used. Further, the inner shell may be made of FRP. Such an FRP inner shell is formed by injection molding a resin containing inorganic fibers such as glass fibers and carbon fibers, or organic fibers such as aramid fibers and polyethylene fibers, and short fibers having a fiber length of about 2 to 10 mm. It can be manufactured by

【0014】内殻は上述したようにガス漏れを防ぐ作用
をもっている。かかる作用を向上させるために、内面お
よび/または外表面にガスバリア層を形成するのも好ま
しい。たとえば、ブロー成形に際して吹き込みガスとし
てフッ素を含む窒素ガスを用いると、内殻の内表面にフ
ッ素樹脂の皮膜からなるガスバリア層を形成することが
できる。また、外表面に銅、ニッケル、クロム等の金属
メッキ皮膜を形成してガスバリア層とすることもでき
る。金属メッキ皮膜の形成は、電解メッキ法や無電解メ
ッキ法によることができる。内殻を複合ブロー成形法に
よって製造する場合、内側にガスバリア性に優れたポリ
アミドの樹脂等を配し、外側に易メッキ性の、たとえば
ABS樹脂の層を配して金属メッキ皮膜の形成を容易に
することもできる。
The inner shell has the function of preventing gas leakage as described above. In order to improve such action, it is also preferable to form a gas barrier layer on the inner surface and / or the outer surface. For example, when a nitrogen gas containing fluorine is used as a blowing gas at the time of blow molding, a gas barrier layer made of a fluororesin film can be formed on the inner surface of the inner shell. Further, a metal barrier coating of copper, nickel, chromium or the like may be formed on the outer surface to form a gas barrier layer. The metal plating film can be formed by an electrolytic plating method or an electroless plating method. When the inner shell is manufactured by the composite blow molding method, a polyamide resin or the like having excellent gas barrier properties is arranged on the inner side, and an easily-platable, eg ABS resin layer is arranged on the outer side to facilitate the formation of a metal plating film. You can also

【0015】内殻には、また、その内面に2.5〜5c
mの間隔で周方向に述べるリング状のリブを設けること
ができる。そのような内殻は、たとえば、リブ付のプラ
スチック製の半割の内殻を作り、それらを接合、一体化
することによって得ることができる。このリブは、内殻
の剛性を向上させ、後述する外殻の形成時における内殻
の変形を防ぎ、補強繊維の蛇行や遍在による外殻の強度
低下や強度のばらつき、ひいては耐圧性能の低下を防ぐ
のに役立つ。
The inner shell also has 2.5 to 5c on its inner surface.
Ring-shaped ribs described in the circumferential direction can be provided at intervals of m. Such an inner shell can be obtained, for example, by making a half-divided inner shell made of a plastic with ribs, and joining and integrating them. These ribs improve the rigidity of the inner shell, prevent the inner shell from being deformed when the outer shell described later is formed, reduce the strength of the outer shell due to the meandering and ubiquity of the reinforcing fibers, the variation in strength, and eventually the pressure resistance. Help prevent.

【0016】再び図1を参照するに、内殻の胴部Aに
は、後述する補強繊維糸をフープ巻きしたり、そのよう
な補強繊維糸の織物等と樹脂とを複合してなるFRP製
の補強層7が形成されている。この補強層7は、鏡板部
Bの一部まで延びていてもよい。もっとも、この発明に
おいては、補強層を有することが必須ではない。
Referring again to FIG. 1, the body portion A of the inner shell is made of FRP which is formed by hoop winding a reinforcing fiber thread described later or by combining a woven fabric of such a reinforcing fiber thread and a resin. Reinforcing layer 7 is formed. The reinforcing layer 7 may extend to a part of the end plate portion B. However, in the present invention, it is not essential to have the reinforcing layer.

【0017】一方、外殻3は、引張強度が5,500M
Pa以上である炭素繊維と樹脂とを含むCFRPからな
っている。引張強度が5,500MPa以上である炭素
繊維で外殻を構成することで、ガスボンベは、軽量で、
かつ、優れた落下衝撃性能を示し、信頼性に優れるもの
となる。
On the other hand, the outer shell 3 has a tensile strength of 5,500M.
It is made of CFRP containing carbon fiber and resin having Pa or more. By constructing the outer shell with carbon fibers having a tensile strength of 5,500 MPa or more, the gas cylinder is lightweight and
In addition, it exhibits excellent drop impact performance and is highly reliable.

【0018】すなわち、ボンベの重量の大半は外殻であ
り、ボンベを軽量化して、自由落下時の衝撃エネルギー
値(衝撃エネルギー値はボンベの重量に比例して大きく
なる)を軽減するためには、外殻を軽量化する必要があ
る。このために、外殻を構成する樹脂および補強繊維の
量を減ずることも大事であるが、樹脂の含有率を小さく
すると、補強繊維同士が接触して、繊維本来の強度が発
現しない(いわゆる強度利用率が低下する)という問題
があり、樹脂含有率を小さくするには限界がある。強度
利用率を考えると樹脂の含有率は35%付近が好まし
い。したがって、用いる補強繊維の強度は5,500M
Pa以上であることが必要である。5,500MPaと
いう高強度炭素繊維糸を使用することで、ボンベ外殻の
肉厚は薄くなり、ボンベの重量が飛躍的に軽くなり、こ
れを搭載したガス自動車の燃費が向上し、かつ、タイヤ
やブレーキシュー等の消耗費も低減でき、ボンベ取り扱
い時の落下衝撃によるボンベの損傷も大幅に軽減でき
る。さらには、外殻の肉厚が薄いことから、外殻内のボ
イドが少なく、硬化時の発熱による暴走や内殻の損傷の
ない、生産性の高いボンベが製造できるという効果も併
せもつ。
That is, most of the weight of the cylinder is an outer shell, and in order to reduce the weight of the cylinder and reduce the impact energy value (the impact energy value increases in proportion to the weight of the cylinder) during free fall. , It is necessary to reduce the weight of the outer shell. For this reason, it is also important to reduce the amount of resin and reinforcing fibers that make up the outer shell, but if the resin content is reduced, the reinforcing fibers contact each other and the original strength of the fibers does not develop (so-called strength. There is a problem in that the utilization rate decreases), and there is a limit to reducing the resin content rate. Considering the strength utilization ratio, the resin content is preferably around 35%. Therefore, the strength of the reinforcing fiber used is 5,500M.
It is necessary to be Pa or more. By using a high-strength carbon fiber yarn of 5,500 MPa, the thickness of the outer shell of the cylinder is reduced, the weight of the cylinder is dramatically reduced, the fuel economy of a gas vehicle equipped with this is improved, and the tire is It also reduces the consumption of brake shoes and the like, and can greatly reduce the damage to the cylinder due to the drop impact when handling the cylinder. Furthermore, since the outer shell is thin, there are few voids in the outer shell, and it is possible to manufacture a highly productive cylinder without runaway or damage to the inner shell due to heat generation during curing.

【0019】さらに、耐疲労性を考慮すると、補強炭素
繊維の弾性率は、220GPa以上であることが好まし
い。220GPa未満では、給ガス、排ガス時のボンベ
の変形量が大きくなって、耐疲労性能が低下するからで
ある。このような外殻は、たとえば次のようにして構成
することができる。
Further, considering fatigue resistance, the elastic modulus of the reinforcing carbon fiber is preferably 220 GPa or more. This is because if it is less than 220 GPa, the deformation amount of the cylinder at the time of gas supply and exhaust gas becomes large and the fatigue resistance performance deteriorates. Such an outer shell can be constructed as follows, for example.

【0020】すなわち、上述した内殻を、いわゆるマン
ドレルとして、その周りに周知のフィラメントワインデ
ィング法やテープワインディング法によって樹脂を含む
補強繊維の巻層を形成し、成形することによって構成す
ることができる。このとき、補強層がある場合にはその
表面をも含めた内殻の外表面を平均高さが10〜20μ
m程度の粗面に形成しておくと、ワインディング時にお
ける補強繊維糸の滑りを防止でき、補強繊維の分布の乱
れを少なくできるので好ましい。
That is, the above-mentioned inner shell may be formed as a so-called mandrel by forming a wound layer of a reinforcing fiber containing a resin around it by a well-known filament winding method or tape winding method and molding it. At this time, if there is a reinforcing layer, the average height of the outer surface of the inner shell including the surface is 10 to 20 μm.
It is preferable to form a rough surface of about m because slippage of the reinforcing fiber yarn at the time of winding can be prevented and disturbance of the distribution of the reinforcing fiber can be reduced.

【0021】補強繊維糸としては炭素繊維のなかでも、
PAN系の炭素繊維が好ましい。また、これら補強繊維
糸は、屈曲による応力集中を小さくし、ボイドの発生を
少なくできるという意味で、開繊性に優れる無撚繊維糸
であることが好ましい。そして、そのような繊維のなか
でもJIS−R7601によって測定する引張強度が
5,500MPa以上である炭素繊維が好ましい。この
ような炭素繊維は、たとえば以下のようにして製造でき
る。
Among the carbon fibers as the reinforcing fiber yarn,
PAN-based carbon fibers are preferred. Further, these reinforcing fiber yarns are preferably non-twisted fiber yarns having excellent openability in the sense that stress concentration due to bending can be reduced and generation of voids can be reduced. Among such fibers, carbon fibers having a tensile strength of 5,500 MPa or more measured according to JIS-R7601 are preferable. Such a carbon fiber can be manufactured as follows, for example.

【0022】すなわち、アクリルニトリルを少なくとも
90重量%含む重合体を湿式紡糸したり、乾・湿式紡糸
したり、乾式紡糸(好ましくは乾・湿式紡糸)して、繊
度が1.1デニール以下であるような細繊度のアクリル
繊維を得る。以下、乾・湿式紡糸方法に基づいた製造方
法を説明する。
That is, a polymer containing at least 90% by weight of acrylonitrile is subjected to wet spinning, dry / wet spinning or dry spinning (preferably dry / wet spinning), and the fineness is 1.1 denier or less. Acrylic fiber with such fineness is obtained. Hereinafter, a manufacturing method based on the dry / wet spinning method will be described.

【0023】90重量%以上のアクリルニトリルを主成
分とする重合体溶液を、不純物や内部ボイドを除去する
ためにフィルターで濾過し、一旦、不活性雰囲気中およ
び空気中に吐出した後、凝固浴中に導入する。得られた
水膨潤糸を水洗、延伸し、さらに、耐炎化工程での糸同
士の融着を防止するためシリコーン系油剤を1〜2重量
%均一付着させる処理と乾燥工程を経て、100℃以上
の温度でさらに延伸することによって、単糸径が5〜1
5μm程度であるプリカーサーを形成する。
A polymer solution containing 90% by weight or more of acrylonitrile as a main component is filtered with a filter to remove impurities and internal voids, and once discharged into an inert atmosphere and air, a coagulation bath Introduce inside. The resulting water-swelled yarn is washed with water, drawn, and further subjected to a treatment of uniformly adhering 1 to 2% by weight of a silicone-based oil agent to prevent fusion of the yarns in the flameproofing process and a drying process, and then at 100 ° C or higher. By further drawing at the temperature of, the single yarn diameter is 5 to 1
A precursor of about 5 μm is formed.

【0024】つぎに、上記プリカーサーを、空気中に
て、かつ伸長下に200〜300℃に加熱して、耐炎化
する。この際、不純物の付着および表面欠陥を減少させ
るため空気中の塵濃度はできるかぎり少なくすることが
好ましい。
Next, the above precursor is heated to 200 to 300 ° C. in the air and while being stretched to make it flame resistant. At this time, it is preferable to reduce the dust concentration in the air as much as possible in order to reduce adhesion of impurities and surface defects.

【0025】つぎに、上記耐炎化糸を、窒素ガスやアル
ゴンガスなどの不活性雰囲気中にて、かつ伸長下に30
0〜800℃に加熱し、さらに、不活性雰囲気中にて、
かつ緊張下に1,200〜1,800℃に加熱して炭素
化処理を施し、炭素繊維を得る。この際、不純物の付着
を防ぐため耐炎化炉、炭素化炉間の空気中の塵濃度はで
きるかぎり少なくすることが好ましい。
Next, the above flame-resistant yarn is stretched in an inert atmosphere such as nitrogen gas or argon gas and under stretching.
Heat to 0-800 ° C, then in an inert atmosphere,
And, under tension, it is heated to 1,200 to 1,800 ° C. and subjected to carbonization treatment to obtain carbon fibers. At this time, in order to prevent the adhesion of impurities, it is preferable to reduce the dust concentration in the air between the flameproofing furnace and the carbonization furnace as much as possible.

【0026】さらに、繊維表面の欠陥を除去し高い引張
強度を得るため、上記炭素繊維を、硝酸を主成分とする
無機酸水中で電解処理し、引き続き不活性ガス中にて5
00〜800℃に加熱し、電解処理によって生じた官能
基を、樹脂との接着が損なわれない程度に不活性化し、
表面の結晶性が損なわれない範囲で表面層を除去して炭
素繊維を得ることもできる。
Further, in order to remove defects on the surface of the fiber and obtain high tensile strength, the carbon fiber is subjected to an electrolytic treatment in an inorganic acid water containing nitric acid as a main component, and then 5 times in an inert gas.
By heating to 00 to 800 ° C. to inactivate the functional groups generated by the electrolytic treatment to the extent that the adhesion with the resin is not impaired,
The carbon fiber can be obtained by removing the surface layer as long as the crystallinity of the surface is not impaired.

【0027】さて、上述した炭素繊維は、X線光電子分
光法により測定される表面比酸素濃度(以下O/Cと記
す)、表面比窒素濃度(以下N/Cと記す)を特定の範
囲内にすると、後述する樹脂との親和性や接着性等を向
上させることができて好ましい。
The carbon fibers described above have a specific surface oxygen concentration (hereinafter referred to as O / C) and a specific surface nitrogen concentration (hereinafter referred to as N / C) measured by X-ray photoelectron spectroscopy within specific ranges. It is preferable that it is possible to improve the affinity and adhesiveness with the resin described later.

【0028】さらに、本発明に係るガスボンベの外殻に
用いられる炭素繊維においては、X線光電子分光法によ
り測定される表面比酸素濃度O/C(炭素Cに対する酸
素Oの原子数比)および表面比窒素濃度N/C(炭素C
に対する窒素Nの原子数比)は、O/Cが0.30以
下、N/Cが0.02以上とするものである。O/Cは
好ましくは0.25以下、さらに好ましくは0.20以
下である。O/Cが0.30を超えると、樹脂の官能基
と炭素繊維最表面との化学結合は強固になるものの、本
来炭素繊維基質自身が有する強度よりもかなり低い酸化
物層が炭素繊維表面を覆うことになるため、結果として
得られる外殻の耐圧強度は低いものになってしまう。
Furthermore, in the carbon fiber used for the outer shell of the gas cylinder according to the present invention, the surface specific oxygen concentration O / C (atomic ratio of oxygen O to carbon C) and the surface measured by X-ray photoelectron spectroscopy Specific nitrogen concentration N / C (carbon C
The ratio of the number of atoms of nitrogen N to () is such that O / C is 0.30 or less and N / C is 0.02 or more. O / C is preferably 0.25 or less, more preferably 0.20 or less. When O / C exceeds 0.30, the chemical bond between the functional group of the resin and the outermost surface of the carbon fiber becomes strong, but the oxide layer, which is much lower in strength than the original carbon fiber substrate itself, has Since it is covered, the resulting outer shell has a low compressive strength.

【0029】O/Cの下限としては、0.04以上、好
ましくは0.08以上、さらに好ましくは、0.10以
上が望ましい。O/Cが0.04に満たないと、たとえ
ば、樹脂との反応性および反応量が不足し、その結果、
外殻の耐圧強度が発現しない場合がある。
The lower limit of O / C is 0.04 or more, preferably 0.08 or more, and more preferably 0.10 or more. If O / C is less than 0.04, for example, the reactivity with the resin and the reaction amount are insufficient, and as a result,
The pressure resistance of the outer shell may not be expressed.

【0030】表面比窒素濃度N/Cは、0.02以上で
あり、好ましくは0.03以上、より好ましくは0.0
4以上である。N/Cが0.02未満の炭素繊維は、樹
脂との反応性を向上させることができない場合があり、
結果として外殻の耐圧強度が発現できない。
The surface specific nitrogen concentration N / C is 0.02 or more, preferably 0.03 or more, and more preferably 0.0.
It is 4 or more. Carbon fiber having N / C less than 0.02 may not be able to improve the reactivity with the resin,
As a result, the pressure resistance of the outer shell cannot be expressed.

【0031】N/Cの上限としては、0.30以下、好
ましくは0.25以下、さらに好ましくは0.20以下
が望ましい。すなわち、N/Cが0.30を超えると、
樹脂との反応性および反応量が過剰になるだけで、強度
のさらなる向上は望めない。
The upper limit of N / C is 0.30 or less, preferably 0.25 or less, more preferably 0.20 or less. That is, when N / C exceeds 0.30,
Only the reactivity with the resin and the reaction amount become excessive, and further improvement in strength cannot be expected.

【0032】上記のようなX線光電子分光法により測定
される表面比酸素濃度O/Cおよび表面比窒素濃度N/
Cを前記した特定の範囲とする炭素繊維は、電解酸化処
理を施したり、気相または液相での酸化処理を施すこと
により得ることができる。以下に電解酸化処理方法に基
づいた製造方法を説明する。
Surface specific oxygen concentration O / C and surface specific nitrogen concentration N / measured by X-ray photoelectron spectroscopy as described above.
The carbon fiber having C in the above-mentioned specific range can be obtained by performing electrolytic oxidation treatment or oxidation treatment in a gas phase or a liquid phase. The manufacturing method based on the electrolytic oxidation treatment method will be described below.

【0033】この場合、電解液としては、酸性およびア
ルカリ性水溶液のどちらも採用することができ、酸性水
溶液の電解質は、具体的には硫酸、硝酸、塩酸などを用
いることができる。アルカリ性水溶液であアンモニウム
イオンを含む水溶液が好ましく、具体的には、炭酸水素
アンモニウム、炭酸アンモニウム、水酸化テトラアルキ
ルアンモニウム塩等あるいはそれらの混合物などを用い
ることができる。特に、表面比窒素濃度N/Cを増加で
きる炭酸水素アンモニウム、炭酸アンモニウムが好まし
い。
In this case, either an acidic or alkaline aqueous solution can be adopted as the electrolytic solution, and sulfuric acid, nitric acid, hydrochloric acid or the like can be specifically used as the electrolyte of the acidic aqueous solution. An aqueous solution containing ammonium ions is preferable as the alkaline aqueous solution, and specifically, ammonium hydrogen carbonate, ammonium carbonate, tetraalkylammonium hydroxide salt or the like or a mixture thereof can be used. Particularly, ammonium hydrogen carbonate and ammonium carbonate, which can increase the surface specific nitrogen concentration N / C, are preferable.

【0034】処理電気量は、被処理炭素繊維の炭化度に
合わせて最適化することが好ましいが、炭素繊維基質の
引張強度低下を防ぎ、かつ表層の結晶性の低下を進ませ
る観点から、電解処理は小さい電気量で複数回処理を繰
り返し行うのが好ましい。具体的には、電解槽1槽当た
りの通電量は1クーロン/g・槽(炭素繊維1g、1槽
当たりのクーロン数)以上、40クーロン/g・槽以下
が好ましい。
The amount of electricity for treatment is preferably optimized in accordance with the carbonization degree of the carbon fiber to be treated, but from the viewpoint of preventing the tensile strength of the carbon fiber substrate from decreasing and promoting the deterioration of the crystallinity of the surface layer, electrolytic treatment is performed. The treatment is preferably repeated a plurality of times with a small amount of electricity. Specifically, the amount of electricity supplied per electrolytic cell is preferably 1 coulomb / g · tank (1 g of carbon fiber, the number of coulombs per tank) or more and 40 coulomb / g · tank or less.

【0035】通電方法としては、炭素繊維を電極ローラ
に直接接触させて通電させる直接通電、あるいは炭素繊
維と電極との間に電解液を介して通電させる間接通電の
いずれも採用することができるが、高い引張強度を得る
ためには電解処理時の毛羽立ち、電気スパーク等が抑え
られる間接通電が好ましい。
As the energization method, either direct energization in which the carbon fiber is brought into direct contact with the electrode roller to energize it or indirect energization in which the carbon fiber and the electrode are energized via an electrolytic solution can be adopted. In order to obtain high tensile strength, indirect energization that suppresses fuzzing during electric treatment, electric sparks, etc. is preferable.

【0036】なお、電解処理後には、水洗、乾燥するこ
とが好ましい。この場合、後述する樹脂との親和性や接
着性等を向上させるため、炭素繊維の最表面に存在する
官能基が熱分解しないように、できるだけ低い温度で乾
燥することが望ましく、具体的には、乾燥温度が250
℃以下、さらに好ましくは210℃以下で乾燥すること
が望ましい。
After the electrolytic treatment, it is preferable to wash with water and dry. In this case, in order to improve the affinity and adhesiveness with the resin described later, it is desirable to dry at a temperature as low as possible so that the functional group existing on the outermost surface of the carbon fiber is not thermally decomposed, and specifically, , The drying temperature is 250
It is desirable to dry at or below 0 ° C, and more preferably at or below 210 ° C.

【0037】CFRPのマトリックス樹脂としては、エ
ポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル
樹脂、フェノール樹脂等の熱硬化性樹脂、または、ポリ
アミド樹脂、ポリエチレンテレフタレート樹脂、ABS
樹脂、ポリエーテルケトン樹脂、ポリフェニレンサルフ
ァイド樹脂、ポリ−4−メチルペンテン−1樹脂、ポリ
プロピレン樹脂等の熱可塑性樹脂を用いることができ
る。とくに、繊維の強度利用率を大きくするという意味
では、引張伸度の大きな樹脂、好ましくはJIS−K7
115により測定される破断伸度が4%以上、さらに好
ましくは6%以上である樹脂を選択、使用するのがよ
い。
As the matrix resin of CFRP, thermosetting resins such as epoxy resin, unsaturated polyester resin, vinyl ester resin and phenol resin, or polyamide resin, polyethylene terephthalate resin, ABS.
Thermoplastic resins such as resins, polyetherketone resins, polyphenylene sulfide resins, poly-4-methylpentene-1 resins, and polypropylene resins can be used. Particularly, in terms of increasing the strength utilization factor of the fiber, a resin having a large tensile elongation, preferably JIS-K7.
It is preferable to select and use a resin having a breaking elongation measured by 115 of 4% or more, more preferably 6% or more.

【0038】ところで、内圧によって生ずる円筒ガスボ
ンベの軸方向における引張応力と周方向における引張応
力との比率は、ほぼ1:2になる。したがって、軽量化
のためには、補強繊維を軸方向と周方向にほぼ1:2の
割合で配列させることが好ましい。また、軸方向に対し
て、±55度で巻き付けても軸方向と周方向の強度はほ
ぼ1:2となるので好ましい。
By the way, the ratio of the tensile stress in the axial direction of the cylindrical gas cylinder generated by the internal pressure and the tensile stress in the circumferential direction is approximately 1: 2. Therefore, in order to reduce the weight, it is preferable to arrange the reinforcing fibers in the axial direction and the circumferential direction at a ratio of approximately 1: 2. Further, even if it is wound at ± 55 degrees with respect to the axial direction, the strength in the axial direction and the circumferential direction becomes approximately 1: 2, which is preferable.

【0039】また、最外層を、耐腐食性、耐酸性、耐ア
ルカリ性、耐湿性に優れた樹脂、たとえば、ポリエステ
ル樹脂、ビニルエステル樹脂、ポリエチレン樹脂、フェ
ノール樹脂等による樹脂層として形成することもでき
る。
The outermost layer can also be formed as a resin layer made of a resin having excellent corrosion resistance, acid resistance, alkali resistance and moisture resistance, for example, polyester resin, vinyl ester resin, polyethylene resin, phenol resin or the like. .

【0040】[0040]

【実施例】本発明のガスボンベの特徴を実施例によって
詳述する。 実施例1 アクリルニトリルを99.5重量%、イタコン酸0.5
重量%からなるアクリル系共重合体の20%ジメチルス
ルフォキシド溶液(45℃における溶液粘度が600ポ
イズの重合体)を紡糸口金を介して、一旦空気中に吐出
させ、3mmの空間を通過させた後、静置式の凝固浴で
ジメチルスルフォキシド30%、5℃の凝固浴に導入し
て凝固繊維を得た。引き続き水洗、熱水中で延伸し、ア
ミノ変性シリコーン油剤を付着、乾燥緻密化し加圧スチ
ーム中で延伸を行い、全倍率10倍に延伸して巻きと
り、単糸繊度が1.0デニール、単糸数12,000本
のプリカーサーを得た(油剤の付着量1.55重量
%)。引き続き230/260℃の温度プロフィルを有
する空気中で耐炎化せしめ、その後、最高温度1,30
0℃の炭化炉に導入し、窒素ガス中にて300〜700
℃の温度域における昇温速度を約300℃/分、1,0
00〜1,200℃の温度域における昇温速度を約40
0℃/分の条件下で炭化処理して炭素繊維を得た。引き
続き濃度0.05モル/リットルの硫酸水溶液を電解液
とする電解槽中にて通電量5クーロン/グラム(1槽当
たりの電気量:1.25クーロン/g・槽)で1分間電
解処理し、さらに水洗、150℃で乾燥して、単糸径:
7μm、単糸数:12,000本、引張強度:5,83
0MPa、引張弾性率:245GPa、比重:1.8
0、表面比酸素濃度O/C:0.18、表面比窒素濃度
N/C:0.04の炭素繊維を得た。
EXAMPLES The characteristics of the gas cylinder of the present invention will be described in detail with reference to examples. Example 1 Acrylonitrile 99.5% by weight, itaconic acid 0.5
A 20% dimethyl sulfoxide solution of acrylic copolymer (polymer having a solution viscosity of 600 poise at 45 ° C.) consisting of wt% was once discharged into the air through a spinneret and passed through a space of 3 mm. After that, dimethyl sulfoxide 30% was introduced into a coagulation bath at 5 ° C. in a stationary coagulation bath to obtain coagulated fibers. Sequentially, washing with water and drawing in hot water, applying amino-modified silicone oil agent, drying and densifying, drawing in pressurized steam, drawing with a total draw ratio of 10 times and winding, single yarn fineness of 1.0 denier, simple A precursor having 12,000 yarns was obtained (oil agent adhesion amount 1.55% by weight). It is subsequently flameproofed in air with a temperature profile of 230/260 ° C., after which the maximum temperature of 1,30
It is introduced into a carbonization furnace at 0 ° C and 300 to 700 in nitrogen gas.
Temperature rising rate in the temperature range of ℃ is about 300 ℃ / min, 1.0
The temperature rising rate in the temperature range of 00 to 1,200 ° C is about 40
Carbon fiber was obtained by carbonization under the condition of 0 ° C./min. Subsequently, electrolysis was carried out for 1 minute at an energization amount of 5 coulombs / gram (electricity amount per tank: 1.25 coulombs / g. Bath) in an electrolysis bath using an aqueous solution of sulfuric acid having a concentration of 0.05 mol / liter as an electrolytic solution. , Further washed with water, dried at 150 ℃, single yarn diameter:
7 μm, number of single yarn: 12,000, tensile strength: 5,83
0 MPa, tensile modulus: 245 GPa, specific gravity: 1.8
Carbon fiber having 0, surface specific oxygen concentration O / C: 0.18, and surface specific nitrogen concentration N / C: 0.04 was obtained.

【0041】上記繊維にエポキシ樹脂(ビスフェノール
A型エポキシ樹脂、硬化剤:ジシアンジアミドDCMU
(ジクロロフェニルジメチルウレア系))を樹脂槽およ
びローラーガイドを通過させることで、含浸させながら
フィラメントワインディング法により、ブロー成形した
高密度ポリエチレン樹脂からなる内殻(外径:300m
m、ノズル取付部を除く全長:500mm、肉厚:5m
m、重量:2.5kg)を、いわゆるマンドレルとし
て、その内殻の上に、外殻の軸方向と周方向(正確には
θ=3°と90°)の繊維量が1:2となるように巻き
付けて外殻を形成した。
Epoxy resin (bisphenol A type epoxy resin, curing agent: dicyandiamide DCMU was added to the above fibers.
(Dichlorophenyldimethylurea type)) is passed through a resin tank and a roller guide to impregnate the filament shell by a filament winding method to form an inner shell made of high density polyethylene resin (outer diameter: 300 m).
m, total length excluding nozzle mounting part: 500 mm, wall thickness: 5 m
m, weight: 2.5 kg) as a so-called mandrel, and the amount of fibers in the axial direction and the circumferential direction (correctly θ = 3 ° and 90 °) of the outer shell is 1: 2 on the inner shell. To form an outer shell.

【0042】しかる後、オーブン中に縦置きして、昇温
速度1.5℃/min、130℃で2時間加熱し、降温
速度2.5℃/minで硬化させてガスボンベの本体を
成形した(圧力は大気圧)。かくして得られた本体の外
径と重量はそれぞれ、310mm、6.1kgであっ
た。
Then, it was placed vertically in an oven, heated at a temperature rising rate of 1.5 ° C./min and 130 ° C. for 2 hours, and cured at a temperature lowering rate of 2.5 ° C./min to mold the body of the gas cylinder. (Pressure is atmospheric pressure). The outer diameter and the weight of the main body thus obtained were 310 mm and 6.1 kg, respectively.

【0043】つぎに、本体をリフターで持ち上げて3m
の高さからコンクリート床面上に水平(胴部が床に衝突
するように)に落下(衝突時の速度は約5m/s)させ
て、衝突後の外殻表面を目視により観察したところ、凹
みや繊維切れなどの損傷はみられなかった。
Next, the main body is lifted up by a lifter and moved to 3 m.
From the height of the concrete to the concrete floor surface (like the body collides with the floor), it is dropped (velocity at the time of collision is about 5 m / s), and the outer shell surface after the collision is visually observed. No damage such as dents or fiber breaks was observed.

【0044】つぎに、本体のノズル取付部から水圧(水
温約15℃)にて繰り返し加圧(加圧速度=5.0MP
a/min)していったところ、圧力が53.7MPa
に達した時点で本体胴部中央からリーク(水漏れ)が生
じた。
Next, water pressure (water temperature of about 15 ° C.) is repeatedly applied from the nozzle mounting portion of the main body (pressurization speed = 5.0 MP).
a / min), the pressure was 53.7 MPa
When it reached the point, a leak (water leak) occurred from the center of the main body.

【0045】さらに、リークが生じなかった、本体鏡板
部をリング状に切断して、断面を研磨(#400のサン
ドペーパーで研磨の後、#1,000、#2,000の
サンドペーパーでさらに研磨)して、断面全体を光学顕
微鏡(×500倍)で観察したところ、ボイドは認めら
れなかった。
Further, the main body end plate portion which did not leak was cut into a ring shape, and the cross section was polished (after polishing with # 400 sandpaper, further polishing with # 1,000 and # 2,000 sandpaper). After polishing, the entire cross section was observed with an optical microscope (× 500), and no void was observed.

【0046】比較例1 アミノ変性シリコーンの油剤の付着量を0.12重量%
とし、電界処理に続けて行う水洗後の乾燥を窒素雰囲気
下350℃で行った他は、実施例1と同様にして、単糸
径:7μm、単糸数:12,000本、引張強度:3,
300MPa、引張弾性率:244GPa、比重:1.
79、表面酸素濃度O/C:0.12、表面比窒素濃度
N/C:0.01の炭素繊維を得た。上記繊維を実施例
1と同様にしてフィラメントワインディングして本体を
得た。かくして得られた外殻の外径と重量はそれぞれ、
320mm、9.6kgであった。
COMPARATIVE EXAMPLE 1 Amino-modified silicone oil content was 0.12% by weight.
In the same manner as in Example 1 except that drying after washing with water, which was performed following the electric field treatment, was performed at 350 ° C. in a nitrogen atmosphere, single yarn diameter: 7 μm, number of single yarn: 12,000, tensile strength: 3 ,
300 MPa, tensile elastic modulus: 244 GPa, specific gravity: 1.
Carbon fiber having 79, surface oxygen concentration O / C: 0.12, and surface specific nitrogen concentration N / C: 0.01 was obtained. The above fiber was filament wound in the same manner as in Example 1 to obtain a main body. The outer diameter and the weight of the outer shell thus obtained are
It was 320 mm and 9.6 kg.

【0047】つぎに、実施例1と同様の落下試験をした
ところ、外殻の一部が白化して繊維が切れているのが確
認された。
Next, when the same drop test as in Example 1 was conducted, it was confirmed that part of the outer shell was whitened and the fibers were cut.

【0048】つぎに、実施例1と同様にして、本体を加
圧していったところ、46.0MPaで本体鏡板部に近
い胴部からリーク(水漏れ)した。
Then, when pressure was applied to the main body in the same manner as in Example 1, a leak (water leak) occurred from the body portion near the body end plate portion at 46.0 MPa.

【0049】さらに、実施例1と同様にして、リークが
生じなかった本体鏡板部の断面を観察したところ、長さ
50μm以上の大きさのボイドが10カ所以上観察され
た。
Further, in the same manner as in Example 1, the cross section of the main body end plate portion in which no leak occurred was observed, and 10 or more voids having a length of 50 μm or more were observed.

【0050】比較例2 濃度1.0モル/リットルの炭酸アンモニウム水溶液を
電解液とする電解槽にし、水洗後の乾燥温度を150℃
にした以外は比較例1と同様にして、単糸径:7μm、
単糸数:12,000本、引張強度:3,320MP
a、引張弾性率:244GPa、比重:1.79、表面
比酸素濃度O/C:0.15、表面比窒素濃度N/C:
0.07の炭素繊維を得た。上記繊維を実施例1と同様
にしてフィラメントワインディングして本体を得た。か
くして得られた外殻の外径と重量はそれぞれ、320m
m、9.6kgであった。
Comparative Example 2 An electrolytic cell using an aqueous solution of ammonium carbonate having a concentration of 1.0 mol / liter as an electrolytic solution was used, and the drying temperature after washing with water was 150 ° C.
In the same manner as in Comparative Example 1 except that the single yarn diameter was 7 μm,
Number of single yarn: 12,000, Tensile strength: 3,320MP
a, tensile elastic modulus: 244 GPa, specific gravity: 1.79, surface specific oxygen concentration O / C: 0.15, surface specific nitrogen concentration N / C:
A carbon fiber of 0.07 was obtained. The above fiber was filament wound in the same manner as in Example 1 to obtain a main body. The outer diameter and the weight of the outer shell thus obtained are respectively 320 m
m, was 9.6 kg.

【0051】つぎに、実施例1と同様の落下試験をした
ところ、外殻の一部が白化して繊維が切れているのが確
認された。
Next, when the same drop test as in Example 1 was conducted, it was confirmed that part of the outer shell was whitened and the fibers were cut.

【0052】つぎに、実施例1と同様にして、本体を加
圧していったところ、49.1MPaで本体鏡板部に近
い胴部からリーク(水漏れ)した。
Then, when pressure was applied to the main body in the same manner as in Example 1, a leak (water leak) occurred from the body portion near the main body end plate portion at 49.1 MPa.

【0053】さらに、実施例1と同様にして、リークが
生じなかった本体鏡板部の断面を観察したところ、長さ
50μm以上の大きさのボイドが10カ所以上観察され
た。
Further, when the cross section of the main body end plate portion where no leak occurred was observed in the same manner as in Example 1, 10 or more voids having a length of 50 μm or more were observed.

【0054】[0054]

【発明の効果】この発明のガスボンベは、ガスバリア性
を有する内殻を覆うように、引張強度が5,500MP
a以上である炭素繊維と樹脂を含むCFRP製の外殻を
設けているから、実施例と比較例との対比からも明らか
なように、軽量でかつ、落下衝撃に対して優れた性能を
有し、信頼性に優れている。このため、この発明のガス
ボンベは、軽量で、しかも、信頼性に優れていることが
要求される自動車用のCNGタンク(Compressed Natur
al Gas Tank)としてとりわけ好適である。
The gas cylinder of the present invention has a tensile strength of 5,500MP so as to cover the inner shell having a gas barrier property.
Since the outer shell made of CFRP containing carbon fiber and resin which is a or more is provided, as is clear from the comparison between the example and the comparative example, it is lightweight and has excellent performance against drop impact. And is highly reliable. Therefore, the gas cylinder of the present invention is a CNG tank (Compressed Natur) for automobiles, which is required to be lightweight and highly reliable.
Al gas tank) is particularly suitable.

【0055】また、この発明においては、上述したガス
ボンベを、ガスバリア性を有する内殻の周りに、フィラ
メントワインディング法またはテープワインディング法
を用いて、引張強度5,500MPa以上である炭素繊
維と樹脂とを含むFRPからなる外殻を形成することに
よって製造することから、低コストで製造できる。
Further, in the present invention, the above-mentioned gas cylinder is provided with a carbon fiber having a tensile strength of 5,500 MPa or more and a resin around the inner shell having a gas barrier property by using the filament winding method or the tape winding method. Since it is manufactured by forming the outer shell made of the FRP containing it, it can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施態様に係るガスボンベの概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view of a gas cylinder according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスボンベ 2 内殻 3 外殻 4 ノズル取付用口金 5 ノズル 6 ボス 7 補強層 A 胴部 B 鏡板部 1 Gas cylinder 2 Inner shell 3 Outer shell 4 Nozzle mounting base 5 Nozzle 6 Boss 7 Reinforcing layer A Body part B End plate part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 9:00 22:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29L 9:00 22:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガスバリア性の内殻と耐圧性の外殻とを
有し、外殻は、引張強度が5,500MPa以上の炭素
繊維で樹脂を強化してなるCFRPからなることを特徴
とするガスボンベ。
1. A CFRP having a gas barrier inner shell and a pressure resistant outer shell, wherein the outer shell is made of CFRP obtained by reinforcing a resin with carbon fibers having a tensile strength of 5,500 MPa or more. Gas cylinder.
【請求項2】 ガスバリア性の内殻と耐圧性の外殻とを
有し、外殻は、表面比窒素濃度が0.02以上、表面比
酸素濃度が0.30以下である炭素繊維で樹脂を強化し
てなるCFRPからなることを特徴とするガスボンベ。
2. A carbon fiber resin having a gas barrier inner shell and a pressure resistant outer shell, the outer shell being a carbon fiber resin having a surface specific nitrogen concentration of 0.02 or more and a surface specific oxygen concentration of 0.30 or less. A gas cylinder characterized by comprising CFRP obtained by strengthening.
【請求項3】 ガスバリア性の内殻と耐圧性の外殻とを
有し、外殻は、引張強度が5,500MPa以上で、か
つ、表面比窒素濃度が0.02以上、表面比酸素濃度が
0.30以下である炭素繊維で樹脂を強化してなるCF
RPからなることを特徴とするガスボンベ。
3. A gas-barrier inner shell and a pressure-resistant outer shell, wherein the outer shell has a tensile strength of 5,500 MPa or more, a surface specific nitrogen concentration of 0.02 or more, and a surface specific oxygen concentration. CF reinforced with resin with carbon fiber of 0.30 or less
A gas cylinder made of RP.
【請求項4】 ガスバリア性を有する内殻の周りに、フ
ィラメントワインディング法またはテープワインディン
グ法を用いて耐圧性のCFRP製外殻を形成してガスボ
ンベを製造するに際し、炭素繊維として、(a)引張強
度が5,500MPa以上および/または(b)表面比
窒素濃度が0.02以上、表面比酸素濃度が0.30以
下である炭素繊維を用いることを特徴とする、ガスボン
ベの製造方法。
4. When a gas cylinder is manufactured by forming a pressure-resistant CFRP outer shell around a gas barrier inner shell using a filament winding method or a tape winding method, the carbon fiber is (a) stretched. A method for producing a gas cylinder, which comprises using carbon fibers having a strength of 5,500 MPa or more and / or (b) a surface specific nitrogen concentration of 0.02 or more and a surface specific oxygen concentration of 0.30 or less.
JP8022070A 1995-02-15 1996-01-12 Gas cylinder and its manufacture Pending JPH08285189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8022070A JPH08285189A (en) 1995-02-15 1996-01-12 Gas cylinder and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5178095 1995-02-15
JP7-51780 1995-02-15
JP8022070A JPH08285189A (en) 1995-02-15 1996-01-12 Gas cylinder and its manufacture

Publications (1)

Publication Number Publication Date
JPH08285189A true JPH08285189A (en) 1996-11-01

Family

ID=26359230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8022070A Pending JPH08285189A (en) 1995-02-15 1996-01-12 Gas cylinder and its manufacture

Country Status (1)

Country Link
JP (1) JPH08285189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066637A (en) * 2002-08-06 2004-03-04 Mitsubishi Rayon Co Ltd Method for manufacturing frp container
US8012584B2 (en) 2003-08-28 2011-09-06 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
KR20170042230A (en) * 2015-10-08 2017-04-18 도요타지도샤가부시키가이샤 High-pressure tank
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle
DE102018101509B4 (en) 2017-03-03 2022-04-07 Toyota Jidosha Kabushiki Kaisha high pressure tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066637A (en) * 2002-08-06 2004-03-04 Mitsubishi Rayon Co Ltd Method for manufacturing frp container
US8012584B2 (en) 2003-08-28 2011-09-06 Mitsubishi Rayon Co., Ltd. High-performance pressure vessel and carbon fiber for pressure vessel
EP3273137A1 (en) 2003-08-28 2018-01-24 Mitsubishi Chemical Corporation High-performance pressure vessel and carbon fiber for pressure vessel
KR20170042230A (en) * 2015-10-08 2017-04-18 도요타지도샤가부시키가이샤 High-pressure tank
DE102018101509B4 (en) 2017-03-03 2022-04-07 Toyota Jidosha Kabushiki Kaisha high pressure tank
CN114197199A (en) * 2021-07-22 2022-03-18 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle
CN114197199B (en) * 2021-07-22 2024-06-04 台湾塑胶工业股份有限公司 Method for producing carbon fiber and carbon fiber composite bottle

Similar Documents

Publication Publication Date Title
CA2212244C (en) Pressure vessel and process for producing the same
Park et al. Element and processing
US3778334A (en) High modulus organic fiber layers alternating with inorganic fiber layers in a resin matrix
US8039072B2 (en) Gas tank and method for producing the same
JP4639085B2 (en) Pressure vessel and method for manufacturing the same
JPWO2005022026A1 (en) High performance pressure vessel and carbon fiber for pressure vessel
CN111795295B (en) High-pressure tank and method for manufacturing same
JP2010236614A (en) Composite container and method of manufacturing the same
JPH09280496A (en) Pressure vessel and its manufacture
JP6577423B2 (en) A secondary gas barrier for a liquefied gas storage tank with improved flexibility and improved fatigue resistance performance by changing the material of the reinforcing material
JPH08285189A (en) Gas cylinder and its manufacture
JP4533518B2 (en) Fiber reinforced composite material using high strength and high elongation carbon fiber
JPH09257193A (en) Pressure vessel and its manufacture
JP5395156B2 (en) Gas tank and manufacturing method thereof
JP3591034B2 (en) Gas cylinder and manufacturing method thereof
JP6216509B2 (en) Sizing agent-attached carbon fiber bundle, method for producing the same, and pressure vessel production method using the sizing agent-attached carbon fiber bundle
JPH08216277A (en) Gas cylinder and its manufacture
JP2001141191A (en) Reinforced plastic pressure container and manufacturing method therefor
JP7444929B2 (en) Carbon fiber manufacturing method and carbon fiber composite bottle
JP6543309B2 (en) Sizing agent-deposited carbon fiber bundle, method for producing the same, and method for producing pressure vessel using the sizing agent-deposited carbon fiber bundle
CN115059870B (en) Three-dimensional integrally woven hydrogen storage bottle and manufacturing method thereof
CN118110915A (en) Carbon nano tube composite material pressure vessel, preparation method and application thereof
JPH07329520A (en) Bead material for bicycle tire
JPH08294985A (en) Tubular molded body of fiber reinforced thermoplastic resin
Jadhav et al. COMPOSITE CARBON FIBER MATERIALS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050819