JPH0828312B2 - Aluminum alloy electrode for electrolytic capacitors - Google Patents

Aluminum alloy electrode for electrolytic capacitors

Info

Publication number
JPH0828312B2
JPH0828312B2 JP62282742A JP28274287A JPH0828312B2 JP H0828312 B2 JPH0828312 B2 JP H0828312B2 JP 62282742 A JP62282742 A JP 62282742A JP 28274287 A JP28274287 A JP 28274287A JP H0828312 B2 JPH0828312 B2 JP H0828312B2
Authority
JP
Japan
Prior art keywords
aluminum
etching
alloy
aluminum alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282742A
Other languages
Japanese (ja)
Other versions
JPH01124212A (en
Inventor
隆 望月
一雄 竹野入
昭一 関口
道雄 遠藤
哲也 須貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nichikon KK
Original Assignee
Nippon Steel Corp
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nichikon KK filed Critical Nippon Steel Corp
Priority to JP62282742A priority Critical patent/JPH0828312B2/en
Publication of JPH01124212A publication Critical patent/JPH01124212A/en
Publication of JPH0828312B2 publication Critical patent/JPH0828312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電解コンデンサの陽極として用いるアル
ミニウム合金電極に関するものである。
The present invention relates to an aluminum alloy electrode used as an anode of an electrolytic capacitor.

〔従来の技術〕 電解コンデンサの陽極材料には、非常に薄い誘電体酸
化皮膜を電気化学的に生成することができる、いわゆる
バルブメタルが用いられている。その中でも、現在のと
ころ純度99.9%または99.99%のアルミニウムや、タン
タルが広く用いられている。
[Prior Art] A so-called valve metal capable of electrochemically forming a very thin dielectric oxide film is used as an anode material of an electrolytic capacitor. Among them, at present, aluminum having a purity of 99.9% or 99.99% and tantalum are widely used.

このうち、アルミニウムの酸化皮膜Al2O3の比誘電率
は、およそ7〜10であり、例えば他のバルブメタルの酸
化皮膜であるTa2O5の25.2や、TiO2の66.1に較べて、か
なり小さい。このために、アルミニウム電解コンデンサ
の陽極に用いる電極箔は、その表面積の増大によつて静
電容量を高めるために、機械的、電気化学的或いは化学
的にかなり高倍率のエツチングを行つている。しかし、
現在のところ、このエツチング倍率は100倍を越えてい
ない。
Among them, the relative dielectric constant of the aluminum oxide film Al 2 O 3 is about 7 to 10, and for example, compared with 25.2 of Ta 2 O 5 and 66.1 of TiO 2 which are oxide films of other valve metals, Quite small. For this reason, the electrode foil used for the anode of the aluminum electrolytic capacitor is mechanically, electrochemically or chemically etched at a considerably high magnification in order to increase the capacitance by increasing the surface area. But,
At present, this etching ratio does not exceed 100 times.

また、陽極化成方法を工夫して静電容量を高めること
も試みられている。これは、熱水処理による擬似ベーマ
イト皮膜と電解反応による陽極酸化皮膜との複合皮膜、
ホウ酸溶液による化成皮膜とリン酸溶液による化成皮膜
との複合皮膜、特殊な前処理による皮膜と電解反応によ
る陽極酸化皮膜との複合皮膜などである。このような複
合皮膜による静電容量の増大は、通常の電解反応による
皮膜の30%増以内である。
In addition, it has been attempted to improve the capacitance by devising an anodization method. This is a composite film of pseudo boehmite film by hot water treatment and anodized film by electrolytic reaction,
A composite film of a chemical conversion film formed by boric acid solution and a chemical conversion film formed by phosphoric acid solution, a composite film formed by a special pretreatment and an anodized film formed by electrolytic reaction, and the like. The increase in capacitance due to such a composite film is within 30% of the increase in the film due to the usual electrolytic reaction.

また、最近では特開昭60−66806号公報に示すよう
に、高純度アルミニウムに代えて、アルミニウムとチタ
ンその他のバルブメタルとの固溶体合金箔を使用し、化
成によってAl2O3+TiO2といった比誘電率が高い合金酸
化物皮膜を作ることも試みられており、例えば図に線1
で示すように、コンデンサの質を示すCV積の向上に成果
を上げている。
Further, recently, as shown in JP-A-60-66806, a solid solution alloy foil of aluminum and titanium or other valve metal is used in place of high-purity aluminum, and a ratio such as Al 2 O 3 + TiO 2 is formed by chemical conversion. Attempts have also been made to make alloy oxide films with a high dielectric constant, for example line 1 in the figure.
As shown in, it has been successful in improving the CV product, which indicates the quality of the capacitor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の高純度アルミニウム陽極材料で、エツチング倍
率を現在の2〜3倍に高めることは、最早不可能であ
る。即ち、電気化学的または化学的なエツチングを強く
行つたとしても、エツチング孔は奥深く成長せず、逆に
孔の入口附近のアルミニウムが溶解してエツチング部材
が目減りするので、単に箔の厚味が薄くなるだけでエツ
チング倍率は必ずしも高まらない。また、仮に深いエツ
チング孔が形成されて、見掛け上のエツチング倍率が高
まつたとしても、陽極化成中に酸化皮膜による目詰りを
起こし、そのエツチング倍率を活用できなくなる。そし
て、このような陽極材料を用いて電解コンデンサを製作
しても、電解液との接触界面が減少し、箔抵抗やtanδ
やインピーダンス等が悪化して、却つて特性の低下を招
来する。
With the above-mentioned high-purity aluminum anode material, it is no longer possible to increase the etching magnification to the current 2-3 times. That is, even if the electrochemical or chemical etching is strongly performed, the etching hole does not grow deeply, and conversely, the aluminum near the entrance of the hole melts and the etching member decreases, so that the thickness of the foil is simply reduced. Etching magnification does not necessarily increase as the thickness decreases. Further, even if a deep etching hole is formed and the apparent etching ratio is increased, the oxide film is clogged during the anodization and the etching ratio cannot be utilized. Even if an electrolytic capacitor is manufactured using such an anode material, the contact interface with the electrolytic solution is reduced, and foil resistance and tanδ
And the impedance and the like are deteriorated, and the characteristics are deteriorated.

また、アルミニウムと他のバルブメタルとの合金を使
用する場合は、このような合金は超急冷法によつて製造
される関係から完全固溶体合金に近い組織になり、固溶
体合金の持つ耐食性のために、電気化学的または化学的
エツチングを行つた場合に、エツチング開始点の分布が
粗く、かつエツチングを高度に行なおうとすると、初期
に形成されたエツチング部分が溶解して目減りし、虫食
い状態になるため、エツチングの効果が十分上がらず、
実用上多くの困難を伴う。
When an alloy of aluminum and another valve metal is used, such an alloy has a structure close to that of a perfect solid solution alloy due to the relationship of being manufactured by the ultra-quenching method, and due to the corrosion resistance of the solid solution alloy. , When electrochemical or chemical etching is performed, if the distribution of the starting points of etching is rough and an attempt is made to perform high etching, the initially formed etching portion will melt and decrease, resulting in a worm-eating state. Therefore, the effect of etching is not sufficiently improved,
There are many practical difficulties.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上述の問題点を解決して、電解コンデン
サの静電容量を増大させるために、比誘電率が高い誘電
体皮膜を生成するアルミニウムと他のバルブメタルとの
合金を使用すると共に、エツチング上の障害を除去しよ
うとするものである。即ち、電解コンデンサの陽極とし
て、アルミニウムと、チタン、タンタル、ジルコニウ
ム、ハフニウム及びニオブよりなる金属群中の1員また
は複数員との合金を使用し、アルミニウム中に金属間化
合物の析出物を微細に分散させたものである。
The present invention solves the above problems and uses an alloy of aluminum and another valve metal to form a dielectric film having a high relative dielectric constant in order to increase the capacitance of an electrolytic capacitor, and It aims to eliminate obstacles on etching. That is, an alloy of aluminum and one or more members of the metal group consisting of titanium, tantalum, zirconium, hafnium and niobium is used as the anode of the electrolytic capacitor, and the precipitate of intermetallic compound is finely divided in aluminum. It is dispersed.

この析出物の粒径や分布密度は、合金の組成及び製作
条件によつて調節することができる。一般的には、アル
ミニウム中の他のバルブメタルの含有量が増大すると、
金属間化合物の析出粒の数が増大し、かつ析出粒径も大
きくなる。また、合金製作時の急冷速度を極端に速くす
ると金属間化合物は析出せずに固溶体合金のみが生成
し、これを遅くするにつれて次第に金属間化合物の析出
量が増加する。冷却ロールを使用して急冷を行う場合
は、ロール速度を速めて急冷速度を速くすると、ロール
面での金属間化合物の析出は極めて少なく、自由面では
微細な粒子が多量に析出し、ロール速度を遅くすると、
ロール面にも多量の析出粒子が存在し、自由面では析出
粒子の粒径が大きくなる。
The grain size and distribution density of this precipitate can be adjusted depending on the composition of the alloy and the production conditions. Generally, as the content of other valve metals in aluminum increases,
The number of precipitated particles of the intermetallic compound increases and the precipitated particle size also increases. Further, if the quenching rate during alloy production is extremely increased, only the solid solution alloy is produced without precipitation of the intermetallic compound, and the precipitation amount of the intermetallic compound gradually increases as the solid solution alloy is delayed. When quenching using a cooling roll, increasing the roll speed to increase the quenching rate causes very little precipitation of intermetallic compounds on the roll surface and a large amount of fine particles on the free surface. Slowing down
A large amount of precipitated particles also exist on the roll surface, and the particle size of the precipitated particles becomes large on the free surface.

このアルミニウム合金中に現われる金属間化合物の容
積比率は、2.0%以上であるときその効果が現われ始
め、60%を越えると誘電体耐圧の低下を来たす。この傾
向は、アルミニウムに添加される他のバルブメタルの種
類が変つても同様である。
When the volume ratio of the intermetallic compound appearing in this aluminum alloy is 2.0% or more, the effect begins to appear, and when it exceeds 60%, the dielectric breakdown voltage is lowered. This tendency is the same even if the type of other valve metal added to aluminum changes.

〔作 用〕[Work]

上述のように、アルミニウム合金中に適当な大きさの
金属間化合物粒が適当な密度で析出しているときは、そ
の析出粒の周囲で、アルミニウムに固溶されている他の
バルブメタルの濃縮にミクロ的な変化が起こり、そのた
めに微小部分で電極電位差を生じ、析出粒の周辺に沿つ
て腐食が進行する。その結果、初期に形成されたエツチ
ング部分の溶解による目減りを殆ど起こすことなく、理
想的な孔径、密度及び深さにエツチングを行うことが可
能になる。
As described above, when the intermetallic compound particles of appropriate size are precipitated in the aluminum alloy at an appropriate density, the concentration of other valve metals solid-dissolved in aluminum around the precipitated particles is concentrated. Microscopic changes occur in the microstructure, which causes a difference in electrode potential in minute portions, and corrosion progresses along the periphery of the precipitated grains. As a result, it is possible to perform etching to an ideal pore diameter, density and depth with almost no loss due to melting of the etching portion formed in the initial stage.

また、電解コンデンサの耐圧を高めるためには、厚い
誘電体皮膜を作る関係から、エツチング孔の孔径を大き
く選ぶことが必要になるが、このようなエツチング孔の
孔径の調節も、或る程度析出する金属間化合物の粒径や
密度の調節によつて達成することができる。
Further, in order to increase the withstand voltage of the electrolytic capacitor, it is necessary to select a large hole diameter for the etching hole due to the formation of a thick dielectric film. However, such adjustment of the hole diameter for the etching hole also causes some precipitation. It can be achieved by adjusting the particle size and density of the intermetallic compound.

このようにして、エッチング倍率を効果的に高め、コ
ンデンサ容量を大幅に増大させることができる。そし
て、この発明において添加したバルブメタルも、やはり
酸化皮膜の比誘電率の向上にかなり貢献するので、上記
のエッチング倍率の向上と相俟って、コンデンサ容量の
増加に貢献する。
In this way, the etching magnification can be effectively increased and the capacitance of the capacitor can be significantly increased. The valve metal added in the present invention also contributes considerably to the improvement of the relative permittivity of the oxide film, and thus contributes to the increase of the capacitance of the capacitor together with the improvement of the etching ratio.

〔実施例〕〔Example〕

実施例1 アルミニウム94原子%に対しジルコニウム6原子%を
添加し、母合金を作成した。これから超急冷合金を作成
するに当り、銅ローラーによる単ロール法を採用し、酸
化を防ぐためにアルゴンガス雰囲気を使用した。母合金
は、特願昭61−27242号に示されている手法に従い、一
旦融解し、高周波で加熱されているノズルを通し、アル
ゴンガス雰囲気中で、回転銅ローラー上に噴射させ、凝
固、急冷した。噴射圧力は0.4Kg/cm2に保ち、急冷却速
度は銅ローラーの回転速度によつて調節した。
Example 1 A mother alloy was prepared by adding 6 atomic% of zirconium to 94 atomic% of aluminum. In producing the ultra-quenched alloy, a single roll method using a copper roller was adopted, and an argon gas atmosphere was used to prevent oxidation. The mother alloy was once melted, passed through a nozzle heated at high frequency, sprayed onto a rotating copper roller in an argon gas atmosphere, solidified, and rapidly cooled in accordance with the method described in Japanese Patent Application No. 61-27242. did. The injection pressure was kept at 0.4 Kg / cm 2 , and the rapid cooling rate was adjusted by the rotation speed of the copper roller.

ローラーの回転速度によつて急冷速度を変化させる
と、作成される超急冷合金の厚さも変化するが、析出す
る金属間化合物粒の寸法は、急冷速度を速める程小さく
なつた。
When the quenching rate was changed depending on the rotation speed of the roller, the thickness of the superquenched alloy produced also changed, but the size of the precipitated intermetallic compound grains decreased as the quenching rate increased.

作製した超急冷合金は、6%塩酸溶液で直流30クーロ
ン/cm2でエツチングを行つた後、ホウ酸溶液によつて20
Vと60Vの化成を行い、静電容量及び皮膜耐圧を測定し
た。なお、皮膜耐圧は、上記化成液中で0.1mA/cm2の通
電を行い、電圧上昇曲線の1分後の電圧を皮膜耐圧とし
た。
The produced ultra-quenched alloy was etched with a 6% hydrochloric acid solution at a direct current of 30 Coulomb / cm 2 and then with a boric acid solution.
The formation of V and 60V was performed, and the capacitance and film withstand voltage were measured. The film withstand voltage was 0.1 mA / cm 2 in the chemical conversion solution, and the voltage after 1 minute of the voltage rise curve was taken as the film withstand voltage.

それらの結果を、第1表及び第2表に示す。 The results are shown in Tables 1 and 2.

第1表より、20V化成皮膜に最も適した製作時のロー
ル周速度は、23.5m/secであることが判つた。これは、
その速度のときの析出粒子の粒径と分布とが、エツチン
グによる表面積増大効果につながり、ロール周速度がそ
れ以上になると、化成皮膜によるエツチング孔の目詰り
や、エツチング部分の目減りの影響が現われることによ
る。
From Table 1, it was found that the most suitable roll peripheral velocity for the 20V conversion coating during production was 23.5 m / sec. this is,
The particle size and distribution of the precipitated particles at that speed lead to an effect of increasing the surface area by etching, and when the roll peripheral speed becomes higher than that, clogging of etching holes by the chemical conversion film and the effect of reducing the etching portion appear. It depends.

一方、第2表からは、60V化成皮膜に最適のロール周
速度は、20.0m/secであり、20V化成膜の場合よりも遅い
ことが判つた。これは、60V化成皮膜の方が20V化成皮膜
より厚いため、20V化成時には目詰りしなくても、60V化
成時に目詰りするエツチング孔が存在するためである。
On the other hand, from Table 2, it was found that the optimum roll peripheral speed for the 60V conversion coating was 20.0 m / sec, which was slower than that for the 20V conversion coating. This is because the 60V chemical conversion film is thicker than the 20V chemical conversion film, and therefore there is an etching hole that causes clogging during the 60V chemical conversion even though the 60V chemical conversion film does not clog during the 20V chemical conversion.

実施例2 アルミニウム中に、チタンをそれぞれ0.2原子%、0.5
原子%、3.0原子%、10原子%、15原子%及び20原子%
含有させた母合金を作り、実施例1と同じ装置により超
急冷合金を作製した。噴射圧力は0.3Kg/cm2に保ち、ロ
ール周速度は箔状の製品が得られるように、16.3m/sec
から20.0m/secの間で調節した。
Example 2 Titanium was added to aluminum in an amount of 0.2 atomic% and 0.5, respectively.
Atomic%, 3.0 atomic%, 10 atomic%, 15 atomic% and 20 atomic%
The contained master alloy was prepared, and an ultra-quenched alloy was prepared using the same apparatus as in Example 1. The injection pressure is kept at 0.3 Kg / cm 2 , and the roll peripheral speed is 16.3 m / sec so that a foil product can be obtained.
To 20.0 m / sec.

作製した箔は、実施例1と同手法でエツチング及び20
Vと60Vの化成を行つた。それらの結果を第3図及び第4
図に示し、かつ図中に線2及び3として示す。
The produced foil was etched and formed in the same manner as in Example 1.
The formation of V and 60V was performed. The results are shown in FIGS. 3 and 4.
Shown in the figure and as lines 2 and 3 in the figure.

第3表及び第4表より、チタンの添加量が0.5原子%
以上になると静電容量が急増し始めるが、作製した超急
冷合金を観察すると、金属間化合物Al3Tiの析出相が明
確に現われ始めるのもと0.5原子%からであつて、その
挙動は対応している。チタンの添加量を更に増加する
と、静電容量も増加し、10〜15%のときに最大になる。
これは、チタンの添加量が0.5原子%以上になると、金
属間化合物の析出相が現われ、その析出粒の周囲でエツ
チングが順調に進行し、これによる電極表面積の増大が
静電容量の増加につながるからである。
From Tables 3 and 4, the amount of titanium added is 0.5 atom%.
When the above is reached, the capacitance starts to increase rapidly, but when observing the prepared ultra-quenched alloy, the precipitation phase of the intermetallic compound Al 3 Ti begins to appear clearly, and it is from 0.5 atomic%, and its behavior is corresponding. are doing. When the amount of titanium added is further increased, the capacitance also increases, and becomes maximum at 10 to 15%.
This is because when the amount of titanium added is 0.5 atomic% or more, a precipitation phase of intermetallic compounds appears, and etching proceeds smoothly around the precipitation particles, which increases the electrode surface area and increases the capacitance. Because it is connected.

しかし、チタンの添加量が20原子%に達すると、誘電
体皮膜の耐圧が著るしく低下する。これは、チタン酸化
物によるn型半導体の性質が増大し、皮膜耐圧の減少と
濡れ電流の増大を誘発しているためである。
However, when the amount of titanium added reaches 20 atomic%, the withstand voltage of the dielectric film is significantly reduced. This is because the properties of the n-type semiconductor due to titanium oxide are increased, which induces a decrease in film breakdown voltage and an increase in wetting current.

また、チタンの添加量が20原子%に達するときは、静
電容量にも減少の傾向が認められる。これは、析出粒子
の大きさ及び分布密度が増しすぎて、エツチングの成長
空間が挟まり、却つてエツチング倍率が低下する一方
で、チタン酸化物の増加による比誘電率の増大が、この
エツチング倍率の減少に追従できなくなるためである。
Further, when the amount of titanium added reaches 20 atomic%, the electrostatic capacity tends to decrease. This is because the size and distribution density of the precipitated particles increase too much, the etching growth space is sandwiched, and the etching ratio decreases on the contrary, while the increase in the relative permittivity due to the increase in titanium oxide results in an increase in the etching ratio. This is because it cannot follow the decrease.

従つて、コンデンサの質を示すCV積は、第1図に線2
及び3で示すようにチタンの添加量が0.5〜15原子%の
ときが優れた値を示し、このときの金属間化合物が占め
る容積比は2.0〜60%になる。
Therefore, the CV product that shows the quality of the capacitor is shown in Fig. 1 as line 2
As shown in 3 and 3, excellent values are obtained when the amount of titanium added is 0.5 to 15 atomic%, and the volume ratio of the intermetallic compound at this time is 2.0 to 60%.

実施例3 アルミニウムに、チタン、タンタル、ジルコニウム、
ハフニウム及びニオブをそれぞれ2原子%添加した試料
を実施例2と同じ製法で製造し、これらと99.99%アル
ミニウム箔とを、6%塩酸溶液中で直径30クーロン/cm2
でエツチングを施こし、中性リン酸アンモニウム溶液よ
り20V化成を行つた。その結果を第5表に示す。
Example 3 Aluminum, titanium, tantalum, zirconium,
A sample to which 2 atom% of hafnium and niobium were added was manufactured by the same manufacturing method as in Example 2, and these and 99.99% aluminum foil were prepared in a 6% hydrochloric acid solution to have a diameter of 30 coulomb / cm 2.
Etching was carried out, and 20 V chemical conversion was performed from a neutral ammonium phosphate solution. Table 5 shows the results.

第5表に見られるように、アルミニウムと他のバルブ
メタルとの金属間化合物を内蔵したアルミニウム合金を
高純度アルミニウムと比較すると、何れの合金の場合
も、アルミニウムの2倍またはそれ以上の製電容量が得
られている。これは、アルミニウム以外のバルブメタル
の酸化物がアルミニウム酸化物よりも比誘電率が高いこ
とに加え、エツチングが順調に進行して静電容積の増大
に寄与し、エツチング部品の目減りが少なかつたことに
よるものである。
As seen in Table 5, when comparing an aluminum alloy containing an intermetallic compound of aluminum and another valve metal with high-purity aluminum, in each case, the electric power generation is twice or more than that of aluminum. Capacity is obtained. This is because the oxides of valve metals other than aluminum have a higher relative dielectric constant than aluminum oxides, and the etching progresses smoothly to contribute to the increase of electrostatic capacity, and the loss of etching parts is small. This is due to the fact.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明においては、電極合金の作製
時に組成や急冷速度を調節することにより、コンデンサ
の耐圧に応じた最適のエツチングを行うことを可能に
し、併せてアルミニウム合金の添加成分がアルミニウム
よりも比誘電率が高い誘電体皮膜を生成することによつ
て、電解コンデンサの容量増大に大きく寄与することが
できる。
As described above, in the present invention, by adjusting the composition and the quenching rate during the production of the electrode alloy, it is possible to perform the optimum etching according to the withstand voltage of the capacitor. By forming a dielectric film having a higher relative dielectric constant than that, it is possible to greatly contribute to the increase in the capacitance of the electrolytic capacitor.

【図面の簡単な説明】[Brief description of drawings]

図は、従来法及びこの発明におけるTi添加量とCV積の関
係を示す線図である。 1:従来法によるCV積特性線 2及び3:本発明によるCV積特性線
The figure is a diagram showing the relationship between the Ti addition amount and the CV product in the conventional method and the present invention. 1: CV product characteristic line according to conventional method 2 and 3: CV product characteristic line according to the present invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹野入 一雄 京都府京都市中京区御池通烏丸東入一筋目 仲保利町191番地の4 上原ビル3階 ニ チコン株式会社内 (72)発明者 関口 昭一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第1技術研究所内 (72)発明者 遠藤 道雄 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第1技術研究所内 (72)発明者 須貝 哲也 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第1技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuo Takeno, Kazuo Takeno, Oike Dori, Karasuma Higashiiri, Nakagyo-ku, Kyoto Prefecture 1618 Ida, Nakahara-ku, Kawasaki-shi, Japan Inside the 1st technological research institute of Nippon Steel Corporation (72) Inventor Michio Endo 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside the 1st technological research institute of Nippon Steel (72) ) Inventor Tetsuya Sugai 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Works Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム中に、チタン、タンタル、ジ
ルコニウム、ハフニウム及びニオブよりなる金属群中の
1員または複数員とアルミニウムとの金属間化合物の少
くとも1種類が微細分散されていることを特徴とする電
解コンデンサ用アルミニウム合金電極。
1. At least one kind of intermetallic compound of aluminum and one or more members of a metal group consisting of titanium, tantalum, zirconium, hafnium and niobium is finely dispersed in aluminum. Aluminum alloy electrodes for electrolytic capacitors.
【請求項2】上記アルミニウム合金中に内蔵されている
上記金属間化合物の容積比率は2.0%から60%であるこ
とを特徴とする特許請求の範囲第1項記載の電解コンデ
ンサ用アルミニウム合金電極。
2. The aluminum alloy electrode for an electrolytic capacitor according to claim 1, wherein the volume ratio of the intermetallic compound contained in the aluminum alloy is 2.0% to 60%.
JP62282742A 1987-11-09 1987-11-09 Aluminum alloy electrode for electrolytic capacitors Expired - Lifetime JPH0828312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282742A JPH0828312B2 (en) 1987-11-09 1987-11-09 Aluminum alloy electrode for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282742A JPH0828312B2 (en) 1987-11-09 1987-11-09 Aluminum alloy electrode for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH01124212A JPH01124212A (en) 1989-05-17
JPH0828312B2 true JPH0828312B2 (en) 1996-03-21

Family

ID=17656460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282742A Expired - Lifetime JPH0828312B2 (en) 1987-11-09 1987-11-09 Aluminum alloy electrode for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPH0828312B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ270219A (en) * 1993-12-23 1997-03-24 Mintek Spark plug electrode of intermetallic compound
US20060114644A1 (en) * 2002-11-18 2006-06-01 Masana Imagumbai Nb-a1 alloy powder for electrolytic capacitors, method for manufacturing nb-a1 alloy powder, and electrolytic capacitor
US20070002525A1 (en) * 2003-08-27 2007-01-04 Showa Denko K.K. Sheet for capacitor electrodes, method and apparatus for manufacturing the same, and electrolytic capacitors
US20080297983A1 (en) * 2004-03-24 2008-12-04 Showa Denko K.K. Electrode Sheet For Capacitors, Method For Manufacturing The Same, And Electrolytic Capacitor
EP2495344A1 (en) * 2009-10-30 2012-09-05 Panasonic Corporation Electrode foil and capacitor using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066806A (en) * 1983-09-22 1985-04-17 ニチコン株式会社 Aluminum alloy electrode for electrolytic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066806A (en) * 1983-09-22 1985-04-17 ニチコン株式会社 Aluminum alloy electrode for electrolytic condenser

Also Published As

Publication number Publication date
JPH01124212A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
US20110038098A1 (en) Electrode material for aluminum electrolytic capacitor and process for producing the electrode material
CN105393320A (en) Electrode material for aluminum electrolytic capacitor, and production method thereof
EP1329529A1 (en) Aluminum material for electrode of electrolytic capacitor and method for producing aluminum foil for electrode of electrolytic capacitor, and electrolytic capacitor
EP2947671A1 (en) Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors
JPH0828312B2 (en) Aluminum alloy electrode for electrolytic capacitors
EP0662700B1 (en) Aluminium foil used as an electrolytic capacitor electrode, and method of etching same
JPH0291918A (en) Electrode material for electrolytic capacitor
JP3428035B2 (en) Aluminum foil for anode of ultra-high voltage Al electrolytic capacitor
JPH055145A (en) Aluminum alloy for electrolytic capacitor electrode foil
EP0598517B1 (en) Production process of metallic foil by electrolysis
US6325831B1 (en) Process for the production of an anode for an electrolytic capacitor
JP5063057B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP7367045B2 (en) Electrode structure and its manufacturing method
JPH0722093B2 (en) Electrode capacitor electrode material and manufacturing method thereof
JPH0413411B2 (en)
EP1184883B1 (en) Solid electrolytic capacitor and production method thereof
JP2657262B2 (en) Aluminum alloy foil for anode of electrolytic capacitor
JP3043029B2 (en) Al alloy foil for Al electrolytic capacitor cathode
JPH04162707A (en) Material of electrode for electrolytic capacitor and manufacture thereof
JPH01124213A (en) Alloy electrode for electrolytic capacitor and manufacture thereof
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JPH04305911A (en) Manufacture of aluminum foil for electrolytic capacitor
JP2000012402A (en) Electrode foil for aluminium electrolytic capacitor
DD200766A1 (en) METHOD FOR THE PRODUCTION OF VALVE METAL INTERMEDIATE BODIES FOR ELECTROLYTE CONDENSERS
JPH05255790A (en) Aluminum alloy foil for electrode of electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12