JPH08284993A - Bush assembly - Google Patents

Bush assembly

Info

Publication number
JPH08284993A
JPH08284993A JP7093463A JP9346395A JPH08284993A JP H08284993 A JPH08284993 A JP H08284993A JP 7093463 A JP7093463 A JP 7093463A JP 9346395 A JP9346395 A JP 9346395A JP H08284993 A JPH08284993 A JP H08284993A
Authority
JP
Japan
Prior art keywords
cylinder
rubber elastic
elastic body
spring constant
cylinder axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7093463A
Other languages
Japanese (ja)
Other versions
JP3675881B2 (en
Inventor
Kazunari Nakahara
一成 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP9346395A priority Critical patent/JP3675881B2/en
Publication of JPH08284993A publication Critical patent/JPH08284993A/en
Application granted granted Critical
Publication of JP3675881B2 publication Critical patent/JP3675881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PURPOSE: To independently set the respective spring constants in the axial direction of a cylinder, the longitudinal direction, and the right-to-left direction by using an inner cylindrical body provided with a barrier part and an extension part. CONSTITUTION: Extension parts 12 are respectively projected from each side in the Z-direction of the axis of a body cylindrical part 11 and to each side in Y-direction, and a rubber elastic body part 3 to be held between a pair of the extension parts 12 is dead for the external force in the Z-direction of the cylinder axis, and the spring constant in the Z-direction of the cylinder axis can be increased thereby. The external force in the X-direction is shared also by the rubber elastic body part 3, and the spring constant in the X-direction can be reduced thereby. The spring constant in the X-direction which is apt to be harder than that in the Z-direction of the cylinder axis when the end part of the rubber elastic body 3 is joined with the inner circumferential surface of an outer cylindrical body 2 can be coincided with or brought close to the spring constant in the Z-direction of the cylinder axis by increasing the spring constant in the Z-direction and reducing the spring constant in the X-direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車の分野で
部品を車体に弾性支持させるために介装させる等の用途
に用いられるブッシュ組立体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bush assembly used in the field of automobiles, for example, for interposing parts for elastically supporting them on a vehicle body.

【0002】[0002]

【従来の技術】従来より、この種のブッシュ組立体とし
ては、一般に、大小の円筒形の外筒体と内筒体とを同軸
配置にし両筒体を内筒体の筒軸に直交する第1方向に延
ばしたゴム弾性体により連結したものが知られている。
そして、円筒形内筒体の外周囲に他の部材を固着して肉
盛りすることにより横断面形状における外周形状が四角
形になるようにするとともに、円筒形外筒体の内周面の
一部に厚肉部を設け、これにより、上記ゴム弾性体の内
筒体側及び外筒体側の各接合面を円弧面ではなく平面と
するようにしたもの(例えば、特開平2−93134号
公報参照)や、上記円筒形内筒体に角筒を外嵌固定して
この角筒の一平面にゴム弾性体を連結するとともに、そ
の一平面に平行な平面を有する中間板を角筒と円筒形外
筒体との間のゴム弾性体内に介在させたもの(例えば、
実開昭56−45635号公報参照)が知られている。
2. Description of the Related Art Conventionally, as a bush assembly of this type, generally, a large and small cylindrical outer cylinder and an inner cylinder are arranged coaxially, and both cylinders are orthogonal to the cylinder axis of the inner cylinder. It is known that rubber elastic members are connected in one direction.
Then, other members are fixed to the outer periphery of the cylindrical inner cylindrical body so that the outer peripheral shape in the cross-sectional shape becomes a quadrangle and a part of the inner peripheral surface of the cylindrical outer cylindrical body is formed. A thick portion is provided on the inner surface of the rubber elastic body so that the joint surfaces of the rubber elastic body on the inner cylinder side and the outer cylinder side are not arcuate surfaces but flat surfaces (for example, see JP-A-2-93134). Alternatively, a square tube is externally fitted and fixed to the cylindrical inner cylinder body, a rubber elastic body is connected to one flat surface of the square cylinder, and an intermediate plate having a plane parallel to the flat surface is connected to the square cylinder and the cylindrical outer surface. What is interposed in the rubber elastic body between the cylinder (for example,
Japanese Utility Model Laid-Open No. 56-45635) is known.

【0003】[0003]

【発明が解決しようとする課題】ところで、ブッシュ組
立体において、大小の円筒形の外筒体と内筒体とを同軸
配置にし両筒体を内筒体の筒軸に直交する第1方向に延
ばしたゴム弾性体により連結したものを用いて、例えば
自動車の操縦安定性及び部品の防振支持の両立を図るた
めに、内筒体の筒軸方向(例えば車体の上下方向)と、
上記第1方向(例えば車体の左右方向)と、筒軸方向及
び第1方向に共に直交する第2方向(例えば車体の前後
方向)とからなる三次元方向に対し弾性支持を可能と
し、かつ、その三次元方向の各ばね定数を個別に独立し
て所望のものに設定可能にしたいという要請がある。
By the way, in the bush assembly, the large and small cylindrical outer cylinders and the inner cylinder are arranged coaxially, and both cylinders are arranged in the first direction orthogonal to the cylinder axis of the inner cylinder. Using the ones connected by the stretched rubber elastic body, for example, in order to achieve both steering stability of the automobile and anti-vibration support of parts, in the axial direction of the inner cylinder (for example, the vertical direction of the vehicle body),
Elastic support is possible in a three-dimensional direction including the first direction (for example, the left-right direction of the vehicle body) and a second direction (for example, the front-back direction of the vehicle body) that is orthogonal to both the cylinder axis direction and the first direction, and There is a demand for individually and independently setting each spring constant in the three-dimensional direction.

【0004】例えば、フロントエンジン・リヤドライブ
のいわゆるFR車において、リヤサスペンションのサブ
フレームを車体にマウントするためにブッシュ組立体の
筒軸方向を上下方向に、ゴム弾性体が延びる方向(上記
の第1方向)を車体の左右方向に配置して用いる場合、
そのブッシュ組立体には、筒軸方向及び車体の前後方向
(上記の第2方向)の各ばね定数、すなわち、力がゴム
弾性体に対しせん断力として作用する方向の各ばね定数
を、防振性能上、共に軟らかいものにする必要がある。
その一方、上記の左右方向、すなわち、力がゴム弾性体
に対し圧縮・引張力として作用する方向のばね定数を、
自動車の操縦安定性の面からある程度硬いものにする必
要がある。
For example, in a so-called FR vehicle of a front engine / rear drive, in order to mount a subframe of a rear suspension on a vehicle body, a direction in which a rubber elastic body extends in the cylinder axis direction of a bush assembly in a vertical direction (the above-mentioned first (1 direction) is used in the left-right direction of the vehicle body,
The bush assembly is provided with anti-vibration spring constants in the cylinder axis direction and in the front-rear direction of the vehicle body (second direction described above), that is, in the direction in which the force acts as a shearing force on the rubber elastic body. Both must be soft in terms of performance.
On the other hand, the spring constant in the above left-right direction, that is, the direction in which the force acts on the rubber elastic body as a compression / tensile force,
It is necessary to make it hard to some extent in terms of steering stability of the car.

【0005】ところが、上記筒軸方向のばね定数につい
ては、ゴム弾性体に基づく筒軸方向のばねに基づき上記
のサブフレームを支持しなくてはならないため、その筒
軸方向のばね定数を軟らかいものにするのには限界があ
る。すなわち、上記サブフレームにはデファレンシャル
ギヤが載置されており、加速時にはそのトルクが作用し
て上記サブフレームが倒れようとするため、この倒れや
傾きを抑制した状態で支持する上でも、筒軸方向のばね
定数をある一定値以上に硬いものにする必要があり、上
記の要求性能とは相反する要求を併せ持っている。
However, regarding the spring constant in the cylinder axis direction, since the sub-frame must be supported by the spring in the cylinder axis direction based on the rubber elastic body, the spring constant in the cylinder axis direction is soft. There is a limit to what you can do. That is, a differential gear is mounted on the sub-frame, and the torque acts on the sub-frame during acceleration to cause the sub-frame to fall down. It is necessary to make the spring constant in the direction harder than a certain fixed value, and there is a requirement that conflicts with the above-mentioned required performance.

【0006】また、上記筒軸方向と前後方向とのせん断
二方向の両ばね定数における互いの関係においては、ゴ
ム弾性体の一端を円筒形の外筒体の内周面に接合させる
関係上、上記筒軸及び前後の各方向のせん断力に抵抗す
るゴム弾性体部分の長さが上記外筒体側の円弧部分の存
在により互いに異なるものになるため、上記前後方向ば
ね定数は上記筒軸方向のそれよりも一般に硬いものにな
る。この点、上記の従来技術における外筒体の内周面に
厚肉部を設けて平面にしたものでは、上記の円弧部分の
影響がなくなり上記せん断二方向の両ばね定数は一致す
るものの、外筒体に対し上記の厚肉部を形成するための
工程が増える上、ゴム弾性体の一体加硫成形時の外筒体
のセッティングにも手間がかかることになる。
Further, regarding the mutual relationship in the two spring constants in the two directions of shearing of the cylinder axis direction and the longitudinal direction, one end of the rubber elastic body is joined to the inner peripheral surface of the cylindrical outer cylinder body. Since the length of the rubber elastic body portion that resists shear force in each of the cylinder axis and the front-rear direction is different from each other due to the existence of the circular arc portion on the outer cylinder side, the front-back direction spring constant is the same as that of the cylinder axis direction. It is generally harder than that. In this respect, in the above-mentioned conventional technology, in the case where a flat surface is provided by providing a thick portion on the inner peripheral surface of the outer cylindrical body, the influence of the above-mentioned arc portion disappears, and although the two spring constants in the two shear directions match, In addition to increasing the number of steps for forming the thick portion in the tubular body, setting the outer tubular body at the time of integral vulcanization molding of the rubber elastic body also takes time.

【0007】このため、上記せん断二方向に対する筒軸
方向ばね定数と前後方向ばね定数との関係においては、
筒軸方向のばね定数をあまり軟らかいものにならない一
定値に抑えると同時に、上記厚肉部の形成を省略して円
筒形の外筒体をそのまま用いたとしても、上記筒軸方向
ばね定数よりも硬くなる傾向にある前後方向ばね定数を
上記筒軸方向ばね定数に一致もしくは極力近付け得るブ
ッシュ組立体の開発が要請されている。
Therefore, regarding the relationship between the cylinder axial direction spring constant and the front-back direction spring constant for the two shear directions,
Even if the spring constant in the cylinder axis direction is suppressed to a certain value that does not become too soft, and the cylindrical outer cylinder body is used as it is without forming the thick portion, the spring constant in the cylinder axis direction is lower than that in the cylinder axis direction. There is a demand for the development of a bushing assembly capable of matching the spring constant in the front-rear direction, which tends to be stiff, with the spring constant in the cylinder axial direction or making it as close as possible.

【0008】さらに、このような筒軸方向及び前後方向
に対する両ばね定数についての目標性能を具備した上
で、上記左右方向のばね定数を相対的に硬いものにする
ことは困難なものとなり左右方向ばね定数に対する要求
性能よりも軟らかいものになってしまう。すなわち、上
記左右方向ばね定数を硬いものにするためには、左右方
向からの圧縮力を受けるゴム弾性体の断面積をより増大
させるように形状を設定しなければならない。しかし、
そうすると、上記の筒軸方向及び前後方向の両せん断方
向ばね定数が変化してこれらに対する目標性能について
の要求を満足させることができなくなる。この点、上記
従来技術における中間板を介装させることにより左右方
向のばね定数を増大させる方策を採ることもできるが、
その中間板を介装させるための工程が増加する上に、そ
の中間板の存在により筒軸方向及び前後方向のばね定数
も変化してしまうことになる。
Further, it is difficult to make the spring constant in the left-right direction relatively hard while having the target performances for both the spring constant in the cylinder axis direction and the front-back direction. It becomes softer than the required performance for the spring constant. That is, in order to make the left-right spring constant hard, the shape must be set so as to further increase the cross-sectional area of the rubber elastic body that receives a compressive force from the left-right direction. But,
Then, the above-mentioned spring constants in the shearing direction in both the cylinder axis direction and the front-rear direction change, and it becomes impossible to satisfy the requirements for the target performance for them. In this respect, it is possible to adopt a measure for increasing the spring constant in the left-right direction by interposing the intermediate plate in the above-mentioned conventional technique,
In addition to increasing the number of steps for interposing the intermediate plate, the presence of the intermediate plate also changes the spring constants in the cylinder axis direction and the front-rear direction.

【0009】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、筒軸方向、前
後方向及び左右方向の各ばね定数を互いに独立して設定
可能とし、かつ、要求性能に対する設定の容易化を図る
ことにある。これにより、左右方向ばね定数を比較的硬
いものとしつつ、円筒形の外筒体をそのまま用いても筒
軸方向ばね定数及び前後方向ばね定数のせん断二方向の
ばね定数を一致もしくは可及的に近付けて、操縦安定性
上の要求と、弾性支持性能上及び防振性能上の要求との
両立を図ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to set spring constants in the cylinder axis direction, the front-rear direction, and the left-right direction independently of each other, and , To facilitate setting of required performance. This makes the spring constant in the left-right direction relatively hard, and even if the cylindrical outer cylinder is used as it is, the spring constant in the cylinder axial direction and the spring constant in the front-rear direction are equal to each other or as much as possible. By approaching them, it is necessary to satisfy both requirements for steering stability and requirements for elastic support performance and anti-vibration performance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、内筒体と、この内筒体の筒
軸に平行にその内筒体を囲む外筒体と、上記内筒体から
上記筒軸に直交する第1方向の両側に延びてその内筒体
の外面と上記外筒体の内面とを互いに連結するゴム弾性
体とを備えるものを前提とする。このものにおいて、上
記内筒体を、取付け用軸体が挿通される本体筒部と、上
記本体筒部から、上記筒軸方向及び第1方向に対し共に
直交する第2方向の両側にそれぞれ上記ゴム弾性体内に
突出されて上記ゴム弾性体内に介装された一対の障壁部
と、上記ゴム弾性体の筒軸方向形成範囲内であって上記
本体筒部の筒軸方向に互いに離れた両側各位置からそれ
ぞれ上記第1方向の両側に上記ゴム弾性体内に張出した
一対の張出し部と、上記本体筒部を挟んで第1方向両側
の各位置に上記一対張出し部の筒軸方向相対向面間に区
画されてゴム弾性体が配設される一対の凹溝部とを備え
る構成とするものである。
In order to achieve the above object, the invention according to claim 1 is an inner cylinder body and an outer cylinder body which surrounds the inner cylinder body in parallel to the cylinder axis of the inner cylinder body. It is assumed that a rubber elastic body is provided that extends from the inner cylinder to both sides in the first direction orthogonal to the cylinder axis and connects the outer surface of the inner cylinder and the inner surface of the outer cylinder to each other. In this structure, the inner tubular body is provided with the main body tubular portion into which the mounting shaft body is inserted, and the inner tubular body is provided on both sides of the main body tubular portion in a second direction orthogonal to both the tubular axial direction and the first direction. A pair of barrier portions projecting into the rubber elastic body and interposed in the rubber elastic body, and both sides on the cylinder axial direction of the main body cylindrical portion that are separated from each other in the cylinder axial direction forming range of the rubber elastic body. Between a pair of overhanging portions projecting into the rubber elastic body on both sides in the first direction from positions, and between the cylinder axial direction opposing surfaces of the pair of overhanging portions on both sides in the first direction with the main body tubular portion sandwiched therebetween. And a pair of concave groove portions in which the rubber elastic body is arranged.

【0011】請求項2記載の発明は、請求項1記載の発
明において、内筒体の障壁部を、ゴム弾性体の第2方向
に対する全幅にわたり突出するものである。
According to a second aspect of the present invention, in the first aspect of the invention, the barrier portion of the inner cylindrical body projects over the entire width of the rubber elastic body in the second direction.

【0012】請求項3記載の発明は、請求項1記載の発
明において、内筒体の筒軸方向両側の各張出し部を、ゴ
ム弾性体の第2方向に対する全幅にわたる範囲に形成す
るものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the overhanging portions on both sides of the inner cylindrical body in the cylinder axis direction are formed in a range over the entire width of the rubber elastic body in the second direction. .

【0013】請求項4記載の発明は、請求項1記載の発
明において、内筒体の筒軸方向両側の各張出し部を、障
壁部の第2方向に対する形成範囲と同じ第2方向範囲に
わたり設け、筒軸方向から見た形状が略四角形になるよ
うに形成するものである。
According to a fourth aspect of the present invention, in the invention according to the first aspect, the overhanging portions on both sides in the cylinder axis direction of the inner cylinder are provided over the same second direction range as the forming range of the barrier section in the second direction. It is formed so that the shape viewed from the cylinder axis direction is a substantially quadrangle.

【0014】請求項5記載の発明は、請求項1記載の発
明において、内筒体の障壁部の第1方向に対する肉厚
を、本体筒部の第1方向に対する幅の範囲内に設定する
ものである。
According to a fifth aspect of the invention, in the invention of the first aspect, the wall thickness of the inner cylindrical body in the first direction is set within a range of the width of the main body cylindrical section in the first direction. Is.

【0015】請求項6記載の発明は、請求項1記載の発
明において、内筒体の障壁部を、筒軸方向両側の各張出
し部と互いに一体に連結するものである。
According to a sixth aspect of the present invention, in the first aspect of the invention, the barrier portion of the inner tubular body is integrally connected to the respective overhanging portions on both sides in the tubular axial direction.

【0016】請求項7記載の発明は、請求項1記載の発
明において、内筒体として、本体筒部と、筒軸方向両側
の各張出し部と、障壁部とを互いに同一材料により一体
に形成して構成するものである。
According to a seventh aspect of the present invention, in the first aspect of the present invention, as the inner tubular body, the main body tubular portion, the overhanging portions on both sides in the tubular axial direction, and the barrier portion are integrally formed of the same material. And then configure.

【0017】また、請求項8記載の発明は、請求項1記
載の発明において、内筒体として、本体筒部に対し、筒
軸方向両側の各張出し部と、障壁部とが上記本体筒部と
を異なる材料により一体に形成して構成するものであ
る。
According to an eighth aspect of the present invention, in the first aspect of the present invention, the inner cylindrical body includes the main body cylindrical portion in which the overhanging portions on both sides in the cylinder axial direction and the barrier portion are the main body cylindrical portion. And are integrally formed of different materials.

【0018】さらに、請求項9記載の発明は、請求項1
記載の発明において、外筒体を、円筒形に形成するもの
である。
Further, the invention of claim 9 is the same as claim 1.
In the invention described above, the outer cylinder is formed into a cylindrical shape.

【0019】[0019]

【作用】上記の構成により、請求項1記載の発明では、
本体筒部の筒軸方向両側位置から第1方向両側にそれぞ
れ張出し部が突出されているため、内筒体もしくは外筒
体に筒軸方向の外力が入力した場合に、この一対の張出
し部間に挟まれたゴム弾性体部分が上記外力に対し抵抗
要素とはならない、いわゆる死にゴムとなり、上記張出
し部の張出し端から外筒体の内周面までの範囲のゴム弾
性体部分が上記外力に対し有効に抵抗することになる。
このため、本体筒部から外筒体の内周面までの範囲のゴ
ム弾性体が上記筒軸方向外力に抵抗する場合と比べ、そ
の筒軸方向外力に抵抗するゴム弾性体の第1方向長さが
上記張出し部の張出し長さ分短くなり、これに伴い、筒
軸方向ばね定数が硬いものとなる。従って、上記張出し
部の張出し長さを大にする程、筒軸方向ばね定数をより
硬いものにすることが可能になる。
According to the above-mentioned structure, according to the first aspect of the present invention,
Since the projecting portions project from both sides of the main body tubular portion in the tubular axial direction to both sides in the first direction, when an external force in the tubular axial direction is input to the inner tubular body or the outer tubular body, a space between the pair of overhanging portions is provided. The rubber elastic body portion sandwiched between the above does not function as a resistance element against the above external force, so-called dead rubber, and the rubber elastic body portion in the range from the overhanging end of the overhanging portion to the inner peripheral surface of the outer cylindrical body is exposed to the above external force. You will effectively resist.
Therefore, as compared with the case where the rubber elastic body in the range from the main body cylindrical portion to the inner peripheral surface of the outer cylindrical body resists the external force in the cylinder axial direction, the first direction length of the rubber elastic body resists the external force in the cylinder axial direction. Is shortened by the overhang length of the overhang portion, and accordingly the spring constant in the cylinder axis direction becomes hard. Therefore, the larger the overhang length of the overhang portion, the harder the axial constant in the cylinder axis direction can be made.

【0020】一方、上記内筒体もしくは外筒体に第2方
向からの外力が入力した場合には、上記筒軸方向両側の
一対の張出し部の間に存在するゴム弾性体部分も上記第
2方向外力に有効に抵抗するため、本体筒部から外筒体
の内周面近傍までの範囲のゴム弾性体が上記第2方向外
力に抵抗する。このため、上記の張出し部間のゴム弾性
体部分が死にゴムとなる場合と比べてその第2方向に対
するばね定数は軟らかいものとなる。これにより、ゴム
弾性体の端部が外筒体の内周面の円周面に結合されてい
ても、上記筒軸方向ばね定数よりも硬くなりがちな第2
方向ばね定数を、上記筒軸方向ばね定数が硬いものとな
り、かつ、第2方向ばね定数が軟らかいものとなること
により、上記筒軸方向ばね定数に一致もしくは近付け得
る。
On the other hand, when an external force from the second direction is applied to the inner cylinder body or the outer cylinder body, the rubber elastic body portion existing between the pair of overhang portions on both sides in the cylinder axis direction is also the second rubber body. In order to effectively resist the external force in the direction, the rubber elastic body in the range from the main body cylindrical portion to the vicinity of the inner peripheral surface of the outer cylindrical body resists the external force in the second direction. Therefore, the spring constant in the second direction is softer than in the case where the rubber elastic body portion between the overhanging portions is dead and becomes rubber. As a result, even if the end portion of the rubber elastic body is joined to the circumferential surface of the inner peripheral surface of the outer cylindrical body, the second elastic member tends to be harder than the cylindrical axial direction spring constant.
The directional spring constant can be made equal to or close to the cylinder axis direction spring constant by making the cylinder axis direction spring constant hard and the second direction spring constant soft.

【0021】しかも、上記内筒体もしくは外筒体に第1
方向から外力が作用した場合には、本体筒部から障壁部
が第2方向両側に突出して形成され、その障壁部の第1
方向厚みの分だけゴム弾性体が上記第1方向外力に抵抗
して圧縮される第1方向長さが短くなり、これにより、
上記第1方向に対するばね定数が硬いものとなる。従っ
て、上記障壁部の第1方向厚みを大とする程、上記第1
方向ばね定数をより硬いものとすることが可能となる
上、この障壁部の第1方向厚みを変更しても、上記の筒
軸方向及び第2方向からの外力に抵抗するゴム弾性体部
分に殆ど影響を与えることがないため、上記筒軸方向及
び第2方向の両ばね定数とは互いに独立して上記第1方
向ばね定数の変更設定が可能になる。
In addition, the inner cylinder or the outer cylinder has a first structure.
When an external force is applied from the direction, the barrier portion is formed so as to project from the main body tubular portion to both sides in the second direction, and the first barrier portion of the barrier portion is formed.
The length in the first direction in which the rubber elastic body resists the external force in the first direction and is compressed is reduced by the amount corresponding to the thickness in the first direction.
The spring constant in the first direction becomes hard. Therefore, as the thickness of the barrier portion in the first direction increases, the first
The directional spring constant can be made harder, and even if the thickness of the barrier portion in the first direction is changed, the rubber elastic body portion that resists external force from the cylinder axis direction and the second direction can be obtained. Since there is almost no influence, it is possible to change and set the first direction spring constant independently of both the spring constants in the cylinder axis direction and the second direction.

【0022】このように本発明の如く障壁部と張出し部
とを備えた内筒体を用いることにより、筒軸方向、第2
方向、及び、第1方向の各方向に対する3つのばね定数
を互いに独立して設定することが可能になり、第1方向
ばね定数を比較的硬いものにしつつ、筒軸方向及び第2
方向の両ばね定数を互いに一致もしくは近似したものに
する設定が可能になる。
As described above, by using the inner cylindrical body having the barrier portion and the overhanging portion as in the present invention, the second axial direction is improved.
Direction, and three spring constants for each direction of the first direction can be set independently of each other, and the first direction spring constant can be made relatively hard, and the cylinder axis direction and the second direction can be set.
It is possible to set both spring constants in the directions so as to match or approximate each other.

【0023】請求項2記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体の障壁部がゴム弾
性体の第2方向全幅にわたり突出されているため、上記
の第1方向ばね定数の増大化がより効率的にかつ効果的
に図られる。
According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, since the barrier portion of the inner cylindrical body projects over the entire width in the second direction of the rubber elastic body, The directional spring constant can be increased more efficiently and effectively.

【0024】請求項3記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体の各張出し部がゴ
ム弾性体の第2方向全幅にわたる範囲に形成されている
ため、筒軸方向ばね定数の増大化と、第2方向ばね定数
の低減化とがより効率的にかつ効果的に図られる。
According to the third aspect of the present invention, in addition to the function of the first aspect of the present invention, since each of the overhanging portions of the inner cylindrical body is formed over the entire width in the second direction of the rubber elastic body, An increase in the axial spring constant and a decrease in the second spring constant can be achieved more efficiently and effectively.

【0025】請求項4記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体の各張出し部が障
壁部の形成範囲と同じ第2方向範囲にわたり設けられて
筒軸方向から見た形状が略四角形に形成されているた
め、筒軸方向外力に対する死にゴム部分の端面が第2方
向に延びる平面となり、筒軸方向ばね定数の増大化と、
第2方向ばね定数の低減化とが効率よく行われる。
According to the invention described in claim 4, in addition to the operation according to the invention described in claim 1, each of the overhanging portions of the inner cylinder is provided over the second direction range which is the same as the forming range of the barrier part, and the cylinder axial direction Since the shape seen from above is formed into a substantially quadrangular shape, the end face of the rubber portion becomes a flat surface extending in the second direction due to the external force in the cylinder axial direction, and the spring constant in the cylinder axial direction is increased,
The reduction of the second direction spring constant is efficiently performed.

【0026】請求項5記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体の障壁部の第1方
向肉厚が本体筒部の第1方向幅の範囲内に設定されてい
るため、第2方向ばね定数に影響を与えることのない範
囲で第1方向ばね定数の増大化が図られる。
According to the fifth aspect of the present invention, in addition to the effect of the first aspect of the invention, the wall thickness of the barrier portion of the inner cylinder in the first direction is set within the range of the width of the main body cylinder in the first direction. Therefore, the first-direction spring constant is increased within a range that does not affect the second-direction spring constant.

【0027】請求項6記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体の障壁部が筒軸方
向両側の各張出し部と互いに一体に連結されているた
め、筒軸方向、第2方向及び第1方向に対する各ばね定
数を発現するゴム弾性体部分を区分、形成もしくは切換
る上記障壁部や各張出し部がそれぞれ確実に作用し、こ
れにより、上記各ゴム弾性体によりそれぞれの方向に対
するばね定数が確実に所定のものが発揮される。
According to the sixth aspect of the invention, in addition to the effect of the first aspect of the invention, since the barrier portion of the inner cylinder is integrally connected to the overhanging portions on both sides in the cylinder axis direction, the cylinder The above-mentioned barrier portion and each overhanging portion that divides, forms or switches the rubber elastic body portion that expresses each spring constant in the axial direction, the second direction and the first direction surely act, respectively, and thereby each rubber elastic body As a result, the spring constants in the respective directions can be reliably exerted at predetermined values.

【0028】請求項7記載の発明では、上記請求項1記
載の発明による作用に加えて、内筒体が、本体筒部と、
各張出し部と、障壁部とを互いに同一材料により一体に
形成されているため、内筒体の構造的強度が高まる上、
その形成工程の合理化が図られる。
According to the invention described in claim 7, in addition to the operation according to the invention described in claim 1, the inner cylinder body comprises a main body cylinder part,
Since each overhanging portion and the barrier portion are integrally formed of the same material, the structural strength of the inner cylindrical body is increased, and
The formation process is rationalized.

【0029】また、請求項8記載の発明では、上記請求
項1記載の発明による作用に加えて、本体筒部に対し、
各張出し部と、障壁部とが上記本体筒部とは異なる材料
により内筒体が一体に形成されているため、上記各張出
し部や障壁部の寸法の変更に合わせて所望形状の内筒体
の量産が容易に行い得る。
Further, in the invention described in claim 8, in addition to the operation according to the invention described in claim 1,
Since each of the overhanging portions and the barrier portion are integrally formed of the inner tubular body made of a material different from that of the main body tubular portion, the inner tubular body having a desired shape according to the change in the size of each overhanging portion or the barrier portion. Mass production can be easily performed.

【0030】さらに、請求項9記載の発明では、円筒形
状の外筒体をそのまま用い、その外筒体の円周面である
内周面にゴム弾性体の端部を接合しても、筒軸方向両側
の両張出し部間ゴム弾性体部分が筒軸方向外力に対して
は死にゴムとなり、第2方向外力に対しては有効な抵抗
要素となり、これにより、筒軸方向ばね定数の増大化
と、第2方向ばね定数の低減化とが図られるという請求
項1記載の発明による作用が確実に得られ、従来の如く
円筒形外筒体の内周面に厚肉部を形成するという面倒な
加工を省略することが可能となる。
Further, according to the invention of claim 9, even if the outer cylindrical body is used as it is and the end portion of the rubber elastic body is joined to the inner peripheral surface which is the circumferential surface of the outer cylindrical body, The rubber elastic body portion between the two overhanging portions on both sides in the axial direction deadly becomes rubber against the external force in the axial direction of the cylinder, and becomes an effective resistance element against the external force in the second axial direction, thereby increasing the spring constant in the axial direction of the cylinder. And the reduction of the spring constant in the second direction, the operation according to the invention of claim 1 is surely obtained, and the trouble of forming a thick portion on the inner peripheral surface of the cylindrical outer cylindrical body as in the conventional case. It is possible to omit special processing.

【0031】[0031]

【実施例】以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図1〜図3は、本発明の実施例に係るブッ
シュ組立体を示し、1は内筒体、2はこの内筒体1を囲
むよう内筒体1の筒軸Zと同軸に配置された円筒形状の
外筒体、3は上記内筒体1から上記筒軸Zに直交する第
1方向であるY方向の両側に延びてこれら内筒体1と外
筒体2との間を連結するゴム弾性体である。
1 to 3 show a bush assembly according to an embodiment of the present invention, in which 1 is an inner cylinder, and 2 is coaxial with the cylinder axis Z of the inner cylinder 1 so as to surround the inner cylinder 1. The arranged cylindrical outer cylinders 3 extend from the inner cylinder 1 to both sides in the Y direction, which is a first direction orthogonal to the cylinder axis Z, and extend between the inner cylinder 1 and the outer cylinder 2. Is a rubber elastic body for connecting the.

【0033】上記内筒体1は、図4にも詳細を示すよう
に、上記筒軸Zに沿って配置された円筒状の本体筒部1
1と、この本体筒部11の筒軸Z方向(図2及び図4の
上下方向)両側位置であって、上記内筒体1へのゴム弾
性体3の形成範囲の筒軸Z方向両側端位置の周囲からそ
れぞれから上記筒軸Zに直交する方向に張出した一対の
張出し部12,12と、上記本体筒部11から上記一対
の張りだし部12,12間を互いに連結するように上記
筒軸Z及びY方向に共に直交する第2方向であるX方向
の両側方に突出された一対の障壁部13とを備えてお
り、これら11,12,12,13,13が同一の金属
材料を用いて一体に形成されている。例えば、焼結金属
により、または、各張出し部12と各障壁部13とを旋
盤加工により別体で形成して本体筒部11に溶着するこ
とにより形成すればよい。
As shown in detail in FIG. 4, the inner cylindrical body 1 has a cylindrical main body cylindrical portion 1 arranged along the cylindrical axis Z.
1 and both side positions of the main body cylinder portion 11 in the cylinder axis Z direction (vertical direction in FIGS. 2 and 4) and both ends of the range in which the rubber elastic body 3 is formed on the inner cylinder body 1 in the cylinder axis Z direction. A pair of overhanging portions 12 and 12 extending from the periphery of the position in a direction orthogonal to the tube axis Z, and the tube so as to connect the pair of overhanging sections 12 and 12 from the body tube portion 11 to each other. And a pair of barrier portions 13 projecting to both sides in the X direction, which is the second direction orthogonal to both the Z and Y directions, and these 11, 12, 12, 13, 13 are made of the same metal material. It is integrally formed by using. For example, it may be formed of sintered metal, or the protruding portions 12 and the barrier portions 13 may be separately formed by lathe processing and welded to the main body tubular portion 11.

【0034】上記本体筒部11の筒軸Zに沿って貫通す
る貫通孔14には、取付け用軸体として例えばリヤサス
ペンションのサブフレーム取付け軸(図示省略)が挿通
されて内筒体1と接続されるようになっている。
A subframe mounting shaft (not shown) of a rear suspension, for example, is inserted as a mounting shaft into the through hole 14 penetrating along the cylinder axis Z of the main body cylindrical portion 11 and connected to the inner cylindrical body 1. It is supposed to be done.

【0035】上記各張出し部12は上記本体筒部11か
らY方向及びX方向にそれぞれ所定量突出して筒軸Z方
向から見て略四角形状となるように形成されている。ま
た、上記各張出し部12のX方向端面は上記各障壁部1
3と同一平面を構成するようにされている。すなわち、
上記各張出し部12は、上記各障壁部13のX方向形成
範囲と同範囲にわたり本体筒部11を挟んでX方向に張
出されたX方向寸法Fを有し、Y方向に対しては筒軸Z
方向及びX方向の各ばね定数の目標設定値に応じてその
張出し寸法Wが定められている。上記X方向寸法Fは、
ゴム弾性体3のX方向幅の範囲内に設定され、好ましく
は、そのゴム弾性体3のX方向幅に等しく設定される。
また、上記各障壁部13のY方向の肉厚tはY方向入力
に対するゴム弾性体のばね定数(以下、Y方向ばね定数
という)の目標設定値に応じて定められるが、その肉厚
tの設定は上記本体筒部11のY方向幅、すなわち、そ
の外径dと同等以下の範囲で定めるのが好ましい。
Each of the overhanging portions 12 is formed so as to project from the main body tubular portion 11 by a predetermined amount in the Y direction and the X direction, and has a substantially quadrangular shape when viewed from the tubular axis Z direction. In addition, the X-direction end surface of each of the overhanging portions 12 is provided with each of the barrier portions 1
3 and the same plane. That is,
Each of the overhanging portions 12 has an X-direction dimension F overhanging in the X-direction across the main-body tubular portion 11 over the same range as the X-direction forming range of each of the barrier portions 13, and a tube in the Y-direction. Axis Z
The overhanging dimension W is determined according to the target setting values of the spring constants in the X direction and the X direction. The dimension F in the X direction is
It is set within the range of the width of the rubber elastic body 3 in the X direction, and preferably set to be equal to the width of the rubber elastic body 3 in the X direction.
Further, the wall thickness t of each of the barrier portions 13 in the Y direction is determined according to the target set value of the spring constant of the rubber elastic body (hereinafter, referred to as the Y direction spring constant) with respect to the Y direction input. It is preferable to set the width within the range equal to or smaller than the width of the main body tubular portion 11 in the Y direction, that is, the outer diameter d thereof.

【0036】そして、上記内筒体1は、筒軸Z方向に延
びる各障壁部13及び本体筒部11と、上記本体筒部1
1からY方向両側に延びる一対の張出し部12,12と
でY方向ら見てエの字状に形成され、上記の一対の張出
し部12,12の間にはX方向に延びる凹溝部15,1
5が本体筒部11を挟んでY方向両側に形成されてい
る。上記一対の張出し部12,12の筒軸Z方向両外側
端間の全体寸法L、すなわち、上記一対張出し部12,
12と一対の障壁部13,13とが形成される部分の筒
軸Z方向全体寸法Lは、上記一対の張出し部12,12
が上記の如く筒軸内筒体1位置におけるゴム弾性体3の
筒軸Z方向両外側端位置に設けられるため、そのゴム弾
性体3の筒軸Z方向幅と略等しくなる。加えて、上記一
対の張出し部12,12の筒軸Z方向相対向面間隔L1
、つまり、上記凹溝部15の筒軸Z方向溝幅L1 は、
筒軸Z方向入力に対するゴム弾性体3のばね定数(以
下、筒軸Z方向ばね定数という)と、X方向入力に対す
るゴム弾性体3のばね定数(以下、X方向ばね定数とい
う)との関係をどのように定めるのかに基づいて定めら
れる。
The inner tubular body 1 includes the respective barrier portions 13 extending in the tubular axis Z direction, the main body tubular portion 11, and the main body tubular portion 1.
1 and a pair of overhanging portions 12 and 12 extending in the Y direction, which are formed in a V shape when viewed from the Y direction, and between the pair of overhanging portions 12 and 12 extending in the X direction. 1
5 are formed on both sides in the Y direction with the body tube portion 11 interposed therebetween. The overall dimension L between the outer ends of the pair of overhang portions 12, 12 in the cylinder axis Z direction, that is, the pair of overhang portions 12, 12.
The overall dimension L in the cylinder axis Z direction of the portion where 12 and the pair of barrier portions 13 and 13 are formed is equal to the above-mentioned pair of overhang portions 12 and 12.
As described above, since the rubber elastic body 3 is provided at both outer end positions of the rubber elastic body 3 in the cylinder axis Z direction at the position of the inner cylinder body 1, the width of the rubber elastic body 3 is substantially equal to the Z axis direction. In addition, the distance L1 between the pair of overhanging portions 12, 12 facing each other in the cylinder axis Z direction.
That is, the groove width L1 of the concave groove portion 15 in the cylinder axis Z direction is
The relationship between the spring constant of the rubber elastic body 3 with respect to the cylinder axis Z direction input (hereinafter referred to as the cylinder axis Z direction spring constant) and the spring constant of the rubber elastic body 3 with respect to the X direction input (hereinafter referred to as the X direction spring constant) is shown. It is decided based on how to decide.

【0037】上記ゴム弾性体3は、上記の内筒体1のX
方向幅、つまり、一対の張出し部12,12及び一対の
障壁部13,13のX方向幅と略等しく設定された幅を
有し、上記内筒体1からY方向の両側にほぼ一直線状に
延びて、外筒体2の内周面に結合されている。また、図
1及び図2中31,31は、上記外筒体2の上記内筒体
1に対しX方向に相対向する内周面位置に形成されたス
トッパー部である。このようなゴム弾性体3及び各スト
ッパー部31は、上記内筒体1及び外筒体2をインサー
ト材とする一体加硫成形により形成され、これにより、
上記ゴム弾性体3及びストッパー部31は、上記内筒体
1の外面及び外筒体2の内周面と加硫接着されている。
The rubber elastic body 3 is the X of the inner cylindrical body 1.
The width in the directional direction, that is, the width in the X direction of the pair of overhanging portions 12 and 12 and the pair of barrier portions 13 and 13 is set to be substantially equal to each other, and is substantially straight from the inner cylindrical body 1 to both sides in the Y direction. It extends and is joined to the inner peripheral surface of the outer cylindrical body 2. Further, reference numerals 31 and 31 in FIG. 1 and FIG. 2 denote stopper portions formed at inner peripheral surface positions of the outer cylindrical body 2 facing the inner cylindrical body 1 in the X direction. Such a rubber elastic body 3 and each stopper portion 31 are formed by integral vulcanization molding using the inner cylindrical body 1 and the outer cylindrical body 2 as insert materials.
The rubber elastic body 3 and the stopper portion 31 are vulcanized and bonded to the outer surface of the inner cylindrical body 1 and the inner peripheral surface of the outer cylindrical body 2.

【0038】なお、図2及び図3中、21は外筒体2の
筒軸Z方向一端側が外周方向に拡開されたフランジ部、
32,32,…はそのフランジ部21から筒軸Z方向外
方に突出されたストッパー片部である。
2 and 3, reference numeral 21 denotes a flange portion in which one end side of the outer cylindrical body 2 in the cylinder axis Z direction is widened in the outer peripheral direction.
Reference numerals 32, 32, ... Denote stopper pieces protruding outward from the flange portion 21 in the cylinder axis Z direction.

【0039】上記構成のブッシュ組立体において、例え
ばリヤサスペンションのサブフレームを車体にマウント
するために用いる場合には、ストッパー片部32,3
2,…を上側にして筒軸Z方向を上下方向に配置し、Y
方向を上記車体の左右方向(幅方向)に、X方向を上記
車体の前後方向にそれぞれ配置する。そして、上記サブ
フレームの取付け軸体を貫通孔14に挿通して内筒体1
に連結する一方、外筒体2をブラケット等を介して車体
側に連結する。
In the bush assembly having the above construction, when the rear suspension subframe is used for mounting on the vehicle body, for example, the stopper pieces 32, 3 are used.
2, ... are set to the upper side and the cylinder axis Z direction is arranged in the vertical direction, and Y
The direction is arranged in the left-right direction (width direction) of the vehicle body, and the X direction is arranged in the front-rear direction of the vehicle body. Then, the mounting shaft of the sub-frame is inserted into the through hole 14 and the inner cylindrical body 1
On the other hand, the outer cylindrical body 2 is connected to the vehicle body side via a bracket or the like.

【0040】この場合、上記筒軸Z方向からの外力に対
し、図5及び図6に示すように、ゴム弾性体3の筒軸Z
方向両側端位置の一対の張出し部12,12により挟ま
れる両凹溝15,15内のゴム弾性体部分33,33は
上記内筒体1と一体に相対変位して、上記外力に対する
抵抗要素とならない死にゴム部分となる。このため、上
記筒軸Z方向外力に対しては、上記各ゴム弾性体部分3
3を除いたゴム弾性体部分34,34が有効に抵抗し、
この両ゴム弾性体部分34,34に基づいて筒軸Z方向
ばね定数が決まることになる。従って、本体筒部11の
外周面から外筒体2の内周面までのゴム弾性体3の全体
が抵抗要素となる場合と比べ、上記死にゴム部分(3
3,33)の存在により筒軸Z方向外力によりせん断力
を受ける長さSz が短くなり、これに対応して筒軸Z方
向ばね定数が相対的に増大化、すなわち、硬いものにな
る。
In this case, with respect to the external force from the cylinder axis Z direction, as shown in FIGS. 5 and 6, the cylinder axis Z of the rubber elastic body 3 is used.
The rubber elastic body portions 33, 33 in the both recessed grooves 15, 15 sandwiched by the pair of overhanging portions 12, 12 at both ends in the direction are relatively displaced integrally with the inner cylindrical body 1 to serve as a resistance element against the external force. It becomes a rubber part to death that does not become. Therefore, with respect to the external force in the cylinder axis Z direction, the rubber elastic body portions 3 are
The rubber elastic body parts 34, 34 excluding 3 effectively resist,
The spring constant of the cylinder axis Z direction is determined based on the rubber elastic body portions 34, 34. Therefore, compared with the case where the entire rubber elastic body 3 from the outer peripheral surface of the main body cylindrical portion 11 to the inner peripheral surface of the outer cylindrical body 2 serves as a resistance element, the rubber portion (3
3, 33), the length Sz that receives the shearing force by the external force in the cylinder axis Z direction is shortened, and the spring constant in the cylinder axis Z direction is correspondingly increased, that is, the length becomes rigid.

【0041】一方、X方向(車体前後方向)からの外力
に対しては、図7に示すように、ゴム弾性体3のX方向
に対し連続していない、外筒体2の内周面側の円弧状部
分35,35は有効な抵抗要素とならないが、その円弧
状部分35,35を除いて、上記の両凹溝15,15内
のゴム弾性体部分33,33を含むゴム弾性体3のほぼ
全体部分36,36が有効に抵抗することになる。つま
り、上記筒軸Z方向外力に対する場合と比べ、上記の円
弧状部分35,35は除かれるものの、その代わりに上
記各凹溝15内のゴム弾性体部分33,33が抵抗要素
として加わることになる。このため、X方向外力により
せん断力を受ける長さSx が、上記の筒軸Z方向外力を
ゴム弾性体部分34が受ける場合と比べ長くなり、これ
に対応してX方向ばね定数が相対的に低減化、すなわ
ち、軟らかいものとなる。
On the other hand, with respect to the external force from the X direction (front-back direction of the vehicle body), as shown in FIG. 7, the inner peripheral surface side of the outer cylindrical body 2 which is not continuous in the X direction of the rubber elastic body 3. Although the arcuate portions 35, 35 of FIG. 3 do not become effective resistance elements, the rubber elastic body 3 including the rubber elastic body portions 33, 33 in the above-mentioned both concave grooves 15, 15 is excluded except the arcuate portions 35, 35. Almost the entire portion 36, 36 of this will effectively resist. That is, as compared with the case where the external force in the cylinder axis Z direction is applied, the arcuate portions 35, 35 are removed, but instead, the rubber elastic body portions 33, 33 in the recessed grooves 15 are added as resistance elements. Become. Therefore, the length Sx that receives the shearing force due to the external force in the X direction becomes longer than that in the case where the rubber elastic body portion 34 receives the external force in the Z direction in the cylinder axis, and the spring constant in the X direction is relatively corresponding to this. It is reduced, that is, soft.

【0042】これらの結果、ゴム弾性体3のY方向両側
端が外筒体2の内周面、すなわち、円周面にそのまま接
合されてその接合部位が円弧状になっていても、X方向
ばね定数を筒軸Z方向ばね定数に近付けるもしくは一致
させることができる。すなわち、上記ゴム弾性体3の外
筒体2への接合部位である円弧状部分35,3の存在に
起因して、従来、X方向ばね定数が筒軸Z方向ばね定数
よりも大きく(硬く)なる傾向にあったのを解消するこ
とができる。この結果、外筒体として円筒形のものをそ
のまま用いることができ、従来の如く外筒体の内周面に
厚肉部を形成して平面部を形成するという工程を省略す
ることができる。そして、上記のせん断二方向であるX
方向ばね定数と筒軸Z方向ばね定数との相対関係は、上
記の外力の入力方向により死にゴムとなったり抵抗要素
となったりするゴム弾性体部分33の大きさ、すなわ
ち、一対の張出し部12,12の相対向面間隔L1 等を
変更することにより容易に調整することができる。
As a result, even if both ends of the rubber elastic body 3 in the Y direction are directly joined to the inner peripheral surface of the outer cylindrical body 2, that is, the circumferential surface, and the joint portions are arcuate, they are in the X direction. The spring constant can be brought close to or match the spring constant in the cylinder axis Z direction. That is, due to the existence of the arcuate portions 35 and 3 which are the joint portions of the rubber elastic body 3 to the outer cylindrical body 2, the X direction spring constant is conventionally larger (harder) than the cylinder axis Z direction spring constant. You can eliminate the tendency to become. As a result, the cylindrical outer cylinder can be used as it is, and the step of forming a thick portion on the inner peripheral surface of the outer cylinder to form the flat surface can be omitted. And the above-mentioned two directions of shear X
The relative relationship between the directional spring constant and the cylinder axis Z-direction spring constant is determined by the size of the rubber elastic body portion 33 that dies or becomes a resistance element depending on the input direction of the external force, that is, the pair of overhanging portions 12. , 12 can be easily adjusted by changing the distance L1 between the facing surfaces.

【0043】また、Y方向からの外力に対しては、本体
筒部11からY方向に直交するX方向のほぼ全幅の範囲
を横切るように障壁部13,13がゴム弾性体3に埋め
込まれているため、その障壁部13,13のY方向厚み
tの分だけゴム弾性体3が上記Y方向外力に基づく圧縮
されるY方向長さが短くなり、これにより、Y方向ばね
定数が硬いものとなる。従って、上記障壁部のY方向厚
みtを大とする程、上記Y方向ばね定数をより硬いもの
とすることができ、この各障壁部13のY方向厚みtを
変更しても、その変更に係る部分は上記の筒軸Z方向外
力に対しては死にゴムとなる各ゴム弾性体部分33であ
り、X方向外力に対してはその外力に抵抗するゴム弾性
体部分36に殆ど影響を与えることがない部分であるた
め、上記のせん断二方向である筒軸Z方向及びX方向の
両ばね定数とは互いに独立して、Y方向ばね定数を設定
調整することができ、しかも、その変更設定も各障壁部
13の肉厚(Y方向幅t)を変更するだけと容易に行う
ことができる。
Further, with respect to an external force from the Y direction, the barrier portions 13, 13 are embedded in the rubber elastic body 3 so as to traverse a range of almost the entire width in the X direction orthogonal to the Y direction from the main body tubular portion 11. Therefore, the length in the Y direction in which the rubber elastic body 3 is compressed based on the external force in the Y direction is shortened by the thickness t of the barrier portions 13 in the Y direction, which makes the Y direction spring constant hard. Become. Therefore, the larger the Y-direction thickness t of the barrier portion, the harder the Y-direction spring constant can be made. Even if the Y-direction thickness t of each barrier portion 13 is changed, the change can be made. The relevant portions are the respective rubber elastic body portions 33 that die to become a rubber against the external force in the Z-direction of the cylinder axis, and have almost no influence on the rubber elastic body portion 36 that resists the external force in the X-direction external force. Since there is no portion, the spring constant in the Y direction can be set and adjusted independently of the spring constants in the Z direction and the X direction, which are the two shear directions, and the change setting can also be made. This can be easily performed only by changing the wall thickness of each barrier portion 13 (width t in the Y direction).

【0044】以上の如く、本ブッシュ組立体によれば、
筒軸Z方向、X方向、及び、Y方向の三次元方向の外力
に対しそれぞれ所望のばね定数を発揮させることがで
き、しかも、それらの筒軸Z方向ばね定数、X方向ばね
定数、及び、Y方向ばね定数のそれぞれを、本ブッシュ
組立体が適用されるマウント部位において要求される目
標性能に応じて、互いに独立して設定することができ、
しかも、その設定調整を容易に行うことができる。この
ため、上記のリヤサスペンションのサブフレームの車体
にするマウント部位に適用する場合には、上記の如く筒
軸Z方向ばね定数をあまり硬くならない程度に増大化し
つつX方向ばね定数を上記筒軸Z方向ばね定数に近付け
もしくは一致させて、上記サブフレームの支持剛性を確
保しつつせん断二方向に対する防振性能を満足させ、な
おかつ、これらを満足させた状態でY方向ばね定数を上
記のせん断二方向のばね定数とは独立して硬いものに設
定調整することができ、操縦安定性からの要求性能をも
満足させることができる。
As described above, according to this bush assembly,
Desired spring constants can be exerted against external forces in the three-dimensional directions of the cylinder axis Z direction, the X direction, and the Y direction, and the cylinder axis Z direction spring constant, X direction spring constant, and Each of the Y-direction spring constants can be set independently of each other, depending on the target performance required at the mount site to which the present bush assembly is applied,
Moreover, the setting adjustment can be easily performed. For this reason, when the rear suspension sub-frame is applied to the mounting portion of the vehicle body, the X-direction spring constant is increased to such an extent that it does not become too hard as described above, and the X-direction spring constant is increased. The spring constant of the Y-direction should be close to or the same as that of the directional spring to secure the supporting rigidity of the sub-frame while satisfying the vibration isolation performance in the two directions of shear. It can be set and adjusted to be hard independently of the spring constant of, and the required performance from steering stability can also be satisfied.

【0045】<解析結果>次に、本発明のブッシュ組立
体について有限要素法を用いて解析した解析結果を説明
する。
<Analysis Result> Next, the analysis result of the bush assembly of the present invention analyzed by the finite element method will be described.

【0046】[各部寸法が各ばね定数に及ぼす影響]図
8〜図10は、内筒体1の各部の寸法を種々に変化させ
た場合の筒軸Z方向ばね定数Kz 、X方向ばね定数Kx
、及び、Y方向ばね定数KY に及ぼす影響を示したも
のである。
[Effect of Dimensions of Each Part on Each Spring Constant] FIGS. 8 to 10 show the cylinder axis Z-direction spring constant Kz and the X-direction spring constant Kx when the size of each part of the inner cylinder 1 is variously changed.
, And the effect on the Y-direction spring constant KY.

【0047】−相対向面間隔L1 による影響− まず、図8は、一対の張出し部12,12による凹溝1
5,15の存在、及び、その各凹溝15の大きさが上記
の三次元の各ばね定数Kz 、Kx 、KY に及ぼす影響に
ついて示したものである。本解析では、一対の張出し部
12,12の全体寸法L(図4参照)等を固定値とし、
その相対向面間隔L1 をのみ変化させた場合の上記各ば
ね定数Kz 、Kx 、KY の各値を求めた。
-Influence of the facing surface spacing L1-First, FIG. 8 shows the concave groove 1 formed by the pair of overhanging portions 12,12.
5 shows the influence of the existence of the grooves 5, 15 and the size of the respective concave grooves 15 on the above-mentioned three-dimensional spring constants Kz, Kx, KY. In this analysis, the overall dimensions L (see FIG. 4) of the pair of overhanging portions 12, 12 are fixed values,
The respective spring constants Kz, Kx, and KY were obtained when only the distance L1 between the facing surfaces was changed.

【0048】固定値として、上記全体寸法Lを40m
m、張出し寸法Wを40mm、本体筒部の外径dを30
mm、障壁部13の肉厚tを20mmに設定した。そし
て、上記相対向面間隔L1 を0〜30mmの範囲で変化
させた。図8には、この場合の各ばね定数Kz 、Kx 、
KY の変化を相対向面間隔L1 の実際値、及び、全体寸
法Lに対するそのL1 の比率(L1 /L)をそれぞれ横
軸として示した。
As a fixed value, the overall dimension L is 40 m
m, overhang dimension W is 40 mm, outer diameter d of the main body cylinder is 30
mm, and the wall thickness t of the barrier 13 was set to 20 mm. Then, the above-mentioned face-to-face spacing L1 was changed in the range of 0 to 30 mm. FIG. 8 shows the spring constants Kz, Kx, and
The change in KY is shown with the actual value of the facing surface spacing L1 and the ratio (L1 / L) of L1 to the overall dimension L as the horizontal axis.

【0049】この結果、L1 =0(L1 /L=0)の場
合、すなわち、凹溝15が存在せず外表面が略角柱の状
態の内筒体を用いた場合には、X方向ばね定数Kx が筒
軸Z方向ばね定数Kz よりもかなり大きく、従って、か
なり硬いものになるのに対し、上記凹溝15を設けた場
合には、その溝幅(相対向面間隔L1 )を大値にする
程、上記X方向ばね定数Kx は筒軸Z方向ばね定数Kz
に近付く傾向にある。また、ここで、上記溝幅L1 を大
値に変更しても、筒軸Z方向ばね定数Kz の値自体は凹
溝15が存在しない場合(L1 =0の場合)と比べ殆ど
変化せず、筒軸Z方向外力に対しては上記凹溝15内の
ゴム弾性体部分33は死にゴムとなっていることを示し
ている。
As a result, in the case of L1 = 0 (L1 / L = 0), that is, when the inner cylindrical body in which the concave groove 15 does not exist and the outer surface is substantially prismatic is used, the spring constant in the X direction is used. Kx is considerably larger than the spring constant Kz in the Z-axis direction of the cylinder axis, and therefore becomes considerably hard. On the other hand, when the concave groove 15 is provided, its groove width (interval between facing surfaces L1) becomes large. As described above, the spring constant Kx in the X direction becomes equal to the spring constant Kz in the cylinder axis Z direction.
Tends to approach. Further, here, even if the groove width L1 is changed to a large value, the value itself of the cylinder axis Z-direction spring constant Kz hardly changes as compared with the case where the concave groove 15 does not exist (when L1 = 0), It is shown that the rubber elastic body portion 33 in the concave groove 15 is dead rubber against the external force in the cylinder axis Z direction.

【0050】一方、Y方向ばね定数Ky は、凹溝15が
存在しない場合(L1 =0の場合)から、凹溝15を設
けその溝幅L1 を大値にする程低減することを示してい
る。これは、Y方向外力に対し、L1 =0の場合にはゴ
ム弾性体の圧縮長さが上記の略角柱の内筒体によりゴム
弾性体の断面全体で短縮されてY方向ばね定数Ky が大
値となるのに対し、凹溝15が設けられて溝幅L1 が大
きくなるに従い、上記圧縮長さが短縮される断面部分が
上記凹溝15の分だけ小さくなり、その結果、Y方向ば
ね定数Ky が低減されるものと考えられる。つまり、各
張出し部12のY方向端面も各障壁部13と同じY方向
ばね定数Ky の増大化に関与しているものと考えられ
る。このように、Y方向ばね定数Ky において、溝幅L
1 が大きくなるに従い、他のせん断二方向のばね定数K
x 及びKz よりも大値であることを保ちつつその値が低
減することは、操縦安定性の面からはできるだけ大値で
ある方がよいもののロードノイズの悪化を招くため防振
面からもう少し値を小さくしたいという性能要求と合致
するものである。
On the other hand, the Y-direction spring constant Ky decreases from the case where the concave groove 15 does not exist (when L1 = 0) and decreases as the groove width L1 is set to a large value. . With respect to the external force in the Y direction, when L1 = 0, the compression length of the rubber elastic body is shortened in the entire cross section of the rubber elastic body by the inner cylinder of the substantially prismatic shape, and the spring constant Ky in the Y direction is large. On the other hand, when the groove 15 is provided and the groove width L1 is increased, the cross-sectional portion where the compression length is shortened is reduced by the groove 15, and as a result, the Y direction spring constant is increased. It is considered that Ky is reduced. That is, it is considered that the Y-direction end surface of each overhanging portion 12 is also involved in increasing the Y-direction spring constant Ky, which is the same as each barrier portion 13. Thus, in the Y direction spring constant Ky, the groove width L
As 1 increases, the spring constant K in other two directions of shear
It is preferable that the value be as large as possible from the standpoint of maneuvering stability while keeping the value larger than x and Kz while it is large, but it will cause deterioration of road noise, so it will be a little more value from the anti-vibration surface. Is consistent with the performance requirement of reducing

【0051】なお、上記の図8におけるKz1,Kz2、K
x1,Kx2、Ky1,Ky2は上記凹溝15のないもの(L1
/L=0)と、あるもの(L1 /L=0.7)との試験
体を製作し、それぞれ筒軸Z方向、X方向、Y方向の各
ばね定数を実測した値をプロットしたものである。この
試験体の各部寸法はL=42、t=15、W=40であ
り、ゴム弾性体3のゴム硬度Hs =60°である。上記
の実測は上記解析の有効性について確認するために行っ
たものであり、この結果、上記実測値は、前提の各部寸
法において上記解析のそれとはわずかに相違があるもの
の、解析結果と同傾向を示しほぼ合致するものであっ
た。
Incidentally, Kz1, Kz2, K in FIG.
x1, Kx2, Ky1, and Ky2 do not have the above-mentioned groove 15 (L1
/ L = 0) and a certain one (L1 / L = 0.7) were manufactured, and the measured values of the spring constants in the cylinder axis Z direction, X direction, and Y direction were plotted. is there. The dimensions of each part of this test body are L = 42, t = 15, W = 40, and the rubber hardness Hs of the rubber elastic body 3 is 60 °. The above measurement was conducted to confirm the effectiveness of the above analysis, and as a result, the above measured values are slightly different from those of the above analysis in the dimensions of each part of the assumption, but the same tendency as the analysis result. It was almost the same.

【0052】−障壁部13の肉厚tによる影響− 図9は、障壁部13の肉厚tの大小が上記の三次元の各
ばね定数Kz 、Kx 、KY に及ぼす影響について示した
ものである。本解析では、固定値として、全体寸法Lを
40mm、張出し寸法Wを40mm、本体筒部の外径d
を30mm、凹溝の溝幅L1 を30mm(L1 /L=
0.75)にそれぞれ設定し、障壁部13の肉厚tを1
0〜20mmの範囲で変化させて、各ばね定数Kz 、K
x 、KY の値を求めた。
-Effect of Wall Thickness t of Barrier Section 13- FIG. 9 shows the effect of the thickness t of the barrier section 13 on the three-dimensional spring constants Kz, Kx, and KY. . In this analysis, as fixed values, the overall dimension L is 40 mm, the overhanging dimension W is 40 mm, and the outer diameter d of the main body tubular portion is
Is 30 mm, and the groove width L1 of the concave groove is 30 mm (L1 / L =
0.75), and the wall thickness t of the barrier 13 is set to 1
The spring constants Kz and K can be changed within the range of 0 to 20 mm.
The values of x and KY were obtained.

【0053】この結果、障壁部13の肉厚tの値が増大
すると、それに対応してY方向ばね定数Ky は増大して
硬いものに変化するものの、ばね定数Kz 及びX方向ば
ね定数Kx は変化せずほぼ同じ値を維持した。つまり、
このことは、上記障壁部13の肉厚tを変更調整すれ
ば、Kz 及びKx の値を変化させることなく、Ky の値
のみを独立にチューニングすることが可能であることを
示している。従って、Y方向ばね定数Ky のチューニン
グを、何ら特別の機構を設けなくても、障壁部13の肉
厚tの寸法変更という容易な手段により他方向の特性を
変更することなく独立して行うことができることにな
る。
As a result, when the wall thickness t of the barrier portion 13 increases, the Y-direction spring constant Ky correspondingly increases and changes to a hard one, but the spring constant Kz and the X-direction spring constant Kx change. Without maintaining the same value. That is,
This indicates that if the wall thickness t of the barrier portion 13 is changed and adjusted, only the value of Ky can be tuned independently without changing the values of Kz and Kx. Therefore, the tuning of the spring constant Ky in the Y direction can be independently performed without changing the characteristic in the other direction by an easy means of changing the dimension of the wall thickness t of the barrier portion 13 without providing any special mechanism. You will be able to

【0054】−張りだし部12の張出し寸法Wによる影
響− 図10は、張出し部12の張出し寸法Wの大小が上記の
三次元の各ばね定数Kz 、Kx 、KY に及ぼす影響につ
いて示したものである。本解析では、固定値として、全
体寸法Lを40mm、凹溝の溝幅L1 を30mm(L1
/L=0.75)、本体筒部の外径dを30mm、障壁
部13の肉厚tを15mmにそれぞれ設定し、上記の張
出し寸法Wを35〜42mmの範囲で変化させて、各ば
ね定数Kz 、Kx 、KY の値を求めた。
-Effect of Overhang Dimension W of Overhang 12- FIG. 10 shows the effect of the overhang W of the overhang 12 on the above-mentioned three-dimensional spring constants Kz, Kx, KY. is there. In this analysis, as a fixed value, the overall dimension L is 40 mm and the groove width L1 of the concave groove is 30 mm (L1
/L=0.75), the outer diameter d of the main body cylindrical portion is set to 30 mm, the wall thickness t of the barrier portion 13 is set to 15 mm, and the overhanging dimension W is changed in the range of 35 to 42 mm to set each spring. The values of constants Kz, Kx and KY were obtained.

【0055】この結果、張出し寸法Wの値が増大する
と、それに対応してKz 、Kx 、及び、Ky の3者共、
増大して硬いものに変化する。つまり、張出し寸法Wの
値を大にすれば、上記の3方向の各ばね定数Kz ,Kx
,Ky を共に同じ傾向で硬くすることが可能であるこ
とを示している。
As a result, when the value of the overhanging dimension W increases, the three of Kz, Kx, and Ky correspondingly increase,
It increases and changes to a hard one. That is, if the value of the overhanging dimension W is increased, the spring constants Kz and Kx in the above three directions are increased.
, Ky can be hardened with the same tendency.

【0056】[モデルの変形性状]図11〜図14は、
本解析モデルにおいて、外筒体2を固定とし内筒体1に
対し筒軸Z方向,X方向,または,Y方向への外力を与
えた場合のゴム弾性体3の変形後の形状を示すものであ
る。
[Model Deformation] FIGS. 11 to 14 show
In this analysis model, the outer cylindrical body 2 is fixed, and the shape of the rubber elastic body 3 after deformation is shown when an external force is applied to the inner cylindrical body 1 in the cylinder axis Z, X, or Y direction. Is.

【0057】−X方向外力による変形− 図11は、図3のC−C線断面における凹溝15内のゴ
ム弾性体部分、すなわち、本体筒部11の外周面及び各
障壁部13の外面と、外筒体2の内周面とに挟まれたゴ
ム弾性体3について、上記内筒体1にX方向外力を作用
させた場合の変形前の形状(破線で示す形状)と、変形
後の形状(実線で示す形状)とを示している。また、図
12は、図3のD−D線断面における張出し部12及び
ゴム弾性体3について、上記内筒体1にX方向外力を作
用させた場合の変形前の形状(破線で示す形状)と、変
形後の形状(実線で示す形状)とを示している。
-Deformation due to external force in X direction-Fig. 11 shows the rubber elastic body portion in the groove 15 in the cross section taken along the line CC of Fig. 3, that is, the outer peripheral surface of the main body cylindrical portion 11 and the outer surface of each barrier portion 13. With respect to the rubber elastic body 3 sandwiched between the inner peripheral surface of the outer cylindrical body 2, the shape before deformation (the shape shown by the broken line) when an external force in the X direction is applied to the inner cylindrical body 1, and the shape after deformation. The shape (the shape indicated by the solid line) is shown. Further, FIG. 12 shows a shape before deformation of the overhanging portion 12 and the rubber elastic body 3 in a cross section taken along the line D-D in FIG. 3 when an external force in the X direction is applied to the inner cylindrical body 1 (a shape shown by a broken line). And the shape after deformation (the shape indicated by the solid line).

【0058】これによれば、図11の凹溝15内のゴム
弾性体3は、X方向外力を受けて、外筒体2直近のゴム
弾性体部分(図7の円弧状部分35に相当)を除き、本
体筒部11の外周面から外筒体2までのY方向寸法y1
のほぼ全体が変形を受けている。これに対し、図12の
張出し部12位置のゴム弾性体3では、X方向外力を受
けて変形するY方向寸法が、上記張出し部12の外面位
置から外筒体2までの寸法y2 と短くなる。この図12
の場合は、上記図11の断面位置で凹溝15が存在せ
ず、張出し部12が筒軸Z方向に連続している場合のゴ
ム弾性体の変形に相当する。従って、上記凹溝15のあ
る場合(図11の場合)には、ない場合(図12の場
合)と比べ、より長い範囲のゴム弾性体がせん断方向の
力による曲げを受けてX方向ばね定数Kx がより軟らか
いものとなる。
According to this, the rubber elastic body 3 in the concave groove 15 of FIG. 11 receives an external force in the X direction, and the rubber elastic body portion in the vicinity of the outer cylindrical body 2 (corresponding to the arc-shaped portion 35 of FIG. 7). Excluding the dimension y1 in the Y direction from the outer peripheral surface of the main body tubular portion 11 to the outer tubular body 2.
Almost the whole has undergone deformation. On the other hand, in the rubber elastic body 3 at the position of the overhanging portion 12 in FIG. 12, the dimension in the Y direction that is deformed by receiving the external force in the X direction becomes as short as the dimension y2 from the outer surface position of the overhanging portion 12 to the outer cylindrical body 2. . This FIG.
The case corresponds to the deformation of the rubber elastic body when the concave groove 15 does not exist at the cross-sectional position of FIG. 11 and the overhanging portion 12 is continuous in the cylinder axis Z direction. Therefore, in the case where the groove 15 is provided (in the case of FIG. 11), the rubber elastic body in a longer range is bent by the force in the shearing direction as compared with the case where the groove 15 is not provided (in the case of FIG. 12), and the X direction spring constant is Kx becomes softer.

【0059】−筒軸Z方向外力による変形− 図13は、図3の下半部の断面におけるゴム弾性体3に
ついて、内筒体1に筒軸Z方向外力(図13の上方への
外力)を作用させた場合の変形前の形状(破線で示す形
状)と、変形後の形状(実線で示す形状)とを示してい
る。
-Deformation by external force in the cylinder axis Z direction-FIG. 13 shows an external force applied to the inner cylinder body 1 in the cylinder axis Z direction (external force upward in FIG. 13) with respect to the rubber elastic body 3 in the cross section of the lower half of FIG. The shape before deformation (the shape indicated by the broken line) and the shape after the deformation (the shape indicated by the solid line) are shown.

【0060】これによれば、凹溝15内のゴム弾性体部
分33(図6参照)は筒軸Z方向外力を受けても殆ど変
形せず、この筒軸Z方向外力を受けて変形する範囲は上
記のゴム弾性体部分33を除くゴム弾性体部分34(図
6参照)に止められる。つまり、上記の上下の両張出し
部12,12により囲まれる凹溝15内のゴム弾性体部
分33は上記筒軸Z方向外力に対しては死にゴムとな
り、実際には凹溝15があっても、張出し部12が筒軸
Z方向に連続して凹溝15が存在しない場合と同じこと
になる。従って、各張出し部12の形成により筒軸Z方
向外力に対するばね定数の増大化を図ることができる。
According to this, the rubber elastic body portion 33 (see FIG. 6) in the concave groove 15 is hardly deformed even when an external force is applied in the cylinder axis Z direction, and is deformed by the external force in the cylinder axis Z direction. Is fixed to the rubber elastic body portion 34 (see FIG. 6) excluding the rubber elastic body portion 33 described above. That is, the rubber elastic body portion 33 in the concave groove 15 surrounded by the upper and lower protruding portions 12, 12 becomes a rubber dead against the external force in the cylinder axis Z direction, and even if the concave groove 15 is actually present. This is the same as the case where the overhanging portion 12 is continuous in the cylinder axis Z direction and the concave groove 15 does not exist. Therefore, by forming each overhanging portion 12, it is possible to increase the spring constant with respect to the external force in the cylinder axis Z direction.

【0061】−Y方向外力による変形− 図14は、一側の張出し部12と一側の障壁部13との
交差部付近のゴム弾性体3について、内筒体1にY方向
外力を作用させた場合の変形前の形状(破線で示す形
状)と、変形後の形状(実線で示す形状)とを示してい
る。
-Deformation by Y-direction external force-FIG. 14 shows that the Y-direction external force is applied to the inner cylindrical body 1 of the rubber elastic body 3 near the intersection of the one side overhanging portion 12 and the one side barrier portion 13. The shape before deformation (the shape indicated by the broken line) and the shape after the deformation (the shape indicated by the solid line) are shown.

【0062】これによれば、上記Y方向力を受けて障壁
部13の前面のゴム弾性体部分が側方に、張出し部12
の前面のゴム弾性体部分が上方にそれぞれかなり大きく
膨出変形している。つまり、上記の障壁部13及び張出
し部12の存在によりゴム弾性体3がより圧縮されY方
向外力に対するばね定数Ky が増大することを示してい
る。
According to this, the rubber elastic body portion on the front surface of the barrier portion 13 receives the force in the Y direction, and the protruding portion 12 extends laterally.
The rubber elastic body portion on the front side of each of the bulges is considerably bulged upward. That is, it is shown that the presence of the barrier portion 13 and the overhanging portion 12 further compresses the rubber elastic body 3 and increases the spring constant Ky with respect to the external force in the Y direction.

【0063】<他の態様>なお、本発明は上記実施例に
限定されるものではなく、その他種々の変形例を包含す
るものである。すなわち、上記実施例では、内筒体1と
して、本体筒部11と、両張出し部12,12と、両障
壁部13,13とが同一材料により一体に形成されてい
る場合を示したが、これに限らず、例えば、金属製の本
体筒部11をインサート材にして、両張出し部12,1
2と両障壁部13,13とを、硬質樹脂、例えばナイロ
ン66にガラス繊維を混入(例えば30%程度混入)し
たものを用いたモールド成形により一体的に形成するよ
うにしてもよい。これにより、ブッシュ組立体に要求さ
れる性能に応じて各部寸法の異なる内筒体の量産が容易
になる。
<Other Embodiments> The present invention is not limited to the above embodiments, but includes various other modifications. That is, in the above-described embodiment, the case in which the main body tubular portion 11, both overhanging portions 12 and 12, and both barrier portions 13 and 13 are integrally formed of the same material as the inner tubular body 1 has been described. The present invention is not limited to this.
2 and both barrier portions 13 and 13 may be integrally formed by molding using a hard resin, for example, nylon 66 mixed with glass fiber (for example, about 30%). This facilitates mass production of the inner cylinder body having different dimensions according to the performance required for the bush assembly.

【0064】また、上記実施例では、内筒体1として、
本体筒部11に対し両張出し部12,12と両障壁部1
3,13とを付設したような形状を示したが、これに限
らず、内筒体を本体筒部が張出し部及び障壁部の内部に
完全に埋め込まれた如き形状にしてもよい。例えば、図
15に示すように、円柱材料の軸Zに沿って貫通孔14
を削孔して本体筒部とし、軸Z方向中間位置の外周面に
凹溝15,15を形成することにより軸Z方向の両側位
置に張出し部12,12を、X方向に障壁部13,13
を形成するようにして内筒体1′を構成してもよい。ま
た、図16に示すように、角柱材料の上下軸Zに沿って
貫通孔14を削孔して本体筒部とし、軸Z方向中間位置
の外周面に凹溝15,15を形成することにより軸Z方
向の両側位置に張出し部12,12を、X方向に障壁部
13,13を形成するようにして内筒体1″を構成して
もよい。
In the above embodiment, the inner cylinder 1 is
Both overhang portions 12 and 12 and both barrier portions 1 with respect to the main body cylinder portion 11.
Although the shape in which 3 and 13 are attached is shown, the shape is not limited to this, and the inner cylinder may be shaped such that the main body cylinder is completely embedded in the overhanging portion and the barrier portion. For example, as shown in FIG. 15, the through hole 14 is formed along the axis Z of the cylindrical material.
Is formed into a main body cylindrical portion, and concave grooves 15, 15 are formed on the outer peripheral surface at the intermediate position in the axis Z direction to form the overhanging portions 12, 12 at both sides in the axis Z direction and the barrier portion 13, in the X direction. Thirteen
The inner cylindrical body 1'may be configured so as to form. Further, as shown in FIG. 16, the through hole 14 is drilled along the vertical axis Z of the prismatic material to form a main body cylindrical portion, and the concave grooves 15, 15 are formed on the outer peripheral surface at the intermediate position in the axial Z direction. The inner cylindrical body 1 ″ may be configured such that the overhanging portions 12 and 12 are formed at both side positions in the axis Z direction and the barrier portions 13 and 13 are formed in the X direction.

【0065】[0065]

【発明の効果】以上説明したように、請求項1記載の発
明におけるブッシュ組立体によれば、本体筒部の筒軸方
向両側位置から第1方向両側にそれぞれ張出し部が突出
されているため、この一対の張出し部間に挟まれたゴム
弾性体部分を、筒軸方向からの外力に対しては死にゴム
とさせて、その分、筒軸方向ばね定数の増大化を図るこ
とができる。一方、第2方向からの外力に対しては、そ
の外力を上記ゴム弾性体部分にも負担させて、その分、
第2方向ばね定数を軟らかいものとすることができる。
従って、外筒体として円筒形のものを用い、ゴム弾性体
の端部を円周面である外筒体の内周面に接合する場合に
筒軸方向ばね定数よりも硬くなりがちな第2方向ばね定
数を、上記の筒軸方向ばね定数の増大化と第2方向ばね
定数の低減化とによって、筒軸方向ばね定数に一致もし
くは近付けることができる。しかも、このような筒軸方
向もしくは第2方向のばね特性の変更を上記張出し部の
寸法設定により容易に行うことができる。
As described above, according to the bush assembly of the first aspect of the present invention, since the projecting portions project from both sides in the cylinder axial direction of the main body cylindrical portion to both sides in the first direction, respectively. The rubber elastic body portion sandwiched between the pair of overhanging portions can be made dead rubber against external force from the cylinder axis direction, and the cylinder axis direction spring constant can be increased accordingly. On the other hand, with respect to the external force from the second direction, the external force is also applied to the rubber elastic body portion,
The second direction spring constant can be made soft.
Therefore, when a cylindrical outer cylinder is used and the end portion of the rubber elastic body is joined to the inner peripheral surface of the outer cylinder, which is the circumferential surface, the second elastic member tends to be harder than the cylinder axial direction spring constant. The directional spring constant can be made equal to or close to the cylinder axis directional spring constant by increasing the cylinder axis directional spring constant and decreasing the second directional spring constant. Moreover, such a change in the spring characteristic in the cylinder axis direction or the second direction can be easily performed by setting the size of the overhang portion.

【0066】一方、第1方向からの外力に対しては、本
体筒部から第2方向両側に突出した各障壁部の第1方向
厚みの分だけゴム弾性体が圧縮される第1方向長さを短
くなり、かつ、上記各障壁部がゴム弾性体を有効に圧縮
させるため、上記第1方向に対するばね定数を硬いもの
とすることができる。従って、上記障壁部の第1方向厚
みを大とする程、上記第1方向ばね定数をより硬いもの
とすることが可能となる上、この障壁部の第1方向厚み
を変更しても、上記の筒軸方向及び第2方向からの外力
に抵抗するゴム弾性体部分に殆ど影響を与えることがな
いため、上記筒軸方向及び第2方向の両ばね定数とは互
いに独立して上記第1方向ばね定数の変更設定を行うこ
とができる。
On the other hand, with respect to the external force from the first direction, the length in the first direction in which the rubber elastic body is compressed by the thickness in the first direction of each of the barrier portions projecting from the cylindrical portion of the main body to both sides in the second direction. Is shortened, and since each of the barrier portions effectively compresses the rubber elastic body, the spring constant in the first direction can be made hard. Therefore, as the thickness of the barrier portion in the first direction increases, the spring constant in the first direction can be made harder, and even if the thickness of the barrier portion in the first direction is changed, Since it has almost no effect on the rubber elastic body portion that resists the external force from the cylinder axis direction and the second direction, it is independent of both the spring constants in the cylinder axis direction and the second direction and is in the first direction. The spring constant can be changed and set.

【0067】このように本発明の如く障壁部と張出し部
とを備えた内筒体を用いることにより、筒軸方向、第2
方向、及び、第1方向の各方向に対する3つのばね定数
を互いに独立して設定することができ、しかも、要求性
能に応じた設定を上記障壁部もしくは張出し部等の寸法
変更により容易に行うことができる。これにより、例え
ば、ブッシュ組立体について第1方向ばね定数を比較的
硬いものにしつつ、筒軸方向及び第2方向の両ばね定数
を互いに一致もしくは近似したものにするという要求性
能も容易に実現することができる。
As described above, by using the inner cylindrical body having the barrier portion and the overhanging portion as in the present invention, the second axial direction is improved.
Direction, and the three spring constants for each direction of the first direction can be set independently of each other, and moreover, the setting according to the required performance can be easily performed by changing the dimensions of the barrier section or the overhanging section. You can Thereby, for example, it is possible to easily realize the required performance of the bush assembly in which the spring constant in the first direction is relatively hard and the spring constants in the cylinder axis direction and the second direction are the same or similar to each other. be able to.

【0068】請求項2記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体の障壁部がゴ
ム弾性体の第2方向全幅にわたり突出されているため、
上記の第1方向ばね定数の増大化をより効率的にかつ効
果的に図ることができる。
According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the barrier portion of the inner cylindrical body projects over the entire width of the rubber elastic body in the second direction.
The increase in the first direction spring constant can be achieved more efficiently and effectively.

【0069】請求項3記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体の各張出し部
がゴム弾性体の第2方向全幅にわたる範囲に形成されて
いるため、筒軸方向ばね定数の増大化と、第2方向ばね
定数の低減化とをより効率的にかつ効果的に図ることが
できる。
According to the third aspect of the invention, in addition to the effect of the first aspect of the invention, each of the overhanging portions of the inner cylindrical body is formed within the entire width of the rubber elastic body in the second direction. The increase of the spring constant in the cylinder axis direction and the decrease of the spring constant in the second direction can be achieved more efficiently and effectively.

【0070】請求項4記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体の各張出し部
が各障壁部の形成範囲と同じ第2方向範囲にわたり設け
られて筒軸方向から見た形状が略四角形に形成されてい
るため、筒軸方向外力に対する死にゴム部分の端面を第
2方向に延びる平面とすることができ、筒軸方向ばね定
数の増大化と、第2方向ばね定数の低減化とを効率よく
行うことができる。
According to the invention described in claim 4, in addition to the effect of the invention described in claim 1, each overhanging portion of the inner cylindrical body is provided over the same second direction range as the forming range of each barrier portion. Since the shape viewed from the cylinder axis direction is formed into a substantially quadrangle, the end surface of the rubber portion can be made a flat surface extending in the second direction to the cylinder axis direction external force, and the cylinder axis direction spring constant is increased, It is possible to efficiently reduce the second direction spring constant.

【0071】請求項5記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体の障壁部の第
1方向幅が本体筒部の第1方向幅の範囲内に設定されて
いるため、第2方向ばね定数に影響を与えることのない
範囲で第1方向ばね定数の増大化を図ることができる。
According to the invention of claim 5, in addition to the effect of the invention of claim 1, the first direction width of the barrier portion of the inner cylinder is within the range of the first direction width of the main body cylinder part. Since it is set, the first-direction spring constant can be increased within a range that does not affect the second-direction spring constant.

【0072】請求項6記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体の各障壁部が
筒軸方向両側の各張出し部と互いに一体に連結されてい
るため、筒軸方向、第2方向及び第1方向に対する各ば
ね定数を発現するゴム弾性体部分を区分、形成もしくは
切換る上記各障壁部や各張出し部がそれぞれ確実に作用
し、これにより、上記各ゴム弾性体部分によりそれぞれ
の方向に対するばね定数をとして確実に所定のものを発
揮させることができる。
According to the sixth aspect of the invention, in addition to the effect of the first aspect of the invention, the respective barrier portions of the inner tubular body are integrally connected to the respective overhanging portions on both sides in the tubular axial direction. Therefore, each of the barrier portions and each of the overhanging portions that divides, forms or switches the rubber elastic body portion that expresses each spring constant in the cylinder axis direction, the second direction, and the first direction surely acts, respectively. Each rubber elastic body portion can reliably exhibit a predetermined spring constant in each direction.

【0073】請求項7記載の発明によれば、上記請求項
1記載の発明による効果に加えて、内筒体が、本体筒部
と、各張出し部と、障壁部とを互いに同一材料により一
体に形成されているため、内筒体の構造的強度が高まる
上、その形成工程の合理化を図ることができる。
According to the invention described in claim 7, in addition to the effect of the invention described in claim 1, in the inner cylinder body, the main body cylinder part, the respective overhanging parts, and the barrier part are integrally made of the same material. Since the inner cylindrical body is formed in the shape described above, the structural strength of the inner cylindrical body can be increased and the forming process can be rationalized.

【0074】また、請求項8記載の発明によれば、上記
請求項1記載の発明による効果に加えて、本体筒部に対
し、各張出し部と、障壁部とが上記本体筒部とは異なる
材料により内筒体が一体に形成されているため、本ブッ
シュ組立体を適用する部位で要求される性能に応じて変
更される上記各張出し部や障壁部の寸法設定に合わせて
所望の寸法形状の内筒体の量産を容易に製作することが
できる。
According to the invention described in claim 8, in addition to the effect according to the invention described in claim 1, each overhanging portion and the barrier portion are different from the main body tubular portion with respect to the main body tubular portion. Since the inner cylinder is made of a single material, the desired size and shape can be adjusted according to the size settings of the overhangs and barriers that are changed according to the performance required at the site where this bush assembly is applied. The mass production of the inner cylinder can be easily manufactured.

【0075】さらに、請求項9記載の発明によれば、円
筒形状の外筒体をそのまま用い、その外筒体の円周面で
ある内周面にゴム弾性体の端部を接合しても、両張出し
部間のゴム弾性体部分が筒軸方向外力に対しては死にゴ
ムとなる一方、第2方向外力に対しては有効な抵抗要素
となるため、筒軸方向ばね定数の増大化と、第2方向ば
ね定数の低減化とが図られるという請求項1記載の発明
による効果を確実に得ることができる。これにより、従
来の場合に必要としていた外筒体の内周面に厚肉部を形
成する等の面倒な工程を省略することができる。
Further, according to the invention of claim 9, the cylindrical outer cylindrical body is used as it is, and the end portion of the rubber elastic body is joined to the inner peripheral surface which is the circumferential surface of the outer cylindrical body. While the rubber elastic body portion between the two overhanging portions becomes dead rubber against the external force in the cylinder axial direction, it becomes an effective resistance element against the external force in the second direction, so that the spring constant in the cylindrical axis increases. The effect of the invention according to claim 1 that the second direction spring constant is reduced can be reliably obtained. As a result, it is possible to omit a troublesome process such as forming a thick portion on the inner peripheral surface of the outer cylindrical body, which is required in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す横断面図である。FIG. 1 is a cross-sectional view showing an embodiment of the present invention.

【図2】図1のA−A線における断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B線における断面図である。FIG. 3 is a sectional view taken along line BB in FIG.

【図4】内筒体の拡大斜視図である。FIG. 4 is an enlarged perspective view of an inner cylinder.

【図5】筒軸Z方向外力を受けた場合のゴム弾性体を示
す図1対応図である。
FIG. 5 is a view corresponding to FIG. 1 showing a rubber elastic body when receiving an external force in the cylinder axis Z direction.

【図6】筒軸Z方向外力を受けた場合のゴム弾性体を示
す図3対応図である。
FIG. 6 is a view corresponding to FIG. 3, showing the rubber elastic body when an external force is applied to the cylinder axis Z direction.

【図7】X方向外力を受けた場合のゴム弾性体を示す図
1対応図である。
FIG. 7 is a view corresponding to FIG. 1 showing the rubber elastic body when it receives an external force in the X direction.

【図8】張出し部間隔L1 等と各ばね定数Kz ,Kx ,
Ky との関係図である。
FIG. 8 is an interval L1 of the overhanging portion and each spring constant Kz, Kx,
It is a relationship diagram with Ky.

【図9】障壁部肉厚tと各ばね定数Kz ,Kx ,Ky と
の関係図である。
FIG. 9 is a diagram showing the relationship between the wall thickness t of the barrier and spring constants Kz, Kx, and Ky.

【図10】張出し部寸法Wと各ばね定数Kz ,Kx ,K
y との関係図である。
FIG. 10: Overhang dimension W and spring constants Kz, Kx, K
It is a relational diagram with y.

【図11】X方向外力を受けた場合の凹溝部位置のゴム
弾性体の変形状態を示す解析モデル図である。
FIG. 11 is an analytical model diagram showing a deformed state of the rubber elastic body at the position of the concave groove portion when receiving an external force in the X direction.

【図12】X方向外力を受けた場合の張出し部位置のゴ
ム弾性体の変形状態を示す解析モデル図である。
FIG. 12 is an analytical model diagram showing a deformed state of the rubber elastic body at the protruding portion position when an external force in the X direction is applied.

【図13】筒軸Z方向外力を受けた場合のゴム弾性体の
変形状態を示す解析モデル図である。
FIG. 13 is an analytical model diagram showing a deformed state of the rubber elastic body when an external force in the cylinder axis Z direction is applied.

【図14】Y方向外力を受けた場合のゴム弾性体の変形
状態を示す解析モデル図である。
FIG. 14 is an analytical model diagram showing a deformed state of the rubber elastic body when receiving an external force in the Y direction.

【図15】内筒体の他の態様を示す斜視図である。FIG. 15 is a perspective view showing another aspect of the inner cylinder.

【図16】内筒体の図15とは異なる他の態様を示す斜
視図である。
16 is a perspective view showing another aspect of the inner cylinder different from FIG.

【符号の説明】[Explanation of symbols]

1,1′,1″ 内筒体 2 外筒体 3 ゴム弾性体 11 本体筒部 12 張出し部 13 障壁部 14 貫通孔 15 凹溝部 Z 筒軸 X X方向(第2方向) Y Y方向(第1方向) 1, 1 ′, 1 ″ Inner cylinder 2 Outer cylinder 3 Rubber elastic body 11 Main body cylinder 12 Overhanging portion 13 Barrier 14 Through hole 15 Recessed groove Z Cylinder axis X X direction (second direction) Y Y direction (first (One direction)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内筒体と、この内筒体の筒軸に平行にそ
の内筒体を囲む外筒体と、上記内筒体から上記筒軸に直
交する第1方向の両側に延びてその内筒体の外面と上記
外筒体の内面とを互いに連結するゴム弾性体とを備える
ブッシュ組立体において、 上記内筒体は、取付け用軸体が挿通される本体筒部と、
上記本体筒部から、上記筒軸方向及び第1方向に対し共
に直交する第2方向の両側にそれぞれ上記ゴム弾性体内
に突出されて上記ゴム弾性体内に介装された一対の障壁
部と、上記ゴム弾性体の筒軸方向形成範囲内であって上
記本体筒部の筒軸方向に互いに離れた両側各位置からそ
れぞれ上記第1方向の両側に上記ゴム弾性体内に張出し
た一対の張出し部と、上記本体筒部を挟んで第1方向両
側の各位置に上記一対張出し部の筒軸方向相対向面間に
区画されてゴム弾性体が配設される一対の凹溝部とを備
えていることを特徴とするブッシュ組立体。
1. An inner cylinder body, an outer cylinder body that surrounds the inner cylinder body in parallel with the cylinder axis of the inner cylinder body, and extends from the inner cylinder body to both sides in a first direction orthogonal to the cylinder axis. In a bush assembly including a rubber elastic body that connects the outer surface of the inner cylinder and the inner surface of the outer cylinder to each other, the inner cylinder includes a main body cylinder into which a mounting shaft is inserted,
A pair of barrier portions projecting into the rubber elastic body and interposed in the rubber elastic body from both sides of the main body cylindrical portion in a second direction orthogonal to both the cylinder axis direction and the first direction; A pair of projecting portions projecting into the rubber elastic body from positions on both sides in the cylinder axial direction forming range of the rubber elastic body that are separated from each other in the cylinder axial direction of the main body cylindrical portion, to both sides in the first direction, A pair of recessed groove portions are provided at positions on both sides in the first direction with the main body tubular portion sandwiched therebetween, and the rubber elastic body is disposed between the surfaces of the pair of overhanging portions that face each other in the tubular axial direction. Characteristic bush assembly.
【請求項2】 請求項1において、 内筒体の障壁部は、ゴム弾性体の第2方向に対する全幅
にわたり突出されていることを特徴とするブッシュ組立
体。
2. The bush assembly according to claim 1, wherein the barrier portion of the inner cylindrical body projects over the entire width of the rubber elastic body in the second direction.
【請求項3】 請求項1において、 内筒体の筒軸方向両側の各張出し部は、ゴム弾性体の第
2方向に対する全幅にわたる範囲に形成されていること
を特徴とするブッシュ組立体。
3. The bush assembly according to claim 1, wherein each of the projecting portions on both sides of the inner cylindrical body in the cylinder axis direction is formed in a range over the entire width of the rubber elastic body in the second direction.
【請求項4】 請求項1において、 内筒体の筒軸方向両側の各張出し部は、障壁部の第2方
向に対する形成範囲と同じ第2方向範囲にわたり設けら
れ、筒軸方向から見た形状が略四角形に形成されている
ことを特徴とするブッシュ組立体。
4. The shape according to claim 1, wherein each of the overhanging portions on both sides in the cylinder axis direction of the inner cylindrical body is provided over a second direction range that is the same as the forming range of the barrier section in the second direction. Is formed in a substantially square shape.
【請求項5】 請求項1において、 内筒体の障壁部は、第1方向に対する肉厚が本体筒部の
第1方向に対する幅の範囲内に設定されていることを特
徴とするブッシュ組立体。
5. The bush assembly according to claim 1, wherein the barrier portion of the inner tubular body has a thickness in the first direction set within a range of a width of the main body tubular portion in the first direction. .
【請求項6】 請求項4または請求項5において、 内筒体の障壁部は、筒軸方向両側の各張出し部と互いに
一体に連結されていることを特徴とするブッシュ組立
体。
6. The bush assembly according to claim 4 or 5, wherein the barrier portion of the inner tubular body is integrally connected to the respective overhanging portions on both sides in the tubular axial direction.
【請求項7】 請求項1において、 内筒体は、本体筒部と、筒軸方向両側の各張出し部と、
障壁部とが互いに同一材料により一体に形成されて構成
されていることを特徴とするブッシュ組立体。
7. The inner cylinder body according to claim 1, wherein the inner cylinder body has a main body cylinder portion, and the protrusions on both sides in a cylinder axis direction.
A bush assembly, wherein the barrier part and the barrier part are integrally formed of the same material.
【請求項8】 請求項1において、 内筒体は、本体筒部に対し、筒軸方向両側の各張出し部
と、障壁部とが上記本体筒部とが異なる材料により一体
に形成されて構成されていることを特徴とするブッシュ
組立体。
8. The inner cylinder body according to claim 1, wherein, with respect to the main body cylinder part, each of the overhanging parts on both sides in the cylinder axis direction and the barrier part are integrally formed of a material different from the main body cylinder part. Bush assembly characterized in that
【請求項9】 請求項1において、 外筒体は、円筒形に形成されていることを特徴とするブ
ッシュ組立体。
9. The bush assembly according to claim 1, wherein the outer cylinder is formed in a cylindrical shape.
JP9346395A 1995-04-19 1995-04-19 Bush assembly Expired - Fee Related JP3675881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9346395A JP3675881B2 (en) 1995-04-19 1995-04-19 Bush assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9346395A JP3675881B2 (en) 1995-04-19 1995-04-19 Bush assembly

Publications (2)

Publication Number Publication Date
JPH08284993A true JPH08284993A (en) 1996-11-01
JP3675881B2 JP3675881B2 (en) 2005-07-27

Family

ID=14083038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9346395A Expired - Fee Related JP3675881B2 (en) 1995-04-19 1995-04-19 Bush assembly

Country Status (1)

Country Link
JP (1) JP3675881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096121A (en) * 2007-10-18 2009-05-07 Bridgestone Corp Manufacturing mold for cylindrical vibrationproof mount
JP2018021580A (en) * 2016-08-01 2018-02-08 住友理工株式会社 Cylindrical vibration-proofing device
JP2020204339A (en) * 2019-06-14 2020-12-24 株式会社ブリヂストン Vibration control device
WO2022196468A1 (en) * 2021-03-16 2022-09-22 住友理工株式会社 Tubular antivibration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142746U (en) * 1978-03-29 1979-10-03
JPS5666548U (en) * 1979-10-29 1981-06-03
JPS6221769Y2 (en) * 1981-05-15 1987-06-03
JPH0439439U (en) * 1990-07-31 1992-04-03
JPH0442937U (en) * 1990-08-09 1992-04-13
JPH05231455A (en) * 1991-07-22 1993-09-07 Caoutchouc Manuf Plast Elastic coupling being controlled by built-in stopper and having axial play and high filtration capacity and utilization method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142746U (en) * 1978-03-29 1979-10-03
JPS5666548U (en) * 1979-10-29 1981-06-03
JPS6221769Y2 (en) * 1981-05-15 1987-06-03
JPH0439439U (en) * 1990-07-31 1992-04-03
JPH0442937U (en) * 1990-08-09 1992-04-13
JPH05231455A (en) * 1991-07-22 1993-09-07 Caoutchouc Manuf Plast Elastic coupling being controlled by built-in stopper and having axial play and high filtration capacity and utilization method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096121A (en) * 2007-10-18 2009-05-07 Bridgestone Corp Manufacturing mold for cylindrical vibrationproof mount
JP2018021580A (en) * 2016-08-01 2018-02-08 住友理工株式会社 Cylindrical vibration-proofing device
JP2020204339A (en) * 2019-06-14 2020-12-24 株式会社ブリヂストン Vibration control device
US11892050B2 (en) 2019-06-14 2024-02-06 Prospira Corporation Anti-vibration device
WO2022196468A1 (en) * 2021-03-16 2022-09-22 住友理工株式会社 Tubular antivibration device

Also Published As

Publication number Publication date
JP3675881B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
CN110035945B (en) Vehicle frame support device
JP3899836B2 (en) Cylindrical rubber mount
US8220857B2 (en) Beam for a motor vehicle dashboard
US7918438B2 (en) Vibration isolator, and method of mounting the same
JPH0932875A (en) Cylindrical vibrationproofing support body
JP6002607B2 (en) Vibration isolator
JP2005036845A (en) Dynamic damper
JPH08284993A (en) Bush assembly
US6814374B2 (en) Steering column with foamed in-place structure
JP2009002419A (en) Vibration control device
WO1999015809A1 (en) Vibration isolation mount
JP2000161434A (en) Vibration proof bush
US11780311B2 (en) Torque rod
JP3650888B2 (en) Method for manufacturing connecting rod and connecting rod
JPH06109056A (en) Absorber tightening structure
JP5061129B2 (en) Vibration isolator
JP2006347370A (en) Suspension bush
JP4016323B2 (en) Cylindrical mount
JP2006264555A (en) Suspension rod and its manufacturing method
JP2015110992A (en) Vibration control device
JP3456286B2 (en) Cylindrical anti-vibration mount
JPH0989046A (en) Engine mount
JPH03163209A (en) Bolt provided with vibrationproof weight and manufacture thereof
JP2018013228A (en) Automobile vibration control device and automobile vibration control structure
JP2000238651A (en) Steering gear box mounting structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees