JP3849151B2 - Immersion membrane separator - Google Patents

Immersion membrane separator Download PDF

Info

Publication number
JP3849151B2
JP3849151B2 JP11409495A JP11409495A JP3849151B2 JP 3849151 B2 JP3849151 B2 JP 3849151B2 JP 11409495 A JP11409495 A JP 11409495A JP 11409495 A JP11409495 A JP 11409495A JP 3849151 B2 JP3849151 B2 JP 3849151B2
Authority
JP
Japan
Prior art keywords
air lift
lift cylinder
diffuser
air
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11409495A
Other languages
Japanese (ja)
Other versions
JPH08281083A (en
Inventor
繁樹 沢田
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11409495A priority Critical patent/JP3849151B2/en
Publication of JPH08281083A publication Critical patent/JPH08281083A/en
Application granted granted Critical
Publication of JP3849151B2 publication Critical patent/JP3849151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Description

【0001】
【産業上の利用分野】
この発明は、生物反応槽や膜浸漬槽などの処理槽内の水中に、透過水の取出口を有する複数枚の中空糸膜、管状膜あるいは平膜からなる膜エレメントを前後方向に間隔を保って一列に立て並べた膜モジュールを配置し、浸漬した膜モジュールの水深に基づく水頭差や、吸引ポンプによる吸引によって低エネルギーで膜濾過を行い、透過水を得る浸漬型膜分離装置に関する。
【0002】
【従来の技術】
図8は原水が供給される処理槽10の水中にエアリフト筒11を立設し、エアリフト筒の上半部内に透過水の取出口を有する複数枚の平膜エレメント12(図7イ)を前後方向に流路間隔を保って一列に立て並べた膜モジュール13を配置した従来の浸漬型膜分離装置を示す。エアリフト筒の内部下方にはブロアBから空気が供給される散気装置14が配置してある。エアリフト筒11は断面形状が四角形で、上端から下端まで断面積は一定である。散気装置14から散気することによってエアリフト筒内の膜モジュールを構成する平膜エレメント12の相対向した膜面の流路間隔15にはエアリフトによるクロスフロー上昇流が生じ、膜面にゲル状の付着物が生成するのを防止しながら膜を透過する透過水を平膜エレメントの内部に得、この透過水を各平膜エレメントの取出口16に接続したヘッダー管17を介しポンプPで吸引して採水する。
【0003】
【発明が解決しようとする課題】
しかしながら、原水が高分子状の溶質と同時に、多量の懸濁物を含んでいる場合は、運転を長時間継続すると膜面及び流路間隔が閉塞することがあるので、定期的に洗浄するか、膜モジュールを交換するために処理槽の外に取出すことが必要であり、そのためにはエアリフト筒内の膜モジュールを取外し可能に取付けるか、エアリフト筒ごと膜モジュールを処理槽の外に取出さねばならず、非常に手数がかゝると共に、複雑な構造を要する。
【0004】
更に、エアリフト筒内を上向流した原水を循環流とするためエアリフト筒の上端と処理槽の水面Wとの間にエアリフト筒の上端から出た原水の流れを下向きに折返すためのフリーゾーン18を設けねばならない。このため、水面Wの下方に浸漬した膜モジュールを点検するには、その都度、槽内の水位を下げるか、膜モジュールを引上げる必要があった。
【0005】
【課題を解決するための手段】
本発明は上述した従来装置の問題点を解消するために開発されたのであって、請求項1の発明は、処理槽内の水中に、散気管の下端に取り付けられた散気ノズルにより下から気泡が吹込まれるエアリフト筒を立設し、該筒内の上部に、透過水の取出口を有する複数枚の膜エレメントを前後方向に流路間隔を保って一列に立て並べた膜モジュールを配置した浸漬型膜分離装置において、エアリフト筒の下部をスカート状に拡げてその断面積を下向きに拡大し、エアリフト筒の下端よりも外方且つ下の位置において該エアリフト筒を囲むように前記散気ノズルを複数配置し散気ノズルを取り付けた前記散気管を垂直に引上げ可能に配設したことを特徴とする。又、請求項2の発明は、処理槽内の水中に、散気管の下端に取り付けられた散気ノズルにより下から気泡が吹込まれるエアリフト筒を立設し、該筒内の上部に、透過水の取出口を有する複数枚の膜エレメントを前後方向に流路間隔を保って一列に立て並べた膜モジュールを配置した浸漬型膜分離装置において、膜モジュールが内部に配置されたエアリフト筒の上部の側面であって、膜エレメントが立て並べられた列の方向に対して直角となる方向の両側に、膜モジュールの膜エレメントの前後方向の流路間隔をエアリフト筒外の処理槽内の水中に連通する開放部を設けるとともに、エアリフト筒の下部をスカート状に拡げてその断面積を下向きに拡大し、エアリフト筒の下端よりも外方且つ下の位置において該エアリフト筒を囲むように前記散気ノズルを複数配置し散気ノズルを取り付けた前記散気管を垂直に引上げ可能に配設したことを特徴とする。又、請求項3の発明は、散気ノズルを上記エアリフト筒の下端より50〜150mm下の位置に設けたことを特徴とする。
【0006】
【実施例】
図1,2,3は、本発明の請求項1の実施例、図4,5は本発明において、エアリフト筒の上半部の側面に、膜モジュールの膜エレメントの前後方向の流路間隔をエアリフト筒外の処理槽内の水中に連通する開放部を設けた場合の説明図、図6は本発明の請求項2の実施例であって、図8の従来装置と同じ構成要素には同じ符号を付してある。又、平膜エレメントを用いたもので説明する。図1,2の実施例ではエアリフト筒11の下半部21の左右の側板22,22の間隔を下向きにスカート状に拡げることによって、下半部の断面積を下向きに拡大してある。この左右の側板22は、図2で明らかなように、上から見ると、その上半部22´が平膜エレメント間の流路間隔15を左右から閉じる側板であり、前後方向の側板23,23の下半部間の前後方向の間隔は一定である。つまり、図2に示したように前後方向の側板23,23は上半部、下半部ともその間隔はA1 で一定であるのに対し、左右の側板22,22の上半部の間隔はB1 、下半部22,22の下端間の間隔の最大はB1 よりも大きいB2 になっている。尚、エアリフト筒は図示の実施例のような角形筒に限らず、円筒でもよい。この場合は円筒内の直径方向に最大幅の膜エレメントを配置し、この最大幅の膜エレメントから離れるにしたがって順次幅を狭くした膜エレメントを配列する。又、エアリフト筒のスカート部も円筒でもよい。
【0007】
図3の実施例では、エアリフト筒11の下半部21の両側板22,22の間隔も、前後方向の側板23,23の下半部間もスカート状に下向きに拡げて断面積を下向きに拡大してある。従って、エアリフト筒11の下半部21の形態は截頭四角錐のフード形であり、前後方向の側板23,23の上半部の間隔はA1 の一定であるのに対し、下半部の下端間の間隔の最大はA1 より大きいA2 、又、左右の側板22,22の上半部の間隔はB1 の一定であるのに対し、その下半部の下端間の間隔の最大はB1 より大きいB2 である。
【0008】
エアリフト筒の上半部と下半部の面積比は、膜モジュールの平膜エレメント間の流路間隔の全断面積と空塔断面積の比以下となるように設定する。
夫々の断面積を記号で表すと次のように示される。
エアリフト筒上半部断面積(最大):A1 *B1
エアリフト筒下半部断面積(最大):A1 *B2 (図2)
エアリフト筒下部断面積(最大): A2 *B2 (図3)
膜モジュール空塔断面積(最大): A1 *B2
平膜モジュールの流路間隔断面積:nH*B1
ここで、A1 、B1 、A2 、B2 はエアリフト筒の上半部、下半部の内寸最大値を示している。又便宜上、膜モジュールの外寸をエアリフト筒の上半部の内寸として示した。Hは平膜と平膜の間に形成される流路間隔の幅を示す。nはこの流路の数を示す。
エアリフト筒のスカート部の面積比の関係は次のように表せる。
【数1】

Figure 0003849151
【0009】
そして、図1、図2、図3のいずれの実施例も、エアリフト筒11の下端よりも50〜150mm下の位置で、且つエアリフト筒の下端よりも外方に、エアリフト筒内に下から空気を吹込む散気ノズル24を複数、エアリフト筒の下端を囲むように配置してある。この散気ノズル24は上端がヘッダー管25に接続した1本宛の散気管26の下端に取付けられ、ブロワーBはヘッダー管25の空気を供給する。勿論、これらの実施例のものに限らず、図8の従来例のような散気装置としても良い。
【0010】
このように膜モジュールを上半部に収納したエアリフト筒の下半部をスカート状態に拡げ、且つ散気ノズル24をその外周に設けることにより、エアリフト循環流を減少させることなく、散気ノズルの着脱を容易にできる。つまり、下端に散気ノズル24を取付けた散気管26の上端をヘッダー管25から外し、1つ宛、水面上に引き上げ、洗浄して詰りを除けばよい。
【0011】
又、エアリフト筒内部の循環流は、筒内部の空気吹込み量と散気水深の関係で次のように表せる。
Uo ∝(h・Ug )n
ここでUo :エアリフト筒内部上昇流速
Ug :エアリフト筒内部空気吹込み速度
h :散気水深
しかし、平膜エレメント間の流路間隔のクロスフロー流速Umは、単純に膜モジュールの流路間隔の全断面積と空塔断面積に逆比例するのではなく、流路間隔の抵抗のために面積減少比の逆数以上とはならない。
本発明の実施例によればエアリフト筒の下半部をスカート状態に拡げることにより、スカートの上部即ち平膜モジュールの下部のUo と同じ空気量まで高めることができる。
ここで、この面積比を
【数2】
Figure 0003849151
とすることにより、流路間隔の抵抗による流速低下分を補ってクロスフロー流速Um を与えることができる。
【0012】
更に、前述したようにエアリフト筒下部より50〜150mm下の位置で、且つ散気ノズルをその外周に設けることにより、散気ノズルの着脱を容易にできる。散気ノズルはエアリフト塔内部に位置させないので、散気ノズルの配管26の上げ下げにより槽外に容易に取出すことができる。
【0013】
又、エアリフト筒下部がエアリフト循環流の折返し部分となるが、下半部をスカート状に拡げることにより、エアリフト筒下部の循環流速を増加させることができる。
このため、エアリフト筒の外周の散気ノズルから吹込まれる空気を、その循環流速に乗せて効果的にエアリフト筒内部に送り込むことができる。つまり、エアリフト筒下部の循環流速が最大となるエアリフト筒下部より50〜150mm下に散気装置を設けることにより、散気ノズルからの空気を効果的に循環流速に乗せてエアリフト筒の内部に送り込むことができる。
【0014】
図4,5に示した説明図では、アリフト筒11は上半部の両側面に開放部27,27を有し、膜モジュールの平膜エレメント間の前後方向の流路間隔15は上記開放部27,27と連通する。従って、エアリフト筒の、膜モジュールを収容した上半部は前後方向の側板28,28を有するのみであり、膜モジュールを構成する複数の平膜エレメントはこの側板28,28間に渡設した支持棒で支持される。
【0015】
このように膜モジュールを収容したエアリフト筒の上半部の両側面に、平膜エレメント間の流路間隔15と連通する開放部27,27を設けると、その流路間隔15を上昇するエアリフト上向流は上記開放部27,27からエアリフト筒の外に出て循環することができる。従って、エアリフト筒の上端を水面Wの直下に位置させ、従来の装置がエアリフト循環流を生じさせるために必要としたフリーゾーンを廃止することができる。つまり、フリーゾーンは、エアリフト筒内を上向流した水流をエアリフト筒の外で下向流に転向してエアリフト循環流を生じさせるために必要なものであり、従来装置においてエアリフト筒の上端を水面の直下に位置させてフリーゾーンを廃止すると、エアリフト循環流を生じさせるにはエアリフト筒内を上向流する水流を水面以上に持ち上げねばならず、それには多大な空気量を必要とし、エネルギーの消費が大である。しかしながら、この発明のようにエアリフト筒の上半部の両側面に平膜エレメント間の流路間隔15と連通する開放部27を設けると、エアリフト筒内の上向流は上記開放部から外に出てエアリフト循環流を形成するため、フリーゾーンを廃止してエアリフト筒の上端を水面の直下に位置させることができ、これにより膜モジュールの点検が容易に行える。
【0016】
更に、流路間隔15を上昇するエアリフト上向流は、流路間隔内で開放部27,27に向かって向きを変えるため、高まった流速と、向きを変える乱流とによって平膜エレメントの膜面に付着する汚れを効果的に剥離する。
【0017】
図6は、求項2に記載されているように、エアリフト筒11の下半部21を下向きにスカート状に拡げて断面積を下向きに拡大し、散気ノズル24をエアリフト筒11の下端よりも下の外周に設け、膜モジュール13を収容した上半部の両側面に、膜エレメント間の流路間隔15と連通する開放部27,27を設けた実施例である。この実施例は請求項の特長であるエアリフト循環流を効率よく発生させると同時に、エアリフト筒下部の循環流速を増加させることができるという効果と、面直下に膜モジュールを配置して効率よく循環流を発生すると共に、乱流を発生し、膜面の汚れを効果的に剥離できるという効果とを兼備する。
【0018】
図示の実施例では膜エレメントを図7(イ)に示す平膜エレメントで説明したが、膜エレメントは平膜エレメントに限らず、図7(ロ)に示すように左右の集水路兼用スペーサ1,1の間に多数本の中空糸膜や管状膜2,2を横方向に張設して矩形状にしたものでも良い。
【0019】
【発明の効果】
請求項1の発明により膜モジュールが収納されるエアリフト筒の下部をスカート状態に拡げることにより、エアリフト循環流を増加させ、膜面の汚れを効果的に剥離することができる。
又、請求項2の発明により水面直下に膜モジュールを配置して効率よく循環流を発生できると共に、乱流を発生し、膜面の汚れを効果的に剥離することができる。
【図面の簡単な説明】
【図1】 請求項1の発明の一実施例の断面図である。
【図2】 図1のエアリフト筒を上から見た平面図である。
【図3】 請求項1の発明の他の一実施例のエアリフト筒を上から見た平面図である。
【図4】 本発明において、エアリフト筒の上半部の側面に、膜モジュールの膜エレメントの前後方向の流路間隔をエアリフト筒外の処理槽内の水中に連通する開放部を設けた場合の側面図である。
【図5】 図4の正面図である。
【図6】 請求項2の発明の一実施例の正面図である。
【図7】 従来の装置の断面図である。
【図8】 (イ)は平膜エレメントの斜視図である。
(ロ)は中空糸膜や管状膜による膜エレメントの斜視図である。
【符号の説明】
10 処理槽
11 エアリフト筒
12 平膜エレメント
13 膜モジュール
15 流路間隔
18 フリーゾーン
21 エアリフト筒の下半部
22 エアリフト筒の下半部の左右の側板
23 エアリフト筒の下半部の前後の側板
24 散気ノズル
27 開放部
28 エアリフト筒の上半部の前後の側板[0001]
[Industrial application fields]
In this invention, a plurality of hollow fiber membranes, tubular membranes or flat membrane membrane elements having outlets for permeated water are kept in the front-rear direction in water in a treatment tank such as a biological reaction tank or a membrane immersion tank. The present invention relates to a submerged membrane separation apparatus in which permeated water is obtained by arranging membrane modules arranged in a row and performing membrane filtration with low energy by a water head difference based on the water depth of the immersed membrane module or suction by a suction pump.
[0002]
[Prior art]
FIG. 8 shows a plurality of flat membrane elements 12 (FIG. 7A) which are provided with an air lift cylinder 11 standing in water in a treatment tank 10 to which raw water is supplied, and having a permeate outlet in the upper half of the air lift cylinder. 1 shows a conventional submerged membrane separation apparatus in which membrane modules 13 are arranged in a line while maintaining a channel interval in the direction. An air diffuser 14 to which air is supplied from the blower B is disposed below the air lift cylinder. The air lift cylinder 11 has a square cross-sectional shape and a constant cross-sectional area from the upper end to the lower end. The air flow from the air diffuser 14 causes a cross flow upward flow due to the air lift to occur in the flow path interval 15 between the opposed membrane surfaces of the flat membrane element 12 constituting the membrane module in the air lift cylinder, and the membrane surface is gelled. The permeated water that permeates the membrane while preventing the formation of deposits is obtained inside the flat membrane element, and this permeated water is sucked by the pump P through the header pipe 17 connected to the outlet 16 of each flat membrane element. Water.
[0003]
[Problems to be solved by the invention]
However, if the raw water contains a large amount of suspension at the same time as the polymer solute, the membrane surface and the channel interval may be blocked if the operation is continued for a long time. In order to replace the membrane module, it is necessary to remove the membrane module from the treatment tank. To do so, the membrane module in the air lift cylinder must be removably attached or the membrane module together with the air lift cylinder must be removed from the treatment tank. In addition, it is very troublesome and requires a complicated structure.
[0004]
Furthermore, a free zone for turning back the flow of raw water from the upper end of the air lift cylinder between the upper end of the air lift cylinder and the water surface W of the treatment tank in order to use the raw water flowing upward in the air lift cylinder as a circulation flow 18 must be provided. For this reason, in order to check the membrane module immersed under the water surface W, it was necessary to lower the water level in the tank or to pull up the membrane module each time.
[0005]
[Means for Solving the Problems]
The present invention was developed in order to solve the above-mentioned problems of the conventional apparatus. The invention of claim 1 is provided in the water in the treatment tank from below by an air diffuser nozzle attached to the lower end of the air diffuser. An air lift cylinder into which bubbles are blown is erected, and a membrane module in which a plurality of membrane elements having permeate outlets are arranged in a line in the front-rear direction with a space in the flow path is arranged in the upper part of the cylinder In the submerged membrane separation apparatus, the lower part of the air lift cylinder is expanded in a skirt shape, the cross-sectional area thereof is expanded downward , and the air diffuser is enclosed so as to surround the air lift cylinder at a position outward and below the lower end of the air lift cylinder. the nozzle plurality placed, characterized in that disposed vertically allows pulling the diffuser tube fitted with a diffuser nozzle. The invention of claim 2 further comprises an air lift cylinder in which bubbles are blown from below by a diffuser nozzle attached to the lower end of the diffuser pipe in the water in the treatment tank. In a submerged membrane separation apparatus having a membrane module in which a plurality of membrane elements having water outlets are arranged in a line in the front-rear direction while maintaining a channel interval, the upper part of the air lift cylinder in which the membrane module is arranged On both sides of the membrane module in the direction perpendicular to the direction of the row in which the membrane elements are arranged side by side, the flow path spacing in the front-rear direction of the membrane elements of the membrane module is placed in the water in the treatment tank outside the air lift cylinder. provided with an opening portion communicating to expand the cross-sectional area downwardly expanding the lower portion of the air lift tube like a skirt, said to surround the air lift tube in outwardly and positioned below the lower end of the air lift cylinder The air nozzle is more disposed, characterized in that disposed vertically allows pulling the diffuser tube fitted with a diffuser nozzle. The invention of claim 3 is characterized in that the aeration nozzle is provided at a position 50 to 150 mm below the lower end of the air lift cylinder.
[0006]
【Example】
1, 2 and 3 show the embodiment of claim 1 of the present invention , and FIGS. 4 and 5 show the flow path interval in the front-rear direction of the membrane element of the membrane module on the side surface of the upper half of the air lift cylinder in the present invention . FIG. 6 is an embodiment of the present invention according to claim 2 in which an open portion communicating with the water in the treatment tank outside the air lift cylinder is provided, and the same components as those of the conventional apparatus of FIG. 8 are the same. The code | symbol is attached | subjected. The explanation will be made using a flat membrane element. In the embodiment of FIGS. 1 and 2 , the cross-sectional area of the lower half is expanded downward by widening the gap between the left and right side plates 22 and 22 of the lower half 21 of the air lift cylinder 11 downward in a skirt shape. As is apparent from FIG. 2, the left and right side plates 22 are side plates whose upper half 22 'closes the flow path interval 15 between the flat membrane elements from the left and right when viewed from above. The space | interval of the front-back direction between the lower half parts of 23 is constant. That is, as shown in FIG. 2, the distance between the upper and lower side plates 23, 23 is constant at A1 in the upper half and the lower half, whereas the distance between the upper half of the left and right side plates 22, 22 is The maximum distance between the lower ends of B1 and the lower half portions 22, 22 is B2, which is larger than B1. The air lift cylinder is not limited to the square cylinder as in the illustrated embodiment , and may be a cylinder. In this case, the membrane elements having the maximum width are arranged in the diameter direction in the cylinder, and the membrane elements whose widths are sequentially reduced as they are separated from the membrane elements having the maximum width. The skirt portion of the air lift cylinder may also be a cylinder.
[0007]
In the embodiment of FIG. 3 , the distance between the side plates 22 and 22 of the lower half 21 of the air lift cylinder 11 is also expanded downward in the skirt shape between the lower half portions of the side plates 23 and 23 in the front-rear direction so that the cross-sectional area is downward. It has expanded. Therefore, the form of the lower half 21 of the air lift cylinder 11 is a truncated quadrangular pyramid hood, and the distance between the upper half of the side plates 23, 23 in the front-rear direction is constant A1, while The maximum distance between the lower ends is A2 larger than A1, and the distance between the upper half portions of the left and right side plates 22 and 22 is constant B1, whereas the maximum distance between the lower ends of the lower half portions is greater than B1. Big B2.
[0008]
The area ratio between the upper half and the lower half of the air lift cylinder is set to be equal to or less than the ratio of the total cross-sectional area and the empty cross-sectional area of the channel spacing between the flat membrane elements of the membrane module.
Each cross-sectional area is represented by a symbol as follows.
Air lift cylinder upper half cross section (maximum): A1 * B1
Air lift cylinder lower half cross section (maximum): A1 * B2 (Fig. 2)
Air lift cylinder lower cross-sectional area (maximum): A2 * B2 (Fig. 3)
Membrane module empty cross section (maximum): A1 * B2
Flat membrane module cross-sectional area between channels: nH * B1
Here, A1, B1, A2 and B2 indicate the maximum inner dimensions of the upper half and the lower half of the air lift cylinder. For convenience, the outer dimension of the membrane module is shown as the inner dimension of the upper half of the air lift cylinder. H indicates the width of the gap between the channels formed between the flat membranes. n indicates the number of the flow paths.
The relationship of the area ratio of the skirt portion of the air lift cylinder can be expressed as follows.
[Expression 1]
Figure 0003849151
[0009]
Then, FIG. 1, any of the embodiments of FIGS. 2, 3 is also at a position 50~150mm below the lower end of the air lift tube 11, and outward from the lower end of the air lift cylinder, air from below into airlift inner cylinder A plurality of diffuser nozzles 24 for blowing air are disposed so as to surround the lower end of the air lift cylinder. The diffuser nozzle 24 is attached to the lower end of a single diffuser pipe 26 whose upper end is connected to the header pipe 25, and the blower B supplies air from the header pipe 25. Of course, not limited to the these embodiments may be diffusion device such as a conventional example of FIG. 8.
[0010]
In this way, the lower half of the air lift cylinder in which the membrane module is housed in the upper half is expanded in a skirt state, and the aeration nozzle 24 is provided on the outer periphery thereof, thereby reducing the air lift circulation flow without reducing the air lift circulation flow. Easy to attach and detach. In other words, the upper end of the diffuser pipe 26 with the diffuser nozzle 24 attached to the lower end is removed from the header pipe 25, and it is lifted on the water surface to one and washed to remove clogging.
[0011]
The circulating flow inside the air lift cylinder can be expressed as follows in relation to the amount of air blown inside the cylinder and the diffused water depth.
Uo ∝ (h · Ug) n
Where Uo: air lift cylinder internal rising flow velocity Ug: air lift cylinder internal air blowing speed h: diffused water depth However, the cross flow flow velocity Um of the flow path spacing between the flat membrane elements is simply the total flow path spacing of the membrane module. It is not inversely proportional to the cross-sectional area and the empty cross-sectional area, but it does not exceed the reciprocal of the area reduction ratio due to the resistance of the flow path spacing.
According to the embodiment of the present invention, by expanding the lower half of the air lift cylinder in the skirt state, the amount of air can be increased to the same amount as Uo at the upper part of the skirt, that is, the lower part of the flat membrane module.
Here, this area ratio is expressed as
Figure 0003849151
Thus, it is possible to provide the crossflow flow velocity Um by compensating for the flow velocity decrease due to the resistance of the flow path interval.
[0012]
Further, as described above, the diffuser nozzle can be easily attached and detached by providing the diffuser nozzle at a position 50 to 150 mm below the lower part of the air lift cylinder. Since the diffuser nozzle is not located inside the air lift tower, it can be easily taken out of the tank by raising and lowering the pipe 26 of the diffuser nozzle.
[0013]
Further, the lower part of the air lift cylinder serves as a folded portion of the air lift circulation flow, but the circulation flow velocity in the lower part of the air lift cylinder can be increased by expanding the lower half part into a skirt shape.
For this reason, the air blown from the diffuser nozzle on the outer periphery of the air lift cylinder can be effectively sent into the air lift cylinder while being carried on the circulation flow velocity. That is, by providing a diffuser 50 to 150 mm below the lower part of the air lift cylinder where the circulation flow rate at the lower part of the air lift cylinder is maximized, the air from the diffuser nozzle is effectively put on the circulation flow rate and sent into the air lift cylinder. be able to.
[0014]
In illustration shown in FIGS. 4 and 5, e Arifuto cylinder 11 has an open portion 27, 27 on both sides of the upper half portion, the longitudinal direction of the channel spacing 15 between the flat sheet membrane element of the membrane module the open The units 27 and 27 communicate with each other. Accordingly, the upper half portion of the air lift cylinder containing the membrane module has only the side plates 28 and 28 in the front-rear direction, and the plurality of flat membrane elements constituting the membrane module are supported between the side plates 28 and 28. Supported by a stick.
[0015]
In this way, when the opening portions 27 and 27 communicating with the flow path interval 15 between the flat membrane elements are provided on both side surfaces of the upper half of the air lift cylinder containing the membrane module, The counterflow can be circulated out of the air lift cylinder from the open portions 27 and 27. Accordingly, the upper end of the air lift cylinder is positioned directly below the water surface W, and the free zone required for the conventional apparatus to generate the air lift circulation flow can be eliminated. In other words, the free zone is necessary for turning the water flow flowing upward in the air lift cylinder to the downward flow outside the air lift cylinder to generate an air lift circulation flow. If the free zone is abolished by placing it directly below the surface of the water, in order to generate an airlift circulation flow, the water flow that flows upward in the airlift cylinder must be lifted above the surface of the water, which requires a large amount of air and energy. The consumption of is large. However, if the open portions 27 that communicate with the flow passage space 15 between the flat membrane elements are provided on both side surfaces of the upper half of the air lift cylinder as in the present invention, the upward flow in the air lift cylinder is directed outward from the open section. In order to exit and form an airlift circulation flow, the free zone can be eliminated and the upper end of the airlift cylinder can be positioned directly below the water surface, thereby facilitating inspection of the membrane module.
[0016]
Furthermore, the upward flow of the air lift that rises in the flow path interval 15 changes its direction toward the open portions 27 and 27 within the flow interval, so that the membrane of the flat membrane element is formed by the increased flow velocity and the turbulent flow that changes the direction. Effectively removes dirt on the surface.
[0017]
6, as described in Motomeko 2, enlarged cross-sectional area downwardly expanding the lower half portion 21 of the air lift tube 11 downward like a skirt, the lower end of the air lift tube 11 air diffusion nozzles 24 This is an embodiment in which open portions 27, 27 communicating with the flow path interval 15 between the flat membrane elements are provided on both side surfaces of the upper half portion in which the membrane module 13 is accommodated. This embodiment simultaneously generates efficiently airlift circulation flow is a feature of claim 1, the effect that it is possible to increase the circulation flow rate of the lower air lift tube, efficiently by placing the membrane module immediately below the water surface In addition to generating a circulating flow, it also has the effect of generating a turbulent flow and effectively removing dirt on the film surface.
[0018]
In the illustrated embodiment, the membrane element has been described with the flat membrane element shown in FIG. 7 (a). However, the membrane element is not limited to the flat membrane element, and as shown in FIG. A plurality of hollow fiber membranes or tubular membranes 2 and 2 may be stretched in the lateral direction between 1 to form a rectangular shape.
[0019]
【The invention's effect】
According to the first aspect of the invention, the lower part of the air lift cylinder in which the membrane module is accommodated is expanded in a skirt state, whereby the air lift circulation flow can be increased and the dirt on the membrane surface can be effectively peeled off.
Further, according to the second aspect of the present invention , the membrane module can be arranged immediately below the water surface to efficiently generate a circulating flow, to generate a turbulent flow, and to effectively remove the dirt on the membrane surface.
[Brief description of the drawings]
1 is a sectional view of an embodiment of the invention of claim 1;
FIG. 2 is a plan view of the air lift cylinder of FIG. 1 as viewed from above.
FIG. 3 is a plan view of an air lift cylinder according to another embodiment of the present invention as viewed from above.
FIG. 4 shows a case where an open portion is provided on the side surface of the upper half of the air lift cylinder in the present invention for communicating the flow path in the front-rear direction of the membrane element of the membrane module to the water in the treatment tank outside the air lift cylinder. It is a side view.
FIG. 5 is a front view of FIG. 4;
6 is a front view of an embodiment of the invention of claim 2; FIG.
FIG. 7 is a cross-sectional view of a conventional device.
FIG. 8A is a perspective view of a flat membrane element.
(B) is a perspective view of a membrane element made of a hollow fiber membrane or a tubular membrane.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Processing tank 11 Air lift cylinder 12 Flat membrane element 13 Membrane module 15 Flow path space | interval 18 Free zone 21 Lower half part 22 of an air lift cylinder Left and right side plates 23 of the lower half part of an air lift cylinder Air diffuser nozzle 27 Opening portion 28 Front and rear side plates of upper half of air lift cylinder

Claims (3)

処理槽内の水中に、散気管の下端に取り付けられた散気ノズルにより下から気泡が吹込まれるエアリフト筒を立設し、該筒内の上部に、透過水の取出口を有する複数枚の膜エレメントを前後方向に流路間隔を保って一列に立て並べた膜モジュールを配置した浸漬型膜分離装置において、
エアリフト筒の下部をスカート状に拡げてその断面積を下向きに拡大し、エアリフト筒の下端よりも外方且つ下の位置において該エアリフト筒を囲むように前記散気ノズルを複数配置し散気ノズルを取り付けた前記散気管を垂直に引上げ可能に配設したことを特徴とする浸漬型膜分離装置。
An air lift cylinder in which bubbles are blown from below by a diffuser nozzle attached to the lower end of the diffuser pipe in water in the treatment tank, and a plurality of sheets having permeate outlets in the upper part of the cylinder In the submerged membrane separation apparatus in which the membrane modules in which the membrane elements are arranged in a row while maintaining the flow path interval in the front-rear direction are arranged,
Expanding its cross-sectional area downwardly expanding the lower portion of the air lift tube like a skirt, arranging a plurality of said air diffuser nozzle so as to surround the air lift tube in outwardly and positioned below the lower end of the air lift tube, diffuser A submerged membrane separation apparatus, wherein the air diffuser tube to which a nozzle is attached is disposed so as to be vertically pulled up.
処理槽内の水中に、散気管の下端に取り付けられた散気ノズルにより下から気泡が吹込まれるエアリフト筒を立設し、該筒内の上部に、透過水の取出口を有する複数枚の膜エレメントを前後方向に流路間隔を保って一列に立て並べた膜モジュールを配置した浸漬型膜分離装置において、
膜モジュールが内部に配置されたエアリフト筒の上部の側面であって、膜エレメントが立て並べられた列の方向に対して直角となる方向の両側に、膜モジュールの膜エレメントの前後方向の流路間隔をエアリフト筒外の処理槽内の水中に連通する開放部を設けるとともに、
エアリフト筒の下部をスカート状に拡げてその断面積を下向きに拡大し、エアリフト筒の下端よりも外方且つ下の位置において該エアリフト筒を囲むように前記散気ノズルを複数配置し散気ノズルを取り付けた前記散気管を垂直に引上げ可能に配設したことを特徴とする浸漬型膜分離装置。
An air lift cylinder in which bubbles are blown from below by a diffuser nozzle attached to the lower end of the diffuser pipe in water in the treatment tank, and a plurality of sheets having permeate outlets in the upper part of the cylinder In the submerged membrane separation apparatus in which the membrane modules in which the membrane elements are arranged in a row while maintaining the flow path interval in the front-rear direction are arranged,
Flow paths in the front-rear direction of the membrane elements of the membrane module on both sides of the upper side surface of the air lift cylinder in which the membrane modules are arranged and perpendicular to the direction of the row in which the membrane elements are arranged side by side While providing an open portion that communicates with the water in the treatment tank outside the air lift cylinder,
Expanding its cross-sectional area downwardly expanding the lower portion of the air lift tube like a skirt, arranging a plurality of said air diffuser nozzle so as to surround the air lift tube in outwardly and positioned below the lower end of the air lift tube, diffuser A submerged membrane separation apparatus, wherein the air diffuser tube to which a nozzle is attached is disposed so as to be vertically pulled up.
散気ノズルを上記エアリフト筒の下端より50〜150mm下の位置に設けたことを特徴とする請求項1または2に記載の浸漬型膜分離装置。  The submerged membrane separation apparatus according to claim 1 or 2, wherein a diffuser nozzle is provided at a position 50 to 150 mm below the lower end of the air lift cylinder.
JP11409495A 1995-04-17 1995-04-17 Immersion membrane separator Expired - Fee Related JP3849151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11409495A JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11409495A JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Publications (2)

Publication Number Publication Date
JPH08281083A JPH08281083A (en) 1996-10-29
JP3849151B2 true JP3849151B2 (en) 2006-11-22

Family

ID=14628963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11409495A Expired - Fee Related JP3849151B2 (en) 1995-04-17 1995-04-17 Immersion membrane separator

Country Status (1)

Country Link
JP (1) JP3849151B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866399B2 (en) * 1997-12-16 2007-01-10 住友重機械工業株式会社 Membrane filtration device and operation method thereof
CA2736814C (en) 2008-09-02 2017-02-28 Natrix Separations Inc. Chromatography membranes, devices containing them, and methods of use thereof
AU2012255721A1 (en) 2011-05-17 2014-01-09 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof

Also Published As

Publication number Publication date
JPH08281083A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US5192456A (en) Apparatus for treating activated sludge and method of cleaning it
US20090026139A1 (en) Submerged cross-flow filtration
ES2364044T3 (en) MIXING CHAMBER.
US7087173B2 (en) Inverted cavity aerator for membrane module
JP3349015B2 (en) Filtration device
JPH1085565A (en) Membrane separator
JP3671477B2 (en) Cleaning method for submerged membrane separator
KR20010092783A (en) Immersed membrane filtration system and overflow process
JP2001104760A (en) Immersion type membrane filtration apparatus and method for washing filtration membrane
KR101495375B1 (en) Method of cleaning air diffuser apparatus
KR20170104005A (en) Aeration device, operation method therefor, and water treatment apparatus
JPH0670825U (en) Undiluted liquid filtration device with internal pressure type filtration membrane
AT412847B (en) MEMBRANE FILTER SYSTEM WITH PARALLEL FLUSHABLE FILTER MODULES
JPH1157426A (en) Immersion-type membrane filter
JP3849151B2 (en) Immersion membrane separator
US20120006739A1 (en) Capillary membrane filtration module
JP5837985B2 (en) Filtration device
JP4431682B2 (en) Activated sludge treatment equipment
JP4996379B2 (en) Filtration device
JP5094022B2 (en) Aeration device and membrane filtration unit applied when collecting filtrate of solid-liquid mixed processing liquid
JP4285805B2 (en) Membrane separation device and membrane separation method
JP2925831B2 (en) Filtration device
JP2001047046A (en) Membrane separation type water treatment apparatus
US4001855A (en) Rapid-flow washer for photographic sheet material
JPH08332358A (en) Membrane separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees