JPH08283889A - High strength and high hardness copper alloy - Google Patents

High strength and high hardness copper alloy

Info

Publication number
JPH08283889A
JPH08283889A JP11388795A JP11388795A JPH08283889A JP H08283889 A JPH08283889 A JP H08283889A JP 11388795 A JP11388795 A JP 11388795A JP 11388795 A JP11388795 A JP 11388795A JP H08283889 A JPH08283889 A JP H08283889A
Authority
JP
Japan
Prior art keywords
strength
copper alloy
sliding
test
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11388795A
Other languages
Japanese (ja)
Inventor
Kunio Nakajima
邦夫 中島
Masao Hosoda
征男 細田
Wataru Yago
亘 矢後
Kazuyuki Inagaki
一之 稲垣
Atsushi Yasukawa
淳 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Original Assignee
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuetsu Gokin Chuko Kk, Chuetsu Metal Works Co Ltd filed Critical Chuetsu Gokin Chuko Kk
Priority to JP11388795A priority Critical patent/JPH08283889A/en
Publication of JPH08283889A publication Critical patent/JPH08283889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE: To obtain a low-cost Cu alloy having high strength and high hardness, withstanding severe sliding conditions and having satisfactory cold workability. CONSTITUTION: This high strength and high hardness Cu alloy consists of, by weight, 5-20% Ni, 3-15% Sn, 0.5-5% Mn and the balance Cu with inevitable impurities or further contains one or more kinds of added elements selected from among 1.1-5% Cr, 0.4-3% Mo, 0.2-3% Ti, 0.6-3% Co, 0.6-3% V, 0.05-3% Pb, 0.05-3% Bi, 0.05-2% Nb, 0.1-2% Zr, 0.1-3% Fe, 0.5-5% Zn and 0.1-2% Si.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度・高硬度を有
し、苛酷な摺動条件に耐えると共に、冷間加工性の良
い、安価な銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inexpensive copper alloy having high strength and high hardness, capable of withstanding harsh sliding conditions, and having good cold workability.

【0002】特に、大型トラックやスポーツ・カーの変
速装置に用いられているシンクロナイザーリング(以下
S/Rと記す)のように、高負荷に耐える高強度と高硬
度、苛酷な摺動条件に耐える良好な耐摩耗性と耐焼付
性、そして複雑な形状に成形できる塑性加工性が同時に
求められるような用途に最適である。
[0002] In particular, such as a synchronizer ring (hereinafter referred to as S / R) used in a transmission of a large truck or a sports car, it has a high strength and a high hardness capable of withstanding a high load, and a severe sliding condition. It is ideal for applications where good wear resistance and seizure resistance to withstand, and plastic workability capable of forming complex shapes are required at the same time.

【0003】S/R以外にも、一般産業用ブッシュ、ス
リーブ、ライナー等、形状が比較的単純でもこれまで強
度的な理由から銅合金が使用できなかった摺動部品への
適用が可能である。
In addition to S / R, it can be applied to sliding parts for general industrial use such as bushes, sleeves, liners, etc., for which the copper alloy could not be used because of its strength so far even though the shape was relatively simple. .

【0004】また、良好な冷間塑性加工性に着目して、
これまで熱間塑性加工でしかできないような複雑な形状
の部品に冷間塑性加工法を適用して、コストダウンを計
ることができる。
Further, paying attention to good cold plastic workability,
The cost can be reduced by applying the cold plastic working method to a part having a complicated shape which has been possible only by hot plastic working.

【0005】さらに、本発明合金は、前述の高強度と高
硬度、良好な摺動特性と塑性加工性に加え、良好な耐食
性と銅合金特有の光沢を有するので、ゴルフ用クラブヘ
ッドや、海水、汚染水、その他腐食雰囲気で使用される
釣り具用金具やボート用部材、それに鎖、フック、ボル
ト、ナット等の締結金具や一般装飾部品等にも適してい
る。
Further, the alloy of the present invention has good corrosion resistance and luster peculiar to a copper alloy, in addition to the above-mentioned high strength and high hardness, good sliding characteristics and plastic workability, so that it can be used in golf club heads and seawater. It is also suitable for fishing gear fittings and boat members used in contaminated water and other corrosive atmospheres, as well as fastening fittings such as chains, hooks, bolts and nuts, and general decorative parts.

【0006】[0006]

【従来の技術】摺動用銅合金材料の強度は、概ね、引張
強さ=45〜85kgf/mm2、硬さはHRC=15
〜25の範囲である。このため高い負荷の掛かる摺動部
では、負荷応力が摺動用銅合金材料の強度を越え、摺動
部品としての剛性が不足したり、ヘタリを生じたりする
場合がしばしばあった。
2. Description of the Related Art The strength of a copper alloy material for sliding is generally tensile strength = 45 to 85 kgf / mm 2 , and hardness is HRC = 15.
The range is from -25. For this reason, in the sliding portion to which a high load is applied, the load stress often exceeds the strength of the copper alloy material for sliding, so that the rigidity as a sliding component is insufficient or the set is often set.

【0007】このような場合には、通常、強度の大きい
鉄系の材料で摺動部品の本体を構成し、摺動部だけに摺
動材料を溶射、溶接、溶着、ロー付け、焼結、接着、嵌
合、ねじ止め、機械的接合等の方法で複合化し、摺動材
料の強度不足を補っている。
In such a case, normally, the main body of the sliding component is made of an iron-based material having a high strength, and the sliding material is sprayed, welded, welded, brazed, sintered, or the like only on the sliding portion. Composites are made by methods such as adhesion, fitting, screwing, and mechanical joining to compensate for insufficient strength of sliding materials.

【0008】例えば、一般乗用車に用いられるS/Rの
多くは、摺動用黄銅系合金の熱間鍛造材を用いている
が、大型トラックやスポーツ・カーのように、高負荷で
使用されるS/Rに要求される強度と硬さはそれを越え
ているため、高強度・高硬度の鉄系材料(JIS SC
r 420H)を熱間鍛造してS/R本体を作り、その
摺動部にMo等の摺動材料を溶射等の方法で複合化して
いるのが一般的である。
For example, most S / Rs used in general passenger cars use hot forging materials of brass alloys for sliding, but S / Rs used at high loads such as large trucks and sports cars. Since the strength and hardness required for / R exceed that, high strength and high hardness iron-based materials (JIS SC
It is general that r 420H) is hot forged to form an S / R body, and a sliding material such as Mo is compounded in the sliding portion by a method such as thermal spraying.

【0009】一方、鉄系材料より成形性と摺動特性の良
い銅合金材料の中で、引張強さが85kgf/mm2
硬さがHRC27を越える高強度・高硬度の銅合金材料
としては、ベリリウム銅(Be−Cu)と、Ni−Sn
−Cu系スピノーダル合金が知られている。
On the other hand, among copper alloy materials having better formability and sliding characteristics than iron-based materials, the tensile strength is 85 kgf / mm 2 ,
Beryllium copper (Be-Cu) and Ni-Sn are used as high-strength and high-hardness copper alloy materials having hardness exceeding HRC27.
-Cu-based spinodal alloys are known.

【0010】[0010]

【発明が解決しようとする課題】上記したように、摺動
部品においては、強度的な理由から、摺動用銅合金単体
で摺動部品を成すことは不可能であった。また、鉄系材
料と摺動材を複合化した摺動部品は、部品点数が増した
り、複合化のためのスペースや費用を必要とするので、
一般的には、摺動用銅合金単体の摺動部品よりコストが
高くなり、用途の限定を受けるものであった。
As described above, in the sliding component, it was impossible to form the sliding component from the sliding copper alloy alone for the reason of strength. In addition, sliding parts that are a composite of iron-based materials and sliding materials increase the number of parts and require space and cost for compounding.
Generally, the cost is higher than that of a sliding component made of a single sliding copper alloy, and the application is limited.

【0011】さらに、摺動部へのMoの溶射は、摺動用
銅合金単体S/Rと費用を比較すると、Moが極めて高
価なことと、溶射加工が比較的高価なことから、複合化
の費用が非常にかさむ欠点があった。また、S/R本体
を構成するJIS SCr 420Hの熱間鍛造性は、一
般のS/Rに用いられている摺動用黄銅系合金より劣る
ので、鍛造成形費用も高くなる欠点があった。
Further, when the thermal spraying of Mo onto the sliding portion is compared with the cost of the S / R copper alloy for sliding, the cost is very high and the thermal spraying process is relatively expensive. It had the drawback of being very expensive. Further, the hot forgeability of JIS SCr 420H constituting the S / R main body is inferior to that of the brass alloy for sliding used in general S / R, so that there is a drawback that the forging cost also becomes high.

【0012】Be−Cuは含有するBeが極めて高価な
ことから、一般用摺動部品には用いられておらず、用途
が限定されている。一方、Ni−Sn−Cu系スピノー
ダル合金は価格もそれ程高くなく、強度も硬度も充分で
あるが、摺動用材料としては、耐摩耗性と耐焼付性が不
足しているので、摺動部品には適さず、しかも、時効熱
処理(300〜400℃×0.5〜5Hr→空冷)時
に、この合金特有の粒界析出現象が鋳造材や加工度の低
い冷間加工材に発生し、高強度が発現しない場合が多い
点からしても、摺動部品への適用は成されていなかっ
た。
Be-Cu is not used in general-use sliding parts because Be contained therein is extremely expensive, and its use is limited. On the other hand, the price of Ni-Sn-Cu based spinodal alloy is not so high, and the strength and hardness are sufficient, but as the sliding material, abrasion resistance and seizure resistance are insufficient, so that it is suitable for sliding parts. Is not suitable, and during the aging heat treatment (300 to 400 ° C x 0.5 to 5 hours → air cooling), the grain boundary precipitation phenomenon peculiar to this alloy occurs in the cast material and the cold-worked material with low workability, resulting in high strength. However, even if it does not occur, it has not been applied to sliding parts.

【0013】本発明は、かかる実情に鑑みなされたもの
で、従来のNi−Sn−Cu系スピノーダル合金の持つ
高強度と高硬度と良好な成形性を損なわずに、耐摩耗性
と耐焼付性を改善し、高負荷の掛かる摺動部品への適用
を可能にすると共に、従来のNi−Sn−Cu系スピノ
ーダル合金でしばしば発生する粒界析出現象を防止し
て、強度発現を確実なものとすることで、部品の信頼性
を高めることができ、且つ、成形に際しては、冷間鍛造
法の採用も可能であり、更にコストダウンを計ることが
できる高強度・高硬度銅合金を提供することを目的とし
ている。
The present invention has been made in view of the above circumstances, and has wear resistance and seizure resistance without impairing the high strength, high hardness and good formability of the conventional Ni-Sn-Cu spinodal alloy. And enables application to sliding parts under high load, and prevents grain boundary precipitation phenomenon that often occurs in conventional Ni-Sn-Cu-based spinodal alloys to ensure strength development. By doing so, it is possible to improve the reliability of the parts, and at the time of forming, it is possible to adopt a cold forging method, and to provide a high-strength and high-hardness copper alloy that can further reduce costs. It is an object.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の銅合金は、重量%で、Ni:5〜20
%、Sn:3〜15%、Mn:0.5〜5%、残部Cu
及び不可避不純物よりなることをその要旨とする。
In order to achieve the above object, the copper alloy of the present invention contains Ni: 5 to 20% by weight.
%, Sn: 3 to 15%, Mn: 0.5 to 5%, balance Cu
And the inevitable impurities.

【0015】また、上記銅合金に、重量%で、Cr:
1.1〜5%、Mo:0.4〜3%、Ti:0.2〜3
%、Co:0.6〜3%、V:0.6〜3%、Pb:
0.05〜3%、Bi:0.05〜3%、Nb:0.0
5〜2%、Zr:0.1〜2%、Fe:0.1〜3%、
Zn:0.5〜5%、Si:0.1〜2%の群から選ば
れた少なくとも1以上の元素を添加することもある。
In addition, the above copper alloy contains Cr:
1.1-5%, Mo: 0.4-3%, Ti: 0.2-3
%, Co: 0.6 to 3%, V: 0.6 to 3%, Pb:
0.05-3%, Bi: 0.05-3%, Nb: 0.0
5-2%, Zr: 0.1-2%, Fe: 0.1-3%,
At least one element selected from the group consisting of Zn: 0.5 to 5% and Si: 0.1 to 2% may be added.

【0016】さらに、上記各銅合金を使用してなるシン
クロナイザーリングや摺動部品をその要旨とするもので
ある。
Further, the gist of the present invention is a synchronizer ring or a sliding part using each of the above copper alloys.

【0017】[0017]

【作 用】従来のNi−Sn−Cu系スピノーダル合金
は、摺動材料としての耐摩耗性と耐焼付性が充分でない
ことと、粒界析出現象から生じる強度の低下があること
から、摺動部品への適用は成されていなかったが、本発
明合金によれば、従来のNi−Sn−Cu系スピノーダ
ル合金の持つ高強度及び高硬度と、良好な成形性を損な
わずに、耐摩耗性と耐焼付性を改善し、高負荷の掛かる
摺動部品への適用を可能にすると共に、従来のNi−S
n−Cu系スピノーダル合金でしばしば発生する粒界析
出現象を防止して、強度発現を確実なものとすること
で、部品の信頼性を高めることができ、且つ、成形に際
しては、冷間鍛造法の採用も可能であり、更にコストダ
ウンを計ることができる。
[Working] Conventional Ni-Sn-Cu spinodal alloys have insufficient wear resistance and seizure resistance as sliding materials, and have a decrease in strength caused by the grain boundary precipitation phenomenon. Although not applied to parts, according to the alloy of the present invention, wear resistance is maintained without impairing the high strength and hardness of the conventional Ni-Sn-Cu spinodal alloy and good formability. With improved seizure resistance, it can be applied to sliding parts under high load,
By preventing the grain boundary precipitation phenomenon that often occurs in n-Cu based spinodal alloys and ensuring the strength development, the reliability of the parts can be improved, and at the time of forming, a cold forging method is used. It is also possible to adopt, and the cost can be further reduced.

【0018】次に、本発明合金の構成成分について、そ
の作用と添加時の限定理由を説明する。
Next, with respect to the constituent components of the alloy of the present invention, the action and the reasons for limiting the addition will be described.

【0019】(1)Ni Niは、この合金のマトリックスを強化すると共に、S
nと作用してスピノーダル分解による硬度と強度を発現
させる。5%未満では強度と硬度の発現が不充分であ
り、20%を越えると伸びが低下して脆くなるので、5
〜20%とする。
(1) Ni Ni strengthens the matrix of this alloy and
Acts with n to develop hardness and strength by spinodal decomposition. If it is less than 5%, the development of strength and hardness will be insufficient, and if it exceeds 20%, the elongation will decrease and become brittle.
-20%.

【0020】(2)Sn Snは、この合金のマトリックスを強化すると共に、N
iと作用してスピノーダル分解による硬度と強度を発現
させる。5%未満では強度と硬度の発現が不充分であ
り、20%を越えると伸びが低下して脆くなるので、5
〜20%とする。
(2) Sn Sn strengthens the matrix of this alloy and
Acts with i to develop hardness and strength by spinodal decomposition. If it is less than 5%, the development of strength and hardness will be insufficient, and if it exceeds 20%, the elongation will decrease and become brittle.
-20%.

【0021】(3)Mn Mnは、Ni−Sn−Cu系スピノーダル合金の鋳造材
で生じる粒界析出を防止する元素であり、0.5%未満
では粒界析出の防止が不充分で、5%を越えるとマトリ
ックスと反応してスピノーダル分解を阻害し、高強度、
高硬度が得られない。
(3) Mn Mn is an element that prevents grain boundary precipitation that occurs in the cast material of Ni-Sn-Cu spinodal alloy. If it is less than 0.5%, the prevention of grain boundary precipitation is insufficient. %, It reacts with the matrix and inhibits spinodal decomposition, resulting in high strength,
High hardness cannot be obtained.

【0022】 (4)Cr、Mo、Ti、Co、V、Nb、Zr、Fe これ等の元素は、Ni−Sn−Mn又はSi、若くはこ
のグループの添加元素どうしで硬い金属間化合物を作
り、マトリックス中に晶出し、耐摩耗性と耐焼付性の向
上に寄与する。本発明で定めた添加量を越えると、晶出
物に凝集が生じ、その分布が不均一になり、少ない場合
には晶出物の大きさ、分布量が不足し、耐摩耗性と耐焼
付性を向上させることができない。
(4) Cr, Mo, Ti, Co, V, Nb, Zr, Fe These elements are Ni—Sn—Mn or Si, or young elements in this group form a hard intermetallic compound. , Crystallizes in the matrix and contributes to improvement of wear resistance and seizure resistance. If the addition amount specified in the present invention is exceeded, the crystallized material will agglomerate and its distribution will be non-uniform, and if it is too small, the size and distribution of the crystallized material will be insufficient, resulting in wear resistance and seizure resistance. Can not improve the sex.

【0023】(5)Pb、Bi 両者は、本合金の耐焼付性を向上させると共に、被削性
にも良い結果をもたらす。添加量が本発明の上限を越え
ると延性が低下し、下限未満の場合には充分な効果を発
揮しない。
(5) Both Pb and Bi improve the seizure resistance of the present alloy and at the same time, bring good results in machinability. If the addition amount exceeds the upper limit of the present invention, the ductility decreases, and if it is less than the lower limit, the sufficient effect is not exhibited.

【0024】(6)Si Siの添加は、溶湯を脱酸する効果があり、鋳造欠陥の
発生を防止すると共に、(4)で添加した元素と金属間
化合物を作り、耐摩耗性と耐焼付性の向上に効果があ
る。上限を越えると、スピノーダル分解を阻害し、強度
・硬度の発現をさまたげ、下限未満では効果が発揮され
ない。
(6) Si Addition of Si has the effect of deoxidizing the molten metal, prevents the occurrence of casting defects, and creates the intermetallic compound with the element added in (4) to improve wear resistance and seizure resistance. Effective in improving sex. If it exceeds the upper limit, the spinodal decomposition is inhibited and the development of strength and hardness is hindered. If it is less than the lower limit, the effect is not exhibited.

【0025】(7)Zn Znの添加は、溶解時の酸化やガス吸収の防止に効果が
あり、鋳造品質を向上させる。上限を越えると強度・硬
度が低下し、下限未満では効果が少ない。
(7) Zn Addition of Zn is effective in preventing oxidation and gas absorption during melting, and improves casting quality. If it exceeds the upper limit, the strength and hardness will decrease, and if it is less than the lower limit, the effect is small.

【0026】[0026]

【実施例】【Example】

1)引張試験,硬さ試験,粒界析出確認試験,摩耗試験
用の各供試材 本発明実施例合金を表1に、比較例合金を表2に示す。
表1及び表2に示す各合金を高周波誘導炉にて溶製し、
表1の合金は、JIS H 5113 E号供試材に鋳造
後、溶体化熱処理(800〜900℃×2〜8hr→水
冷)と時効熱処理(300〜400℃×0.5〜4hr
→空冷)を行ない、供試材とした。また、表2の合金
は、溶製後、φ205×300Lの押出用ビレットに金
型鋳造し、φ53×3000Lに熱間押出(600〜8
00℃)して、供試材とした。
1) Test materials for tensile test, hardness test, grain boundary precipitation confirmation test, and wear test Table 1 shows the inventive example alloys and Table 2 shows the comparative example alloys.
Each alloy shown in Table 1 and Table 2 is melted in a high frequency induction furnace,
The alloys in Table 1 were cast into JIS H 5113 E sample materials, and then solution heat treatment (800 to 900 ° C x 2 to 8 hr → water cooling) and aging heat treatment (300 to 400 ° C x 0.5 to 4 hr).
(→ air cooling) and used as the test material. In addition, the alloys in Table 2 were melted and then die-cast into a φ205 × 300 L extrusion billet, and hot extruded into φ53 × 3000 L (600 to 8 L).
(00 ° C.) and used as a test material.

【表1】 [Table 1]

【表2】 [Table 2]

【0027】2)引張試験及び硬さ試験 各供試材は、JIS Z 2201 4号引張試験片(硬
度片付)に機械加工し、試験した。その結果は表1,表
2に示した。
2) Tensile Test and Hardness Test Each test material was machined into a JIS Z 22014 tensile test piece (with hardness piece) and tested. The results are shown in Tables 1 and 2.

【0028】3)摩耗試験 各供試材を図1に示す試験片(テストピン)の形状に機
械加工し、図2のVブロックを相手材として、図3及び
以下の条件でファビリー摩耗試験を行った。摩耗量とフ
ァビリー値から、表3に示す基準で、耐摩耗性と耐焼付
性を評価した。その結果は表1及び表2に示す通りであ
る。
3) Wear test Each test material was machined into the shape of the test piece (test pin) shown in FIG. 1, and the Fabry wear test was conducted under the conditions shown in FIG. went. The wear resistance and the seizure resistance were evaluated from the wear amount and the Fabry value based on the criteria shown in Table 3. The results are shown in Tables 1 and 2.

【表3】 [Table 3]

【0029】試験条件 回転数 : 300rpm 滑り速度 : 0.102m/sec 試験片寸法 : φ6.5×40 潤滑油 : タービン油 #32 相手材材質 : SCM 415(HCQT)HRC=6
0 表面粗さ : 試験片−2〜3S,相手材−2〜3
Test conditions Rotational speed: 300 rpm Sliding speed: 0.102 m / sec Specimen size: φ6.5 × 40 Lubricating oil: Turbine oil # 32 Counterpart material: SCM 415 (HCQT) HRC = 6
0 Surface roughness: test piece-2 to 3S, mating material-2 to 3
S

【0030】試験方法 イ)耐摩耗性評価試験 荷重300kgfで10分間試験して、試験前と試験後
の質量を測定し、密度から摩耗減量(mm3)を算出し
評価する。摩耗減量の小さい方が、耐摩耗性が良好であ
る。 ロ)耐焼付性評価試験 初期荷重200kgfから毎秒38kgfで荷重を増加
させ、焼付に至るまで試験し、トルクと荷重を記録す
る。荷重をP(kgf)、トルクをT(kgf−c
m),時間をt(sec),焼付迄の時間をt1(se
c)とすると、耐焼付性の評価値であるファビリー値F
(kgf・m)は次式の数1で求められる。F値の大き
い方が耐焼付性が良い。
Test method a) Abrasion resistance evaluation test A load of 300 kgf is tested for 10 minutes, the mass before and after the test is measured, and the wear loss (mm 3 ) is calculated from the density and evaluated. The smaller the wear loss, the better the wear resistance. (B) Seizure resistance evaluation test The load is increased from an initial load of 200 kgf to 38 kgf per second, a test is conducted until seizure, and the torque and load are recorded. Load is P (kgf) and torque is T (kgf-c
m), time is t (sec), and time until printing is t 1 (se
c), a fabby value F which is an evaluation value of seizure resistance
(Kgf · m) is calculated by the following equation (1). The larger the F value, the better the seizure resistance.

【数1】 [Equation 1]

【0031】4)粒界析出確認テスト 各供試材の硬度片を顕微鏡(×400)で観察し、粒界
析出の有無を確認した。なお、ミクロエッチングには塩
化第2鉄を用いた。
4) Grain Boundary Precipitation Confirmation Test Hardness pieces of each test material were observed with a microscope (× 400) to confirm the presence or absence of grain boundary precipitation. Ferric chloride was used for microetching.

【0032】5)S/Rへの成形テスト (a)成形テスト用供試材 表1に示す材料を高周波誘導炉にて溶製し、φ80×φ
50×100Lの形状に金型鋳造し、機械加工にて、φ
80×φ55×90Lにした。機械加工後、溶体化熱処
理(800〜900℃×2〜8hr→水冷)を行ない、
再度機械加工で、φ69×φ56.4×9Lにして、供
試材とした。 (b)上記(a)の供試材を用い、400tonフリク
ションプレスにて冷間金型鍛造を行ない、冷間塑性加工
性を確認した。全ての供試材は、完全に金型を充満し、
S/Rの歯先やコーナー部への肉の廻りも充分であっ
た。
5) S / R molding test (a) Specimen for molding test φ80 × φ, made by melting the materials shown in Table 1 in a high frequency induction furnace
Die cast into 50 x 100 L shape and machined to φ
The size was 80 × φ55 × 90 L. After machining, solution heat treatment (800-900 ° C x 2-8 hr → water cooling) is performed,
By machining again, φ69 × φ56.4 × 9L was used as a test material. (B) Using the test material of (a) above, cold die forging was performed with a 400 ton friction press to confirm cold plastic workability. All test materials completely fill the mold,
The meat around the S / R tooth tips and corners was also sufficient.

【0033】[0033]

【発明の効果】以上のテスト結果から分かるように、本
発明合金は、従来のNi−Sn−Cu系スピノーダル合
金が持つ高強度と高硬度とを備え、且つ、良好な成形性
を損なわずに耐摩耗性と耐焼付性を改善し、高負荷の掛
かる摺動部品への適用を可能にした。
As can be seen from the above test results, the alloy of the present invention has the high strength and high hardness of the conventional Ni-Sn-Cu spinodal alloy, and does not impair good formability. It has improved wear resistance and seizure resistance and can be applied to sliding parts under high load.

【0034】更に、従来のNi−Sn−Cu系スピノー
ダル合金でしばしば発生する粒界析出現象を防止して、
強度発現を確実なものとすることで、部品の信頼性を高
めることができた。
Furthermore, the grain boundary precipitation phenomenon that often occurs in the conventional Ni-Sn-Cu system spinodal alloy is prevented,
By ensuring strength development, the reliability of the parts could be increased.

【0035】特に、大型トラックやスポーツ・カー等に
用いられるS/Rのように、摺動条件が厳しく高負荷で
使用されるため、これまでは複合化せざるを得なかった
部品でも、本発明合金を用いることで、単体で製造でき
る利点がある。
In particular, since the sliding conditions are severe and the load is high, such as S / R used in large trucks and sports cars, even parts that had to be compounded until now are The use of the invention alloy has the advantage that it can be manufactured alone.

【0036】また、これまでは、S/Rの形状に成形す
るには、主として熱間鍛造法を採用してきたが、本発明
合金によれば、冷間鍛造法の採用も可能になり、更にコ
ストダウンを計ることができるようになった。
Up to now, the hot forging method has been mainly used to form the S / R shape, but according to the alloy of the present invention, the cold forging method can also be adopted, and further, It has become possible to reduce costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】摩耗試験に使用される試験片の形状を説明した
図。
FIG. 1 is a diagram illustrating the shape of a test piece used for a wear test.

【図2】摩耗試験に使用される相手材の形状を説明した
図。
FIG. 2 is a diagram illustrating a shape of a mating material used in a wear test.

【図3】ファビリー摩耗試験における試験方法を説明し
た図。
FIG. 3 is a diagram illustrating a test method in a fabby wear test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 一之 富山県中新川郡立山町西芦原新1番地の1 中越合金鋳工株式会社内 (72)発明者 安川 淳 富山県中新川郡立山町西芦原新1番地の1 中越合金鋳工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuyuki Inagaki, Kazuyuki Inagaki, No. 1 New Nishi-Ashihara, Tateyama-cho, Nakashinkawa-gun, Toyama Prefecture, Chuetsu Alloy Casting Co., Ltd. (72) Inventor Atsushi Yasukawa, Tateyama-machi, Nakashinkawa-gun, Toyama Prefecture Nishi-Ashihara New No. 1 1 Chuetsu Alloy Casting Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni:5〜20%、Sn:3
〜15%、Mn:0.5〜5%、残部Cu及び不可避不
純物よりなる高強度・高硬度銅合金。
1. By weight%, Ni: 5 to 20%, Sn: 3
~ 15%, Mn: 0.5-5%, a high strength and high hardness copper alloy consisting of the balance Cu and unavoidable impurities.
【請求項2】 請求項1記載の銅合金に、重量%で、C
r:1.1〜5%、Mo:0.4〜3%、Ti:0.2
〜3%、Co:0.6〜3%、V:0.6〜3%、P
b:0.05〜3%、Bi:0.05〜3%、Nb:
0.05〜2%、Zr:0.1〜2%、Fe:0.1〜
3%、Zn:0.5〜5%、Si:0.1〜2%の群か
ら選ばれた少なくとも1以上の元素を添加して成ること
を特徴とする高強度・高硬度銅合金。
2. The copper alloy according to claim 1, wherein C is contained in a weight percentage.
r: 1.1-5%, Mo: 0.4-3%, Ti: 0.2
~ 3%, Co: 0.6-3%, V: 0.6-3%, P
b: 0.05-3%, Bi: 0.05-3%, Nb:
0.05-2%, Zr: 0.1-2%, Fe: 0.1
A high-strength, high-hardness copper alloy, characterized by being formed by adding at least one element selected from the group consisting of 3%, Zn: 0.5 to 5%, and Si: 0.1 to 2%.
【請求項3】 請求項1記載の銅合金が使用されている
シンクロナイザーリング。
3. A synchronizer ring using the copper alloy according to claim 1.
【請求項4】 請求項2記載の銅合金が使用されている
シンクロナイザーリング。
4. A synchronizer ring using the copper alloy according to claim 2.
【請求項5】 請求項1記載の銅合金が使用されている
摺動部品。
5. A sliding component in which the copper alloy according to claim 1 is used.
【請求項6】 請求項2記載の銅合金が使用されている
摺動部品。
6. A sliding component in which the copper alloy according to claim 2 is used.
JP11388795A 1995-04-14 1995-04-14 High strength and high hardness copper alloy Pending JPH08283889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11388795A JPH08283889A (en) 1995-04-14 1995-04-14 High strength and high hardness copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11388795A JPH08283889A (en) 1995-04-14 1995-04-14 High strength and high hardness copper alloy

Publications (1)

Publication Number Publication Date
JPH08283889A true JPH08283889A (en) 1996-10-29

Family

ID=14623626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11388795A Pending JPH08283889A (en) 1995-04-14 1995-04-14 High strength and high hardness copper alloy

Country Status (1)

Country Link
JP (1) JPH08283889A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939139A3 (en) * 1998-02-26 2000-01-12 Nissan Motor Company Limited Abrasion resistant copper alloy for build-up cladding on engine cylinder head
GB2355016A (en) * 1999-09-13 2001-04-11 Daido Metal Co Copper sliding bearing alloy
JP2002302722A (en) * 2001-04-09 2002-10-18 Chuetsu Metal Works Co Ltd High strength bronze alloy and production method therefor
US6652675B2 (en) * 2000-02-08 2003-11-25 Daido Metal Company Ltd. Copper alloy sliding material
US6926779B1 (en) * 1999-12-01 2005-08-09 Visteon Global Technologies, Inc. Lead-free copper-based coatings with bismuth for swashplate compressors
WO2005108631A1 (en) * 2004-04-05 2005-11-17 Swissmetal-Ums Usines Metallurgiques Suisses Sa Free-cutting, lead-containing cu-ni-sn alloy and production method thereof
WO2007068368A1 (en) * 2005-12-13 2007-06-21 Diehl Metall Stiftung & Co. Kg Copper-zinc alloy and synchronizing ring produced therefrom
US7790295B2 (en) * 2006-04-28 2010-09-07 Wieland-Werke Ag Composite material in strip form and its use, composite sliding element
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
CN104372234A (en) * 2014-10-29 2015-02-25 苏州莱特复合材料有限公司 High-wear-resistance titanium-copper nickel-silicon alloy composite material and preparation method thereof
JP2015052160A (en) * 2013-09-09 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
EP3085798A1 (en) 2015-04-22 2016-10-26 NGK Insulators, Ltd. Copper alloy
EP3085799A1 (en) 2015-04-22 2016-10-26 NGK Insulators, Ltd. Copper alloy and method for manufacturing the same
CN107090553A (en) * 2017-04-26 2017-08-25 宝鸡文理学院 A kind of high-strength high elasticity copper alloy and preparation method thereof
JP2018513269A (en) * 2015-03-18 2018-05-24 マテリオン コーポレイション Magnetic copper alloy
RU2760688C1 (en) * 2021-06-10 2021-11-29 Публичное акционерное общество «Авиационная корпорация «Рубин» Method for manufacturing billets from antifriction bronze by casting with following extrusion
CN113755716A (en) * 2021-09-07 2021-12-07 大连理工大学 High-performance copper-nickel-tin alloy and preparation method thereof
CN115747563A (en) * 2022-11-23 2023-03-07 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939139A3 (en) * 1998-02-26 2000-01-12 Nissan Motor Company Limited Abrasion resistant copper alloy for build-up cladding on engine cylinder head
EP1120472A3 (en) * 1998-02-26 2002-01-02 Nissan Motor Co., Ltd. Abrasion resistant copper alloy for build-up cladding on engine cylinder head
US6531003B2 (en) 1998-02-26 2003-03-11 Mitsui Mining & Smelting Co., Ltd. Abrasion resistant copper alloy, copper alloy powder for build-up cladding, and engine cylinder head
GB2355016A (en) * 1999-09-13 2001-04-11 Daido Metal Co Copper sliding bearing alloy
GB2355016B (en) * 1999-09-13 2002-08-07 Daido Metal Co Sliding material of copper alloy
US6926779B1 (en) * 1999-12-01 2005-08-09 Visteon Global Technologies, Inc. Lead-free copper-based coatings with bismuth for swashplate compressors
US6652675B2 (en) * 2000-02-08 2003-11-25 Daido Metal Company Ltd. Copper alloy sliding material
JP2002302722A (en) * 2001-04-09 2002-10-18 Chuetsu Metal Works Co Ltd High strength bronze alloy and production method therefor
WO2005108631A1 (en) * 2004-04-05 2005-11-17 Swissmetal-Ums Usines Metallurgiques Suisses Sa Free-cutting, lead-containing cu-ni-sn alloy and production method thereof
JP2007531824A (en) * 2004-04-05 2007-11-08 スイスメタル−ユエムエス・ユジン・メタルリュルジク・スイス・エスア Cutting lead-containing Cu-Ni-Sn alloy and method for producing the same
WO2007068368A1 (en) * 2005-12-13 2007-06-21 Diehl Metall Stiftung & Co. Kg Copper-zinc alloy and synchronizing ring produced therefrom
US7790295B2 (en) * 2006-04-28 2010-09-07 Wieland-Werke Ag Composite material in strip form and its use, composite sliding element
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
US9657777B2 (en) 2007-01-05 2017-05-23 Federal-Mogul Llc Wear resistant lead free alloy bushing and method of making
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
JP2015052160A (en) * 2013-09-09 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
CN104372234A (en) * 2014-10-29 2015-02-25 苏州莱特复合材料有限公司 High-wear-resistance titanium-copper nickel-silicon alloy composite material and preparation method thereof
JP2018513269A (en) * 2015-03-18 2018-05-24 マテリオン コーポレイション Magnetic copper alloy
JP2022081488A (en) * 2015-03-18 2022-05-31 マテリオン コーポレイション Magnetic copper alloys
EP3085799A1 (en) 2015-04-22 2016-10-26 NGK Insulators, Ltd. Copper alloy and method for manufacturing the same
KR20160125917A (en) 2015-04-22 2016-11-01 엔지케이 인슐레이터 엘티디 Copper alloy and producing method thereof
EP3085798A1 (en) 2015-04-22 2016-10-26 NGK Insulators, Ltd. Copper alloy
US10072321B2 (en) 2015-04-22 2018-09-11 Ngk Insulators, Ltd. Copper nickel alloy
CN107090553A (en) * 2017-04-26 2017-08-25 宝鸡文理学院 A kind of high-strength high elasticity copper alloy and preparation method thereof
RU2760688C1 (en) * 2021-06-10 2021-11-29 Публичное акционерное общество «Авиационная корпорация «Рубин» Method for manufacturing billets from antifriction bronze by casting with following extrusion
CN113755716A (en) * 2021-09-07 2021-12-07 大连理工大学 High-performance copper-nickel-tin alloy and preparation method thereof
CN115747563A (en) * 2022-11-23 2023-03-07 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof
CN115747563B (en) * 2022-11-23 2023-12-19 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH08283889A (en) High strength and high hardness copper alloy
US10570483B2 (en) Copper-based alloy casting in which grains are refined
JP3335002B2 (en) Lead-free free-cutting brass alloy with excellent hot workability
AU2016343539B2 (en) Aluminum alloy
US4452866A (en) Aluminum-based alloy bearing
KR100199362B1 (en) Aluminum alloy for die casting and ball joint using the same
US8580191B2 (en) Brass alloys having superior stress corrosion resistance and manufacturing method thereof
JPH09316570A (en) End bearing for one-way clutch and other sliding part
GB2167442A (en) Heat-resisting, high-strength aluminium alloy
KR20190029532A (en) Copper-nickel-tin alloy, its preparation method and use
JP7182435B2 (en) Al-Mg-Si based aluminum alloy extruded material
JP2889829B2 (en) Lead-free free-cutting bronze alloy
US5494540A (en) Abrasion-resistant aluminum alloy and method of preparing the same
JP2009506215A (en) Cast aluminum alloy
US20120258809A1 (en) Copper-tin multicomponent bronze containing hard phases, production process and use
US20190062876A1 (en) Copper alloy containing tin, method for producing same, and use of same
JPH07278717A (en) Magnesium alloy member excellent in settling resistance in pressurized part
US11028463B2 (en) Copper alloy containing tin, method for producing same, and use of same
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
CN1865474A (en) Aluminum alloy material of heat exchanger inner fin and its production method
JPH04173935A (en) Wear resistant aluminum alloy
JPS59159957A (en) High-strength cu alloy with superior resistance to corrosion due to sea water and superior hot workability
JP2743709B2 (en) Aluminum alloy for extrusion and forging
JPS59133341A (en) High strength cu alloy with superior corrosion resistance and hot workability
JP2001064741A (en) Use of copper-tin-iron alloy high in tin concentration