JPH08281083A - Immersion type membrane separation device - Google Patents

Immersion type membrane separation device

Info

Publication number
JPH08281083A
JPH08281083A JP11409495A JP11409495A JPH08281083A JP H08281083 A JPH08281083 A JP H08281083A JP 11409495 A JP11409495 A JP 11409495A JP 11409495 A JP11409495 A JP 11409495A JP H08281083 A JPH08281083 A JP H08281083A
Authority
JP
Japan
Prior art keywords
air lift
lift cylinder
air
membrane
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11409495A
Other languages
Japanese (ja)
Other versions
JP3849151B2 (en
Inventor
Shigeki Sawada
繁樹 沢田
Kazuo Suzuki
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11409495A priority Critical patent/JP3849151B2/en
Publication of JPH08281083A publication Critical patent/JPH08281083A/en
Application granted granted Critical
Publication of JP3849151B2 publication Critical patent/JP3849151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: To increase an air lift circulation stream and to effectively peel off soiling of the membrane surface by expanding the lower part of an air lift cylinder of an immersion type membrane separation device in a truncated cone shape and enlarging the cross-sectional area in the direction facing downward. CONSTITUTION: A space of left and right side plates 22 at the lower half 21 of the air lift cylinder 11 is enlarged downwardly in a truncated cone shape and the cross-sectional area at the lower half is expanded in the direction facing downward. Plural air diffusion nozzles 24 for blowing air into the air lift cylinder 11 from the lower part are arranged so as to surround the lower edge of the air lift cylinder 11. Then, the air diffusion nozzles 24 can be easily attached and detached. Also the lower part of the air cylinder 11 becomes a turning back part of the air lift circulation stream, and the circulation flow rate of the lower part of the air lift cylinder 11 be increased by enlarging the lower half in a truncated cone shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、生物反応槽や膜浸漬
槽などの処理槽内の水中に、透過水の取出口を有する複
数枚の中空糸膜、管状膜あるいは平膜からなる膜エレメ
ントを前後方向に間隔を保って一列に立て並べた膜モジ
ュールを配置し、浸漬した膜モジュールの水深に基づく
水頭差や、吸引ポンプによる吸引によって低エネルギー
で膜濾過を行い、透過水を得る浸漬型膜分離装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane element composed of a plurality of hollow fiber membranes, tubular membranes or flat membranes having a permeated water outlet in water in a treatment tank such as a biological reaction tank or a membrane dipping tank. By arranging the membrane modules standing in a row with a space in the front-back direction, the water head difference based on the water depth of the immersed membrane modules and the membrane pump at low energy by suction with a suction pump to obtain permeated water The present invention relates to a membrane separation device.

【0002】[0002]

【従来の技術】図8は原水が供給される処理槽10の水
中にエアリフト筒11を立設し、エアリフト筒の上半部
内に透過水の取出口を有する複数枚の平膜エレメント1
2(図7イ)を前後方向に流路間隔を保って一列に立て
並べた膜モジュール13を配置した従来の浸漬型膜分離
装置を示す。エアリフト筒の内部下方にはブロアBから
空気が供給される散気装置14が配置してある。エアリ
フト筒11は断面形状が四角形で、上端から下端まで断
面積は一定である。散気装置14から散気することによ
ってエアリフト筒内の膜モジュールを構成する平膜エレ
メント12の相対向した膜面の流路間隔15にはエアリ
フトによるクロスフロー上昇流が生じ、膜面にゲル状の
付着物が生成するのを防止しながら膜を透過する透過水
を平膜エレメントの内部に得、この透過水を各平膜エレ
メントの取出口16に接続したヘッダー管17を介しポ
ンプPで吸引して採水する。
2. Description of the Related Art FIG. 8 shows a plurality of flat sheet membrane elements 1 in which an air lift cylinder 11 is erected in the water of a treatment tank 10 to which raw water is supplied, and a permeated water outlet is provided in the upper half of the air lift cylinder.
Fig. 7 shows a conventional submerged membrane separation device in which a membrane module 13 in which 2 (Fig. 7A) are arranged in a row in the front-rear direction while keeping a flow path interval is arranged. An air diffuser 14 to which air is supplied from a blower B is arranged below the inside of the air lift cylinder. The air lift cylinder 11 has a quadrangular cross-sectional shape and has a constant cross-sectional area from the upper end to the lower end. When air is diffused from the air diffuser 14, a cross flow upward flow due to an air lift is generated in the flow path interval 15 between the opposed membrane surfaces of the flat sheet membrane element 12 constituting the membrane module in the air lift cylinder, and the gel state is formed on the membrane surface. The permeated water that permeates the membrane is obtained inside the flat sheet membrane element while preventing the adherents from being generated, and the permeated water is sucked by the pump P through the header pipe 17 connected to the outlet 16 of each flat sheet membrane element. And collect water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、原水が
高分子状の溶質と同時に、多量の懸濁物を含んでいる場
合は、運転を長時間継続すると膜面及び流路間隔が閉塞
することがあるので、定期的に洗浄するか、膜モジュー
ルを交換するために処理槽の外に取出すことが必要であ
り、そのためにはエアリフト筒内の膜モジュールを取外
し可能に取付けるか、エアリフト筒ごと膜モジュールを
処理槽の外に取出さねばならず、非常に手数がかゝると
共に、複雑な構造を要する。
However, when the raw water contains a large amount of suspended matter at the same time as the polymer solute, if the operation is continued for a long time, the membrane surface and the flow path gap may be blocked. Therefore, it is necessary to periodically clean or remove the membrane module from the treatment tank in order to replace it.To do this, either attach the membrane module inside the air lift cylinder detachably or install the membrane module together with the air lift cylinder. Must be taken out of the processing tank, which is very troublesome and requires a complicated structure.

【0004】更に、エアリフト筒内を上向流した原水を
循環流とするためエアリフト筒の上端と処理槽の水面W
との間にエアリフト筒の上端から出た原水の流れを下向
きに折返すためのフリーゾーン18を設けねばならな
い。このため、水面Wの下方に浸漬した膜モジュールを
点検するには、その都度、槽内の水位を下げるか、膜モ
ジュールを引上げる必要があった。
Furthermore, in order to circulate the raw water flowing upward in the air lift cylinder as a circulating flow, the upper end of the air lift cylinder and the water surface W of the treatment tank
A free zone 18 for turning back the flow of the raw water coming out from the upper end of the air lift cylinder must be provided between the and. Therefore, in order to inspect the membrane module immersed below the water surface W, it was necessary to lower the water level in the tank or pull up the membrane module each time.

【0005】[0005]

【課題を解決するための手段】本発明は上述した従来装
置の問題点を解消するために開発されたのであって、請
求項1の発明は、処理槽内の水中に、下から気泡が吹込
まれるエアリフト筒を立設し、該筒内の上部に、透過水
の取出口を有する複数枚の膜エレメントを前後方向に流
路間隔を保って一列に立て並べた膜モジュールを配置し
た浸漬型膜分離装置において、エアリフト筒の下部をス
カート状に拡げてその断面積を下向きに拡大したことを
特徴とする。又、請求項2の発明は、処理槽内の水中
に、下から気泡が吹込まれるエアリフト筒を立設し、該
筒内の上部に、透過水の取出口を有する複数枚の膜エレ
メントを前後方向に流路間隔を保って一列に立て並べた
膜モジュールを配置した浸漬型膜分離装置において、膜
モジュールが内部に配置されたエアリフト筒の上部の両
側面に、膜モジュールの膜エレメントの前後方向の流路
間隔と連通する開放部を設けたことを特徴とする。
The present invention was developed in order to solve the above-mentioned problems of the conventional apparatus, and the invention of claim 1 is characterized in that bubbles are blown from below into the water in the processing tank. Immersion type in which an air lift tube to be inserted is erected, and a membrane module in which a plurality of membrane elements having permeate outlets are arranged in a row in the front-rear direction at a flow path interval in an upper part of the cylinder The membrane separation device is characterized in that the lower portion of the air lift cylinder is expanded in a skirt shape and its cross-sectional area is expanded downward. In the invention of claim 2, an air lift cylinder in which bubbles are blown from below is erected in the water in the treatment tank, and a plurality of membrane elements having an outlet for permeated water are provided in the upper part of the cylinder. In a submerged membrane separation device in which membrane modules are arranged in a row in a row with a flow path interval in the front-rear direction, on both side surfaces of the upper part of the air lift tube in which the membrane module is arranged, the membrane elements of the membrane module It is characterized in that an opening portion that communicates with the flow path interval in the direction is provided.

【0006】[0006]

【実施例】図1,2,3は本発明の請求項1の実施例、
図4,5,6は本発明の請求項2の実施例であって、図
8の従来装置と同じ構成要素には同じ符号を付してあ
る。又、平膜エレメントを用いたもので説明する。図
1,2の実施例ではエアリフト筒11の下半部21の左
右の側板22,22の間隔を下向きにスカート状に拡げ
ることによって、下半部の断面積を下向きに拡大してあ
る。この左右の側板22は、図2で明らかなように、上
から見ると、その上半部22´が平膜エレメント間の流
路間隔15を左右から閉じる側板であり、前後方向の側
板23,23の下半部間の前後方向の間隔は一定であ
る。つまり、図2に示したように前後方向の側板23,
23は上半部、下半部ともその間隔はA1 で一定である
のに対し、左右の側板22,22の上半部の間隔はB1
、下半部22,22の下端間の間隔の最大はB1 より
も大きいB2 になっている。尚、エアリフト筒は図示の
実施例のような角形筒に限らず、円筒でもよい。この場
合は円筒内の直径方向に最大幅の膜エレメントを配置
し、この最大幅の膜エレメントから離れるにしたがって
順次幅を狭くした膜エレメントを配列する。又、エアリ
フト筒のスカート部も円筒でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2 and 3 are embodiments of the first aspect of the present invention,
4, 5 and 6 show an embodiment of claim 2 of the present invention, in which the same components as those of the conventional device of FIG. 8 are designated by the same reference numerals. In addition, the description will be made using a flat membrane element. In the embodiment of FIGS. 1 and 2, the cross-sectional area of the lower half portion is enlarged downward by expanding the space between the left and right side plates 22, 22 of the lower half portion 21 of the air lift cylinder 11 downward in a skirt shape. As is apparent from FIG. 2, the left and right side plates 22 are side plates whose upper half portions 22 'close the flow path intervals 15 between the flat sheet membrane elements from the left and right when viewed from above, and the side plates 23 in the front-rear direction, The space in the front-rear direction between the lower half portions of 23 is constant. That is, as shown in FIG. 2, the side plates 23 in the front-rear direction,
In 23, the distance between the upper and lower halves is constant at A1, while the distance between the upper and lower halves of the left and right side plates 22, 22 is B1.
, The maximum distance between the lower ends of the lower halves 22, 22 is B2 which is larger than B1. The air lift cylinder is not limited to the rectangular cylinder as in the illustrated embodiment, but may be a cylinder. In this case, the membrane element having the maximum width is arranged in the diametrical direction in the cylinder, and the membrane elements whose width is gradually narrowed away from the membrane element having the maximum width are arranged. Further, the skirt portion of the air lift cylinder may be a cylinder.

【0007】図3の実施例では、エアリフト筒11の下
半部21の両側板22,22の間隔も、前後方向の側板
23,23の下半部間もスカート状に下向きに拡げて断
面積を下向きに拡大してある。従って、エアリフト筒1
1の下半部21の形態は截頭四角錐のフード形であり、
前後方向の側板23,23の上半部の間隔はA1 の一定
であるのに対し、下半部の下端間の間隔の最大はA1 よ
り大きいA2 、又、左右の側板22,22の上半部の間
隔はB1 の一定であるのに対し、その下半部の下端間の
間隔の最大はB1 より大きいB2 である。
In the embodiment of FIG. 3, the space between the side plates 22 and 22 of the lower half portion 21 of the air lift cylinder 11 and the space between the lower half portions of the side plates 23 and 23 in the front-rear direction are also expanded downward in a skirt shape to form a sectional area. Is enlarged downward. Therefore, the air lift cylinder 1
The shape of the lower half portion 21 of 1 is a hood shape of a truncated square pyramid,
The distance between the upper halves of the side plates 23, 23 in the front-rear direction is constant at A1, whereas the maximum distance between the lower ends of the lower halves is A2 which is greater than A1, and the upper halves of the left and right side plates 22, 22. The distance between the parts is constant at B1, while the maximum distance between the lower ends of the lower half is B2 which is greater than B1.

【0008】エアリフト筒の上半部と下半部の面積比
は、膜モジュールの平膜エレメント間の流路間隔の全断
面積と空塔断面積の比以下となるように設定する。夫々
の断面積を記号で表すと次のように示される。 エアリフト筒上半部断面積(最大):A1 *B1 エアリフト筒下半部断面積(最大):A1 *B2 (図
2) エアリフト筒下部断面積(最大): A2 *B2 (図
3) 膜モジュール空塔断面積(最大): A1 *B2 平膜モジュールの流路間隔断面積:nH*B1 ここで、A1 、B1 、A2 、B2 はエアリフト筒の上半
部、下半部の内寸最大値を示している。又便宜上、膜モ
ジュールの外寸をエアリフト筒の上半部の内寸として示
した。Hは平膜と平膜の間に形成される流路間隔の幅を
示す。nはこの流路の数を示す。エアリフト筒のスカー
ト部の面積比の関係は次のように表せる。
The area ratio of the upper half part and the lower half part of the air lift cylinder is set so as to be equal to or less than the ratio of the total cross-sectional area of the flow passage intervals between the flat membrane elements of the membrane module and the superficial cross-sectional area. The respective cross-sectional areas are represented by the following symbols. Air lift cylinder upper half cross-sectional area (maximum): A1 * B1 Air lift cylinder lower half cross-sectional area (maximum): A1 * B2 (Fig. 2) Air lift cylinder lower half cross-sectional area (maximum): A2 * B2 (Fig. 3) Membrane module Empty column cross-sectional area (maximum): A1 * B2 Flat membrane module flow path interval cross-sectional area: nH * B1 where A1, B1, A2, and B2 are the maximum internal dimensions of the upper and lower halves of the air lift cylinder. Is shown. Also, for convenience, the outer dimensions of the membrane module are shown as the inner dimensions of the upper half of the air lift cylinder. H represents the width of the flow path interval formed between the flat films. n indicates the number of this flow path. The relation of the area ratio of the skirt portion of the air lift cylinder can be expressed as follows.

【数1】 [Equation 1]

【0009】そして、図1,2、図3のいずれの実施例
も、エアリフト筒11の下端よりも50〜150mm下
の位置で、且つエアリフト筒の下端よりも外方に、エア
リフト筒内に下から空気を吹込む散気ノズル24を複
数、エアリフト筒の下端を囲むように配置してある。こ
の散気ノズル24は上端がヘッダー管25に接続した1
本宛の散気管26の下端に取付けられ、ブロワーBはヘ
ッダー管25の空気を供給する。勿論、この実施例のも
のに限らず、図8の従来例のような散気装置としても良
い。
In any of the embodiments shown in FIGS. 1, 2 and 3, the lower end of the air lift cylinder 11 is located 50 to 150 mm below the lower end of the air lift cylinder 11 and outside the lower end of the air lift cylinder. A plurality of air diffuser nozzles 24 for blowing air from are arranged so as to surround the lower end of the air lift cylinder. The air diffuser nozzle 24 has an upper end connected to the header pipe 25.
The blower B is attached to the lower end of the air diffusing pipe 26 for the book, and the blower B supplies the air in the header pipe 25. Of course, the air diffuser is not limited to that of this embodiment, and may be an air diffuser like the conventional example of FIG.

【0010】このように膜モジュールを上半部に収納し
たエアリフト筒の下半部をスカート状態に拡げ、且つ散
気ノズル24をその外周に設けることにより、エアリフ
ト循環流を減少させることなく、散気ノズルの着脱を容
易にできる。つまり、下端に散気ノズル24を取付けた
散気管26の上端をヘッダー管25から外し、1つ宛、
水面上に引き上げ、洗浄して詰りを除けばよい。
As described above, the lower half of the air lift cylinder having the membrane module housed in the upper half is expanded into a skirt state, and the air diffuser nozzle 24 is provided on the outer periphery of the air lift cylinder, so that the air lift circulation flow is not reduced and the air lift circulation flow is reduced. The air nozzle can be easily attached and detached. That is, the upper end of the air diffuser 26 having the air diffuser nozzle 24 attached to the lower end is removed from the header pipe 25,
All you have to do is lift it above the surface of the water and wash it to remove the clogging.

【0011】又、エアリフト筒内部の循環流は、筒内部
の空気吹込み量と散気水深の関係で次のように表せる。 Uo ∝(h・Ug )n ここでUo :エアリフト筒内部上昇流速 Ug :エアリフト筒内部空気吹込み速度 h :散気水深 しかし、平膜エレメント間の流路間隔のクロスフロー流
速Umは、単純に膜モジュールの流路間隔の全断面積と
空塔断面積に逆比例するのではなく、流路間隔の抵抗の
ために面積減少比の逆数以上とはならない。本発明の実
施例によればエアリフト筒の下半部をスカート状態に拡
げることにより、スカートの上部即ち平膜モジュールの
下部のUo と同じ空気量まで高めることができる。ここ
で、この面積比を
The circulating flow inside the air lift cylinder can be expressed as follows in terms of the relationship between the amount of air blown inside the cylinder and the diffused water depth. Uo ∝ (h · Ug) n where Uo: Air lift cylinder internal rising velocity Ug: Air lift cylinder internal air blowing velocity h: Diffused water depth However, the cross flow velocity Um of the flow passage between flat membrane elements is simply It is not inversely proportional to the total cross-sectional area of the flow passage of the membrane module and the superficial cross-sectional area, and is not more than the reciprocal of the area reduction ratio due to the resistance of the flow passage. According to the embodiment of the present invention, by expanding the lower half portion of the air lift tube into the skirt state, the air amount can be increased to the same amount as Uo in the upper portion of the skirt, that is, the lower portion of the flat sheet membrane module. Here, this area ratio

【数2】 とすることにより、流路間隔の抵抗による流速低下分を
補ってクロスフロー流速Um を与えることができる。
[Equation 2] By this, the cross flow velocity Um can be provided by compensating for the flow velocity decrease due to the resistance of the flow passage interval.

【0012】更に、前述したようにエアリフト筒下部よ
り50〜150mm下の位置で、且つ散気ノズルをその
外周に設けることにより、散気ノズルの着脱を容易にで
きる。散気ノズルはエアリフト塔内部に位置させないの
で、散気ノズルの配管26の上げ下げにより槽外に容易
に取出すことができる。
Further, as described above, the air diffuser nozzle can be easily attached and detached by providing the air diffuser nozzle at a position 50 to 150 mm below the lower portion of the air lift cylinder and on the outer periphery thereof. Since the diffuser nozzle is not located inside the air lift tower, it can be easily taken out of the tank by raising and lowering the pipe 26 of the diffuser nozzle.

【0013】又、エアリフト筒下部がエアリフト循環流
の折返し部分となるが、下半部をスカート状に拡げるこ
とにより、エアリフト筒下部の循環流速を増加させるこ
とができる。このため、エアリフト筒の外周の散気ノズ
ルから吹込まれる空気を、その循環流速に乗せて効果的
にエアリフト筒内部に送り込むことができる。つまり、
エアリフト筒下部の循環流速が最大となるエアリフト筒
下部より50〜150mm下に散気装置を設けることに
より、散気ノズルからの空気を効果的に循環流速に乗せ
てエアリフト筒の内部に送り込むことができる。
Further, the lower portion of the air lift cylinder serves as a folded-back portion of the air lift circulation flow, but the circulation velocity of the lower portion of the air lift cylinder can be increased by expanding the lower half portion in a skirt shape. For this reason, the air blown from the air diffusion nozzles on the outer periphery of the air lift cylinder can be effectively sent into the air lift cylinder while being added to the circulation flow velocity. That is,
By providing an air diffuser 50 to 150 mm below the lower portion of the air lift cylinder at which the circulation speed of the lower portion of the air lift cylinder is maximized, the air from the diffuser nozzle can be effectively put on the circulation flow speed and sent into the inside of the air lift cylinder. it can.

【0014】図4,5に示した請求項2の実施例では、
エアリフト筒11は上半部の両側面に開放部27,27
を有し、膜モジュールの平膜エレメント間の前後方向の
流路間隔15は上記開放部27,27と連通する。従っ
て、エアリフト筒の、膜モジュールを収容した上半部は
前後方向の側板28,28を有するのみであり、膜モジ
ュールを構成する複数の平膜エレメントはこの側板2
8,28間に渡設した支持棒で支持される。
In the embodiment of claim 2 shown in FIGS. 4 and 5,
The air lift cylinder 11 has open portions 27, 27 on both side surfaces of the upper half portion.
And the flow path interval 15 in the front-back direction between the flat sheet membrane elements of the membrane module communicates with the open portions 27, 27. Therefore, the upper half part of the air lift cylinder that accommodates the membrane module only has the side plates 28, 28 in the front-rear direction, and the plurality of flat membrane elements constituting the membrane module are the side plates 2.
It is supported by a support rod provided between 8 and 28.

【0015】このように膜モジュールを収容したエアリ
フト筒の上半部の両側面に、平膜エレメント間の流路間
隔15と連通する開放部27,27を設けると、その流
路間隔15を上昇するエアリフト上向流は上記開放部2
7,27からエアリフト筒の外に出て循環することがで
きる。従って、エアリフト筒の上端を水面Wの直下に位
置させ、従来の装置がエアリフト循環流を生じさせるた
めに必要としたフリーゾーンを廃止することができる。
つまり、フリーゾーンは、エアリフト筒内を上向流した
水流をエアリフト筒の外で下向流に転向してエアリフト
循環流を生じさせるために必要なものであり、従来装置
においてエアリフト筒の上端を水面の直下に位置させて
フリーゾーンを廃止すると、エアリフト循環流を生じさ
せるにはエアリフト筒内を上向流する水流を水面以上に
持ち上げねばならず、それには多大な空気量を必要と
し、エネルギーの消費が大である。しかしながら、この
発明のようにエアリフト筒の上半部の両側面に平膜エレ
メント間の流路間隔15と連通する開放部27を設ける
と、エアリフト筒内の上向流は上記開放部から外に出て
エアリフト循環流を形成するため、フリーゾーンを廃止
してエアリフト筒の上端を水面の直下に位置させること
ができ、これにより膜モジュールの点検が容易に行え
る。
When the open portions 27, 27 communicating with the flow passage interval 15 between the flat membrane elements are provided on both side surfaces of the upper half of the air lift cylinder containing the membrane module as described above, the flow passage interval 15 is raised. The upward flow of the air lift is above the opening 2
The air can be circulated outside the air lift cylinder from 7, 27. Therefore, the upper end of the air lift cylinder can be located directly below the water surface W, and the free zone required by the conventional device to generate the air lift circulation flow can be eliminated.
In other words, the free zone is necessary to turn the upward flow of water in the air lift cylinder into a downward flow outside the air lift cylinder to generate an air lift circulation flow. If the free zone is located just below the water surface and the free zone is abolished, in order to generate the air lift circulation flow, the water flow that flows upward in the air lift cylinder must be raised above the water surface, which requires a large amount of air and energy. Consumption is large. However, if the open portions 27 communicating with the flow path intervals 15 between the flat sheet membrane elements are provided on both side surfaces of the upper half of the air lift cylinder as in the present invention, the upward flow in the air lift cylinder is outward from the open portions. Since the air lift circulation flow is generated, the free zone can be eliminated and the upper end of the air lift cylinder can be positioned immediately below the water surface, which facilitates inspection of the membrane module.

【0016】更に、流路間隔15を上昇するエアリフト
上向流は、流路間隔内で開放部27,27に向かって向
きを変えるため、高まった流速と、向きを変える乱流と
によって平膜エレメントの膜面に付着する汚れを効果的
に剥離する。
Further, the upward flow of the air lift rising in the flow path interval 15 changes its direction toward the open portions 27, 27 within the flow path interval, so that the flat membrane is formed by the increased flow velocity and the turbulent flow that changes the direction. Effectively removes dirt adhering to the film surface of the element.

【0017】図6は、請求項1で述べたように、エアリ
フト筒11の下半部21を下向きにスカート状に拡げて
断面積を下向きに拡大し、散気ノズル24をエアリフト
筒11の下端よりも下の外周に設け、膜モジュール13
を収容した上半部の両側面に、請求項2で述べたように
平膜エレメント間の流路間隔15と連通する開放部2
7,27を設けた実施例である。この実施例は請求項1
の特長であるエアリフト循環流を効率よく発生させると
同時に、エアリフト筒下部の循環流速を増加させること
ができるという効果と、請求項2の特長である水面直下
に膜モジュールを配置して効率よく循環流を発生すると
共に、乱流を発生し、膜面の汚れを効果的に剥離できる
という効果とを兼備する。
In FIG. 6, as described in claim 1, the lower half portion 21 of the air lift cylinder 11 is expanded downward in a skirt shape to expand the cross-sectional area downward, and the aeration nozzle 24 is moved to the lower end of the air lift cylinder 11. Provided on the outer periphery below the membrane module 13
The open part 2 communicating with the flow path gap 15 between the flat sheet membrane elements as described in claim 2 on both side surfaces of the upper half part accommodating the
This is an example in which 7, 27 are provided. This embodiment is claim 1.
The effect of being able to efficiently generate the air lift circulation flow which is the feature of the above, and at the same time, to increase the circulation flow velocity of the lower part of the air lift cylinder, and the feature of claim 2 are that the membrane module is arranged just under the water surface for efficient circulation. In addition to generating a flow, a turbulent flow is generated, and dirt on the film surface can be effectively separated.

【0018】図示の実施例では膜エレメントを図7
(イ)に示す平膜エレメントで説明したが、膜エレメン
トは平膜エレメントに限らず、図7(ロ)に示すように
左右の集水路兼用スペーサ1,1の間に多数本の中空糸
膜や管状膜2,2を横方向に張設して矩形状にしたもの
でも良い。
In the illustrated embodiment, the membrane element is shown in FIG.
Although the flat membrane element shown in (a) has been described, the membrane element is not limited to the flat membrane element, and as shown in FIG. 7B, a large number of hollow fiber membranes are provided between the left and right spacers 1 and 1 which also serve as water collecting channels. Alternatively, the tubular membranes 2 and 2 may be laterally stretched to form a rectangular shape.

【0019】[0019]

【発明の効果】請求項1の発明により膜モジュールが収
納されるエアリフト筒の下部をスカート状態に拡げるこ
とにより、エアリフト循環流を増加させ、膜面の汚れを
効果的に剥離することができる。又、請求項2の発明に
より水面直下に膜モジュールを配置して効率よく循環流
を発生できると共に、乱流を発生し、膜面の汚れを効果
的に剥離することができる。
According to the first aspect of the present invention, by expanding the lower portion of the air lift cylinder in which the membrane module is housed into the skirt state, the air lift circulation flow can be increased and the dirt on the membrane surface can be effectively removed. According to the second aspect of the present invention, the membrane module can be arranged immediately below the water surface to efficiently generate a circulation flow, and generate a turbulent flow to effectively remove dirt on the membrane surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the invention of claim 1;

【図2】図1のエアリフト筒を上から見た平面図であ
る。
FIG. 2 is a plan view of the air lift cylinder of FIG. 1 viewed from above.

【図3】請求項1の発明の他の一実施例のエアリフト筒
を上から見た平面図である。
FIG. 3 is a plan view of an air lift cylinder of another embodiment of the invention of claim 1 as seen from above.

【図4】請求項2の発明の一実施例の側面図である。FIG. 4 is a side view of an embodiment of the invention of claim 2;

【図5】図4の正面図である。FIG. 5 is a front view of FIG. 4;

【図6】請求項2の発明の他の一実施例の正面図であ
る。
FIG. 6 is a front view of another embodiment of the invention of claim 2;

【図7】従来の装置の断面図である。FIG. 7 is a cross-sectional view of a conventional device.

【図8】(イ)は平膜エレメントの斜視図である。
(ロ)は中空糸膜や管状膜による膜エレメントの斜視図
である。
FIG. 8A is a perspective view of a flat sheet membrane element.
(B) is a perspective view of a membrane element including a hollow fiber membrane or a tubular membrane.

【符号の説明】[Explanation of symbols]

10 処理槽 11 エアリフト筒 12 平膜エレメント 13 膜モジュール 15 流路間隔 18 フリーゾーン 21 エアリフト筒の下半部 22 エアリフト筒の下半部の左右の側板 23 エアリフト筒の下半部の前後の側板 24 散気ノズル 27 開放部 28 エアリフト筒の上半部の前後の側板 10 Treatment Tank 11 Air Lift Cylinder 12 Flat Membrane Element 13 Membrane Module 15 Channel Distance 18 Free Zone 21 Lower Half of Air Lift Cylinder 22 Left and Right Side Plates of Lower Half of Air Lift Cylinder 23 Side Plates Front and Back of Lower Half of Air Lift Cylinder 24 Air diffuser 27 Open part 28 Front and rear side plates of the upper half of the air lift cylinder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 処理槽内の水中に、下から気泡が吹込ま
れるエアリフト筒を立設し、該筒内の上部に、透過水の
取出口を有する複数枚の膜エレメントを前後方向に流路
間隔を保って一列に立て並べた膜モジュールを配置した
浸漬型膜分離装置において、エアリフト筒の下部をスカ
ート状に拡げてその断面積を下向きに拡大したことを特
徴とする浸漬型膜分離装置。
1. An air lift cylinder in which air bubbles are blown from below is erected in water in a treatment tank, and a plurality of membrane elements having permeated water outlets are flown in the front-back direction in the upper part of the cylinder. An immersion-type membrane separation device in which membrane modules arranged in a row with a road spacing are arranged, wherein the lower part of an air lift cylinder is expanded in a skirt shape and its cross-sectional area is expanded downward. .
【請求項2】 処理槽内の水中に、下から気泡が吹込ま
れるエアリフト筒を立設し、該筒内の上部に、透過水の
取出口を有する複数枚の膜エレメントを前後方向に流路
間隔を保って一列に立て並べた膜モジュールを配置した
浸漬型膜分離装置において、膜モジュールが内部に配置
されたエアリフト筒の上部の両側面に、膜モジュールの
膜エレメントの前後方向の流路間隔と連通する開放部を
設けたことを特徴とする浸漬型膜分離装置。
2. An air lift cylinder in which air bubbles are blown from below is erected in the water in the treatment tank, and a plurality of membrane elements having permeated water outlets are flown in the front-back direction in the upper part of the cylinder. In a submerged membrane separation device in which membrane modules are arranged in a row with a space between them, in the both side surfaces of the upper part of the air lift tube in which the membrane module is arranged, the flow path in the front-back direction of the membrane element of the membrane module. An immersion-type membrane separation device, characterized in that an opening portion communicating with the space is provided.
JP11409495A 1995-04-17 1995-04-17 Immersion membrane separator Expired - Fee Related JP3849151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11409495A JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11409495A JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Publications (2)

Publication Number Publication Date
JPH08281083A true JPH08281083A (en) 1996-10-29
JP3849151B2 JP3849151B2 (en) 2006-11-22

Family

ID=14628963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11409495A Expired - Fee Related JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Country Status (1)

Country Link
JP (1) JP3849151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332380A (en) * 1997-12-16 1999-06-23 Sumitomo Heavy Industries Cleaning membrane filters
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332380A (en) * 1997-12-16 1999-06-23 Sumitomo Heavy Industries Cleaning membrane filters
GB2332380B (en) * 1997-12-16 2001-04-25 Sumitomo Heavy Industries Membrane filter apparatus and method for operating the membrane filter apparatus
US6284135B1 (en) * 1997-12-16 2001-09-04 Sumitomo Heavy Industries, Ltd. Membrane filter apparatus with gas discharge cleaning means
US6402955B2 (en) 1997-12-16 2002-06-11 Sumitomo Heavy Industries, Ltd. Method for operating a membrane filter having a gas discharge cleaning means
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof

Also Published As

Publication number Publication date
JP3849151B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US5192456A (en) Apparatus for treating activated sludge and method of cleaning it
JPH1085565A (en) Membrane separator
US20090026139A1 (en) Submerged cross-flow filtration
JP3349015B2 (en) Filtration device
JP5308028B2 (en) Cleaning method for air diffuser
JP2004008981A (en) Membrane separation apparatus
KR960033528A (en) Membrane apparatus and membrane treatment apparatus
JPH04334530A (en) Filter apparatus
JP3536610B2 (en) Immersion type membrane filtration device
JP3867481B2 (en) Immersion flat membrane separator
JPH08281083A (en) Immersion type membrane separation device
JP4996379B2 (en) Filtration device
JP4397334B2 (en) Immersion membrane separator
JPH06218247A (en) Membrane separation device
JP3219579B2 (en) Membrane module
JP2001047046A (en) Membrane separation type water treatment apparatus
JP2004121905A (en) Immersion type membrane separation apparatus
JP2925831B2 (en) Filtration device
JP2003144864A (en) Immersing type membrane filtering device
JPH08332358A (en) Membrane separator
US4001855A (en) Rapid-flow washer for photographic sheet material
JP2000051885A (en) Activated sludge treatment apparatus
JPH07313851A (en) Device for suppressing deposit on membrane face in membrane separator
JP2764800B2 (en) Wet dust collector
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090908

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100908

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110908

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees