JPH08279505A - Forming method of insulating film - Google Patents

Forming method of insulating film

Info

Publication number
JPH08279505A
JPH08279505A JP8258395A JP8258395A JPH08279505A JP H08279505 A JPH08279505 A JP H08279505A JP 8258395 A JP8258395 A JP 8258395A JP 8258395 A JP8258395 A JP 8258395A JP H08279505 A JPH08279505 A JP H08279505A
Authority
JP
Japan
Prior art keywords
insulating film
film
gas
forming
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8258395A
Other languages
Japanese (ja)
Other versions
JP3388651B2 (en
Inventor
Kazuyuki Ito
一幸 伊東
Noriaki Tani
典明 谷
Takeshi Yonezaki
武 米崎
Michio Ishikawa
道夫 石川
Kyuzo Nakamura
久三 中村
Atsushi Togawa
淳 戸川
Yukinori Hashimoto
征典 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP08258395A priority Critical patent/JP3388651B2/en
Publication of JPH08279505A publication Critical patent/JPH08279505A/en
Application granted granted Critical
Publication of JP3388651B2 publication Critical patent/JP3388651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To provide a method of forming a high quality insulating film at a high speed while decreasing input power. CONSTITUTION: A mixed gas composed of organic silane based gas and at least one kind out of oxygen, water, nitrogen suboxide, argon, nitrogen, hellium and hydrogen is introduced in a vacuum vessel. By using a plasma CVD method wherein discharge is generated between parallel plane electrodes, an insulating film is formed on a substrate. High frequency electric power whose frequency range is 27.12-100MHz is used for discharge. Thereby a high quality insulating film can be formed at a high speed, when a gate SiO2 film for a poly-Si TFT as the insulation film on a substrate is formed by using organic silane based gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁膜の形成方法に関
し、更に詳しくは、Poly−Siを用いた半導体装置
の製造時における半導体に要求されるPoly−Si半
導体向け高品質の絶縁膜を高速で形成する絶縁膜の形成
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming an insulating film, and more particularly, to a high-quality insulating film for a Poly-Si semiconductor required for a semiconductor at the time of manufacturing a semiconductor device using Poly-Si at high speed. The present invention relates to a method of forming an insulating film.

【0002】[0002]

【従来の技術】従来のPoly−SiTFT(Poly
−Siの薄膜トランシジスタ)用ゲート絶縁膜の形成方
法としては、大面積対応が可能で、かつ低温で高品質絶
縁膜が得られる可能性のある方法として、スパッタ法、
TEOS(テトラエトキシシラン)/O2系PECVD
(Plasma Enhanced Chemical Vapor Deposition)法が
知られている。前者のスパッタ法については段差被覆性
が劣るため、後者のTEOS/O2系PECVD法の方
が段差被覆性に優れていることから注目されている。
2. Description of the Related Art Conventional Poly-Si TFT (Poly-TFT)
As a method of forming a gate insulating film for a (Si thin film transistor), a sputtering method, which can be applied to a large area and which may provide a high quality insulating film at a low temperature,
TEOS (Tetraethoxysilane) / O 2 PECVD
(Plasma Enhanced Chemical Vapor Deposition) method is known. Since the former sputtering method is inferior in step coverage, the latter TEOS / O 2 -based PECVD method is noted for its superior step coverage.

【0003】一般的には、ガス導入系と、排気系が接続
された真空槽内に、2個以上の電極を設け、その一方の
電極に高周波電力を供給し、他方の電極上に基板を搭載
し、該ガス導入系から導入した有機シラン系ガス、例え
ばテトラエトキシシラン(TEOS)と、酸素、亜酸化
窒素、水、アルゴン、窒素、ヘリウム、水素のうち少な
くとも1種類のガスとの混合ガスを電極間に発生させた
プラズマにより分解し、加熱された基板上に絶縁膜を形
成する方法が行われていた。その場合の放電周波数は1
3.56MHzである。
Generally, two or more electrodes are provided in a vacuum chamber to which a gas introduction system and an exhaust system are connected, high frequency power is supplied to one of the electrodes, and a substrate is placed on the other electrode. A mixed gas of an organic silane-based gas, which is installed and introduced from the gas introduction system, such as tetraethoxysilane (TEOS) and at least one gas selected from oxygen, nitrous oxide, water, argon, nitrogen, helium, and hydrogen. There is a method in which the insulating film is formed on the heated substrate by decomposing it with plasma generated between the electrodes. In that case, the discharge frequency is 1
It is 3.56MHz.

【0004】[0004]

【発明が解決しようとする課題】前記、TEOS/O2
系PECVD法における放電周波数として13.56MHzを用
いた場合、基板温度400℃以下の低温で高品質の絶縁膜
が得られる成膜速度は200Å(0.02μm)/minまでであっ
た。
The above-mentioned TEOS / O 2
When 13.56 MHz was used as the discharge frequency in the PECVD method, the deposition rate at which a high-quality insulating film was obtained at a substrate temperature of 400 ° C. or lower was up to 200 Å (0.02 μm) / min.

【0005】また、良好な膜質を得る方法としては、次
に示す2方法がある。 (1) 放電時の投入電力を増加し、プラズマ密度を高め、
TEOSの分解を促進させる。 (2) 有機シラン系ガスに混合する酸素、亜酸化窒素、ア
ルゴン、窒素等の混合ガス量を増加させ、有機シラン系
ガスに対する活性種の相対量を増加させる。
There are the following two methods for obtaining good film quality. (1) Increase the input power at the time of discharge, increase the plasma density,
Accelerates the decomposition of TEOS. (2) The amount of oxygen, nitrous oxide, argon, nitrogen, etc. mixed with the organosilane-based gas is increased to increase the relative amount of active species to the organosilane-based gas.

【0006】前記(1)の方法の場合、電源の大型化、大
電力に対応させるための装置の大型化が必要となり、実
用上の投入電力の増加には限界があった。更に、投入電
力を増加させた場合、基板にかかるセルフバイアスが増
加し、イオンダメージが生じるため、実用上の電力値に
は限界があった。
In the case of the above method (1), it is necessary to increase the size of the power supply and the size of the device for handling large power, and there is a limit to the increase of the input power for practical use. Furthermore, when the input power is increased, the self-bias applied to the substrate increases and ion damage occurs, so that the practical power value is limited.

【0007】また、前記(2)の方法の場合についても、
混合ガス量の増加はガス導入系、真空排気系の大型化を
必要とし、実用上混合ガス量の導入には上限があった。
Further, in the case of the above method (2),
Increasing the amount of mixed gas requires an increase in the size of the gas introduction system and the vacuum exhaust system, and there was an upper limit to the introduction of the amount of mixed gas in practice.

【0008】これらの理由により、成膜速度は200Å(0.
02μm)/min以上とすることは不可能であった。
For these reasons, the film forming rate is 200Å (0.
It was impossible to achieve a rate of 02 μm) / min or more.

【0009】本発明は、前記従来法における問題点を解
消し、成膜速度を大幅に増加させつつ、Poly−Si
半導体向け高品質の絶縁膜の形成方法を提供することを
目的とする。
The present invention solves the above-mentioned problems in the conventional method and significantly increases the film forming rate, while increasing the poly-Si content.
An object is to provide a method for forming a high-quality insulating film for semiconductors.

【0010】[0010]

【課題を解決するための手段】本発明は、従来用いてい
た放電周波数13.56MHzを27.12MHz以上の高高周波とする
ことによって、プラズマ密度を増加させて、前記目的を
達成させる絶縁膜の形成方法である。
SUMMARY OF THE INVENTION The present invention is a method of forming an insulating film for increasing the plasma density and increasing the plasma density by changing the conventionally used discharge frequency of 13.56 MHz to a high frequency of 27.12 MHz or more. Is.

【0011】また、放電中にパルス変調を加えることに
より、基板に達するイオン量を減少させてイオンダメー
ジの低減を達成させる。
Further, by applying pulse modulation during discharge, the amount of ions reaching the substrate is reduced, and reduction of ion damage is achieved.

【0012】更に詳しくは、本発明の絶縁膜の形成方法
は、真空槽内に有機シラン系ガスと酸素、水、亜酸化窒
素、アルゴン、窒素、ヘリウム、水素のうち少なくとも
1種類との混合ガスを導入し、平行平板電極に放電を発
生させるプラズマCVD法により、基板上に絶縁膜を形
成する方法おいて、放電周波数として27.12MHzないし10
0MHzの高周波電力を用いることを特徴とする。
More specifically, the method for forming an insulating film according to the present invention is a mixed gas of an organic silane-based gas and at least one of oxygen, water, nitrous oxide, argon, nitrogen, helium and hydrogen in a vacuum chamber. In the method of forming the insulating film on the substrate by the plasma CVD method in which the plasma is introduced into the parallel plate electrodes, the discharge frequency is 27.12 MHz to 10 MHz.
It is characterized by using high frequency power of 0 MHz.

【0013】前記有機シラン系ガスをテトラエトキシシ
ラン、テトラメトキシシラン、シロキサン等分子中にS
i−O結合を有するガスのいずれかとしてもよい。
The organic silane-based gas is mixed with S in the molecule such as tetraethoxysilane, tetramethoxysilane, and siloxane.
It may be any gas having an i-O bond.

【0014】前記絶縁膜の成膜時に導入する高周波電力
をパルス状に変調導入してプラズマをパルス状にオン、
オフして成膜を行う工程において、高周波の変調周期を
10ないし300kHzとし、高周波電力のオン時間がオン時間
とオフ時間の合計の5ないし100%としてもよい。
High frequency power introduced at the time of forming the insulating film is modulated and introduced in a pulse shape to turn on the plasma in a pulse shape,
In the process of turning off and forming a film,
The on-time of the high frequency power may be set to 10 to 300 kHz and may be 5 to 100% of the total of the on-time and the off-time.

【0015】[0015]

【作用】一般に高周波放電を行った場合のプラズマ密度
は、放電周波数の2乗に比例する。例えば周波数が13.5
6MHzの場合と、同じプラズマ密度を周波数27.12MHzで得
ようとした場合、投入電力は1/4でよい。
In general, the plasma density when high frequency discharge is performed is proportional to the square of the discharge frequency. For example, the frequency is 13.5
If the same plasma density is obtained at a frequency of 27.12 MHz as in the case of 6 MHz, the input power may be 1/4.

【0016】テトラエトキシシランを例とする有機シラ
ン系ガスと酸素、亜酸化窒素、水、窒素、水素、アルゴ
ン、ヘリウムのうち少なくとも1種類との混合ガスから
高い成膜速度で、高品質のSiO2膜を形成しようとし
た場合、従来法によるプラズマ密度と比較して大幅な密
度の増加が必要となるが、放電周波数を27.12MHz以上と
することによって、投入電力の大幅増がなくともプラズ
マ密度を増加させ、高品質のSiO2膜が形成されるよ
うになる。
A high-quality SiO film having a high film-forming rate from a mixed gas of an organic silane-based gas such as tetraethoxysilane and at least one of oxygen, nitrous oxide, water, nitrogen, hydrogen, argon and helium. When attempting to form two films, it is necessary to increase the density significantly compared to the plasma density obtained by the conventional method, but by setting the discharge frequency to 27.12 MHz or higher, the plasma density can be increased even if the input power does not increase significantly. And a high-quality SiO 2 film is formed.

【0017】また、投入電力が大きいため、イオン照射
によるダメージが問題となるが、投入電力をパルス状に
オン、オフすることにより、イオン照射の量を減少させ
てイオンダメージを減少させることが出来る。
Further, since the applied power is large, damage due to ion irradiation becomes a problem, but by turning the applied power on and off in a pulsed manner, the amount of ion irradiation can be reduced and the ion damage can be reduced. .

【0018】[0018]

【実施例】本発明の実施例を添付図面に従って説明す
る。
Embodiments of the present invention will be described with reference to the accompanying drawings.

【0019】図1は本発明方法を実施するためのデポダ
ウン形の平行平板型プラズマCVD装置の截断側面図で
あり、その符号1はガスボンベ等のガス源に接続された
ガス導入系2と、真空ポンプに接続された排気系3を有
する真空槽を示す。
FIG. 1 is a sectional side view of a depot down type parallel plate type plasma CVD apparatus for carrying out the method of the present invention. Reference numeral 1 thereof is a gas introduction system 2 connected to a gas source such as a gas cylinder, and a vacuum. 1 shows a vacuum chamber with an exhaust system 3 connected to a pump.

【0020】該真空槽1内には2個の平板状の電極4、
5が対向して設けられ、その一方の電極4に高周波電力
をパルス変調させる変調器6を介して外部の高周波電源
7を接続し、他方の電極5上に成膜が施される基板8を
搭載する。
In the vacuum chamber 1, two flat plate-shaped electrodes 4,
5 are provided to face each other, an external high frequency power source 7 is connected to one of the electrodes 4 through a modulator 6 for pulse-modulating high frequency power, and a substrate 8 on which the film is formed on the other electrode 5 is provided. Mount.

【0021】一方の電極4はその前面にシャワープレー
ト9を備えた中空の電極で構成され、その中空部に前記
ガス導入系2を接続して、該シャワープレート9に設け
た多数のガス噴出口10から真空槽1内に均一に反応ガ
スを噴出させるようにした。
One electrode 4 is composed of a hollow electrode having a shower plate 9 on the front surface thereof, and the gas introducing system 2 is connected to the hollow portion of the electrode to provide a large number of gas ejection ports provided on the shower plate 9. The reaction gas was uniformly jetted into the vacuum chamber 1 from 10.

【0022】また、他方の電極5は基板7を加熱するヒ
ーターを兼ねており、成膜中はアース電位に維持され
る。
The other electrode 5 also serves as a heater for heating the substrate 7, and is maintained at the ground potential during film formation.

【0023】該ガス導入系2にはテトラエトキシシラン
(Si(OC254:以下TEOSという)を例とす
る有機シラン系ガスと、酸素、亜酸化窒素、水、窒素、
水素、アルゴン、ヘリウムのうち少なくとも1種類との
混合ガスが導入される。
In the gas introduction system 2, an organic silane-based gas such as tetraethoxysilane (Si (OC 2 H 5 ) 4 hereafter referred to as TEOS), oxygen, nitrous oxide, water, nitrogen,
A mixed gas of at least one of hydrogen, argon and helium is introduced.

【0024】以上の装置構成は、従来のプラズマCVD
装置の構成と略同様であり、該真空槽1内へガス導入系
2より導入した反応ガスを電極4、5間に発生するプラ
ズマにより混合ガスを分解して基板7上にSiO2膜を
形成することも従来法と同様ではあるが、高い成膜速度
を得ようとすると高周波電源の電力が非常に大きくな
り、従来法は実用上200Å(0.02μm)/minまでの成膜速
度しか得られなかった。
The above apparatus configuration is the same as the conventional plasma CVD.
The composition of the apparatus is substantially the same as that of the apparatus. The reaction gas introduced from the gas introduction system 2 into the vacuum chamber 1 is decomposed into the mixed gas by the plasma generated between the electrodes 4 and 5, and the SiO 2 film is formed on the substrate 7. Although it is similar to the conventional method, when trying to obtain a high deposition rate, the power of the high frequency power source becomes extremely large, and the conventional method can only obtain a deposition rate up to 200 Å (0.02 μm) / min in practice. There wasn't.

【0025】本発明では用いる高周波の周波数を27.12M
Hz以上とするとにより、小さい電力においても1000Å
(0.1μm)/min以上の成膜速度を得ることが可能とな
る。
In the present invention, the high frequency used is 27.12M.
By setting it to Hz or higher, 1000Å even with small power
It is possible to obtain a film forming rate of (0.1 μm) / min or more.

【0026】本発明において、放電周波数を27.12MHzな
いし100MHzの高周波電力とした理由は、放電周波数を2
7.12MHz以上とすることによりプラズマ密度は大幅に増
加するが、100MHz以上の高周波は装置に効率よく導入す
ることが困難となり、実用上不向きであることによる。
In the present invention, the reason why the discharge frequency is high frequency power of 27.12 MHz to 100 MHz is that the discharge frequency is 2
The plasma density is significantly increased by setting the frequency to 7.12 MHz or more, but it is difficult to efficiently introduce a high frequency wave of 100 MHz or more into the device, which is not suitable for practical use.

【0027】また、高周波の変調周期を10ないし300kHz
とした理由は、C−V測定の結果この変調周期の範囲に
おいて、フラットバンド電圧の値が小さかったことによ
る。
The high frequency modulation period is 10 to 300 kHz.
The reason is that the value of the flat band voltage was small in the range of this modulation period as a result of the CV measurement.

【0028】また、高周波電力のオン時間がオン時間と
オフ時間の合計の5ないし100%とした理由は、既成膜法
において、デューティー比とオン時間の高周波出力の積
算した値が500(W・%)以上であれば一定の成膜速度と
絶縁耐圧が得られた。実用上高周波電源の上限は10kWで
あり、得られた結果を考慮するとデューティー比が5%
以上となるためである。
The reason that the on time of the high frequency power is set to 5 to 100% of the total of the on time and the off time is that the value obtained by integrating the high frequency output of the duty ratio and the on time is 500 (W. %) Or more, a constant film forming rate and dielectric strength were obtained. The upper limit of the high-frequency power source is practically 10kW, and considering the obtained results, the duty ratio is 5%.
This is because of the above.

【0029】尚、高周波放電中のオン[ON]時間をオン[O
N]時間とオフ[OFF]時間の合計時間で除算した値をデュ
ーティー比という。
Note that the ON [ON] time during high-frequency discharge is turned ON [O]
The value obtained by dividing the total time of N] time and off [OFF] time is called the duty ratio.

【0030】以下に本発明の具体的実施例を説明する。Specific examples of the present invention will be described below.

【0031】実施例1 この実施例では図1に示す装置により無アルカリガラス
製の基板8上に膜厚1500Å(0.15μm)のSiO2膜を1000
Å(0.1μm)/minの成膜速度で形成することを目的とし
た。
Example 1 In this example, an SiO 2 film having a thickness of 1500 Å (0.15 μm) was formed on a substrate 8 made of alkali-free glass by the apparatus shown in FIG.
The purpose was to form at a film forming rate of Å (0.1 μm) / min.

【0032】電極5に基板8を搭載し、これを300℃ま
で加熱する。真空槽1内の圧力が106.4Pa(0.8Torr)にな
るように排気系3により調整し、真空槽1内にガス導入
系2よりTEOSガス140sccm、酸素(O2)ガス4000sc
cmの混合ガスを導入した。高周波電源7よりの放電周波
数として13.56MHz、27.12MHz、40.68MHzを用いた。
The substrate 8 is mounted on the electrode 5 and heated to 300 ° C. The pressure in the vacuum chamber 1 was adjusted to 106.4 Pa (0.8 Torr) by the exhaust system 3, and TEOS gas 140 sccm and oxygen (O 2 ) gas 4000 sc from the gas introduction system 2 into the vacuum chamber 1.
A mixed gas of cm was introduced. 13.56 MHz, 27.12 MHz and 40.68 MHz were used as the discharge frequencies from the high frequency power source 7.

【0033】そして、高周波の投入電力と基板8上に形
成されたSiO2膜の成膜速度との関係を各放電周波数
毎に調べ、その結果を図2に周波数13.56MHzの場合は曲
線A、周波数27.12MHzの場合は曲線B、周波数40.68MHz
の場合は曲線Cで示す。図2の結果から明らかなよう
に、これらの実施条件における成膜速度はいずれもほぼ
1000Å(0.1μm)/minが得られることが分かる。
Then, the relationship between the input power of high frequency and the deposition rate of the SiO 2 film formed on the substrate 8 was examined for each discharge frequency, and the result is shown in FIG. 2 as curve A, when the frequency is 13.56 MHz. In case of frequency 27.12MHz, curve B, frequency 40.68MHz
In the case of, the curve C is shown. As is clear from the results shown in FIG. 2, the film formation rates under these conditions are almost the same.
It can be seen that 1000Å (0.1 μm) / min can be obtained.

【0034】また、基板8上に形成されたSiO2膜の
夫々について、電界を印加し、1.0μA/cm2の電流が流
れた時の電界強度を絶縁耐圧とした。
An electric field was applied to each of the SiO 2 films formed on the substrate 8 and the electric field strength when a current of 1.0 μA / cm 2 flowed was defined as the dielectric strength voltage.

【0035】そして、高周波の投入電力と絶縁耐圧との
関係を各絶縁膜毎に調べ、その結果を図3に周波数13.5
6MHzの場合は曲線D、周波数27.12MHzの場合は曲線E、
周波数40.68MHzの場合は曲線Fで示す。
Then, the relationship between high-frequency input power and withstand voltage was examined for each insulating film, and the results are shown in FIG.
Curve D for 6MHz, Curve E for frequency 27.12MHz,
Curve F shows the case where the frequency is 40.68 MHz.

【0036】絶縁耐圧が8MV/cm以上であれば高品質な
poly−SiTFT用のゲート絶縁膜として使用する
ことが出来る。周波数40.68MHz(曲線F)の場合は400W
で8MV/cm以上の値が得られ、また、周波数27.56MHz
(曲線E)の場合は1.0kWで8MV/cm以上の値が得られる
が、周波数13.56MHz(曲線D)の場合は3.0kWの電力を
投入しても8MV/cm以上の値は得られなかった。図3の
結果から明らかなように、放電周波数を27.12MHz以上と
することによって低い投入電力で高い成膜速度を保ちな
がら、高品質のSiO2膜を形成出来ることが確認され
た。
If the withstand voltage is 8 MV / cm or more, it can be used as a gate insulating film for high quality poly-Si TFTs. 400W for frequency 40.68MHz (curve F)
A value of 8 MV / cm or more is obtained at a frequency of 27.56MHz
In the case of (Curve E), a value of 8 MV / cm or more can be obtained at 1.0 kW, but in the case of a frequency of 13.56 MHz (Curve D), a value of 8 MV / cm or more cannot be obtained even if the power of 3.0 kW is input. It was As is clear from the results of FIG. 3, it was confirmed that by setting the discharge frequency to 27.12 MHz or higher, a high quality SiO 2 film can be formed while maintaining a high film formation rate with low input power.

【0037】実施例2 この実施例では、放電周波数を27.56MHzに固定し、放電
時間中に高周波を100kHzの変調周期でパルス変調を行っ
て、基板上に絶縁膜を形成することを目的とした。そし
て放電中のデューティー比を70%、100%とし、その他
の実験条件は前記実施例1と同様の方法とした。
Example 2 In this example, the discharge frequency was fixed at 27.56 MHz, and the high frequency was pulse-modulated at a modulation cycle of 100 kHz during the discharge time to form an insulating film on the substrate. . The duty ratio during discharge was set to 70% and 100%, and the other experimental conditions were the same as in the first embodiment.

【0038】評価は基板8に形成されたSiO2膜上に
アルミニウム(Al)電極を形成し、MOS(Metal-Ox
ide-Semiconductor)キャパシタを作成し、更に、電圧
−容量変化の測定を行った結果から得られたフラットバ
ンド電圧を求めた。
For evaluation, an aluminum (Al) electrode was formed on the SiO 2 film formed on the substrate 8 and the MOS (Metal-Ox) was formed.
An ide-semiconductor) capacitor was prepared, and the flat band voltage obtained from the result of measurement of voltage-capacitance change was obtained.

【0039】一般にPoly−SiTFT用ゲート絶縁
膜としてのSiO2膜を用いる場合、フラットバンド電
圧は0に近ければ近いほどよいとされている。
In general, when a SiO 2 film is used as a gate insulating film for Poly-Si TFTs, it is said that the closer the flat band voltage is to 0, the better.

【0040】これはフラットバンド電圧の存在によって
Poly−SiTFTのしきい値がシフトするためであ
る。
This is because the threshold of the Poly-Si TFT shifts due to the presence of the flat band voltage.

【0041】フラットバンド電圧は成膜中に膜中に残留
したC、H、Oによっても発生するが、プラズマから基
板8に打ち込まれたイオンダメージによっても発生す
る。即ち、フラットバンド電圧を評価することによって
イオンダメージの量を推定することが可能となる。
The flat band voltage is generated not only by C, H, and O remaining in the film during film formation but also by ion damage implanted into the substrate 8 from plasma. That is, it is possible to estimate the amount of ion damage by evaluating the flat band voltage.

【0042】高周波の投入電力とフラットバンド電圧と
の関係をデューティー比毎に調べ、その結果を図4にデ
ューティー比100%の場合は曲線G、デューティー比70
%の場合は曲線Hで示す。デューティー比100%の場
合、投入電力の増加に伴って膜中に残留したC、H、O
が減少することによってフラットバンド電圧は減少して
いるものと考えられる。しかし、投入電力2.0kWで僅か
にフラットバンド電圧が増加しており、これは基板8に
打ち込まれるイオンのエネルギーが増加したことによる
ものと思われる。
The relationship between the input power of high frequency and the flat band voltage is examined for each duty ratio, and the result is shown in FIG. 4 when the duty ratio is 100%, the curve G and the duty ratio 70.
The case of% is shown by the curve H. When the duty ratio is 100%, C, H, and O remaining in the film as the input power increases.
It is considered that the flat band voltage is reduced due to the decrease of the. However, the flat band voltage slightly increased at the applied power of 2.0 kW, which is considered to be due to the increase in the energy of the ions implanted in the substrate 8.

【0043】デューティー比70%の場合、投入電力の増
加に伴ってフラットバンド電圧は減少しているが、デュ
ーティー比100%の場合と比較してみると、フラットバ
ンド電圧の値はデューティー比100%より小さい値を示
しており、投入電力2.0kWでのフラットバンド電圧の増
加が見られない。デューティー比100%とデューティー
比70%の差はデューティー比を70%にしたことによりイ
オンダメージが減少したためと考えられる。
When the duty ratio is 70%, the flat band voltage decreases as the input power increases, but when compared with the case where the duty ratio is 100%, the value of the flat band voltage is 100%. It shows a smaller value, and there is no increase in the flat band voltage at an input power of 2.0 kW. The difference between the duty ratio of 100% and the duty ratio of 70% is considered to be because the ion damage was reduced by setting the duty ratio to 70%.

【0044】実施例3 この実施例は放電周波数を変えた場合における成膜速
度、絶縁耐圧、フラットバンド電圧を調べることを目的
とした。
Example 3 The purpose of this example was to examine the film formation rate, dielectric strength, and flat band voltage when the discharge frequency was changed.

【0045】放電周波数を40.68MHz、54.24MHz、67.8MH
z、100MHzとし、投入電力を0.2kWとし、高周波電力の変
調周期を100kHzとし、デューティー比を70%とした以外
は、前記実施例1と同様の方法でSiO2膜の形成を行
い、各SiO2毎に成膜速度、絶縁耐圧、並びにフラッ
トバンド電圧を調べた。
Discharge frequency is 40.68MHz, 54.24MHz, 67.8MH
z, 100 MHz, input power 0.2 kW, high frequency power modulation period 100 kHz, duty ratio 70%, except that the SiO 2 film was formed in the same manner as in Example 1 above. The film forming rate, dielectric strength, and flat band voltage were examined for each of the 2 items.

【0046】調べた結果、放電周波数40.68MHzの場合に
おける成膜速度は1000Å(0.1μm)/minであり、絶縁耐
圧は7.5MV/cm、フラットバンド電圧は-30Vであった。放
電周波数54.24MHzの場合における成膜速度は1050Å(0.1
05μm)/minであり、絶縁耐圧 は8.1MV/cm、フラットバ
ンド電圧は-8Vであった。放電周波数67.8MHzの場合にお
ける成膜速度は1080Å(0.108μm)/minであり、絶縁耐
圧は8.2MV/cm、フラットバンド電圧は-6Vであった。放
電周波数100MHzの場合における成膜速度は1100Å(0.11
μm)/minであり、絶縁耐圧は8.2MV/cm、フラットバン
ド電圧は-5Vであった。
As a result of examination, the film formation rate at a discharge frequency of 40.68 MHz was 1000 Å (0.1 μm) / min, the withstand voltage was 7.5 MV / cm, and the flat band voltage was -30 V. When the discharge frequency is 54.24MHz, the film formation rate is 1050Å (0.1
05 μm) / min, withstand voltage was 8.1 MV / cm, and flat band voltage was -8 V. When the discharge frequency was 67.8 MHz, the film formation rate was 1080Å (0.108 μm) / min, the withstand voltage was 8.2 MV / cm, and the flat band voltage was -6 V. The deposition rate is 1100Å (0.11
μm) / min, withstand voltage was 8.2 MV / cm, and flat band voltage was −5 V.

【0047】実施例4 この実施例は高周波電力の変調周期を変えた場合におけ
る成膜速度、絶縁耐圧、フラットバンド電圧を調べるこ
とを目的とした。
Example 4 The purpose of this example was to investigate the film formation rate, dielectric strength, and flat band voltage when the modulation period of high frequency power was changed.

【0048】放電周波数を27.12MHzとし、投入電力を
1.0kWとし、高周波電力の変調周期を10kHz、50kHz、100
kHz、200kHz、300kHzとし、デューティー比を70%とし
た以外は、前記実施例1と同様の方法でSiO2膜の形
成を行い、各SiO2毎に成膜速度、絶縁耐圧、並びに
フラットバンド電圧を調べた。
The discharge frequency is 27.12 MHz and the input power is
1.0kW, high-frequency power modulation cycle 10kHz, 50kHz, 100
A SiO 2 film was formed in the same manner as in Example 1 except that the frequency was set to kHz, 200 kHz, 300 kHz, and the duty ratio was 70%. The film forming rate, the dielectric strength, and the flat band voltage were set for each SiO 2. I checked.

【0049】調べた結果、変調周期10kHzの場合におけ
る成膜速度は1100Å(0.11μm)/minであり、絶縁耐圧は
8.2MV/cm、フラットバンド電圧は-7Vであった。変調周
期50kHzの場合における成膜速度は1100Å(0.11μm)/mi
nであり、絶縁耐圧は8.2MV/cm、フラットバンド電圧は-
6Vであった。変調周期100kHzの場合における成膜速度は
1100Å(0.11μm)/minであり、絶縁耐圧は8.2MV/cm、フ
ラットバンド電圧は-4Vであった。変調周期200Hzの場合
における成膜速度は1100Å(0.11μm)/minであり、絶縁
耐圧は8.2MV/cm、フラットバンド電圧は-4Vであった。
変調周期300kHzの場合における成膜速度は1100Å(0.11
μm)/minであり、絶縁耐圧は8.2MV/cm、フラットバン
ド電圧は-5Vであった。
As a result of the examination, the film forming rate at a modulation period of 10 kHz was 1100Å (0.11 μm) / min, and the withstand voltage was
The voltage was 8.2 MV / cm and the flat band voltage was -7V. The deposition rate is 1100Å (0.11μm) / mi when the modulation period is 50kHz.
n, withstand voltage is 8.2MV / cm, flat band voltage is-
It was 6V. When the modulation cycle is 100kHz, the film formation rate is
It was 1100Å (0.11 μm) / min, withstand voltage was 8.2MV / cm, and flat band voltage was -4V. When the modulation cycle was 200 Hz, the film formation rate was 1100Å (0.11 μm) / min, the withstand voltage was 8.2 MV / cm, and the flat band voltage was -4V.
The deposition rate is 1100Å (0.11
μm) / min, withstand voltage was 8.2 MV / cm, and flat band voltage was −5 V.

【0050】実施例5 この実施例はデューティー比を変えた場合における成膜
速度、絶縁耐圧、フラットバンド電圧を調べることを目
的とした。
Example 5 The purpose of this example was to examine the film formation rate, dielectric strength, and flat band voltage when the duty ratio was changed.

【0051】放電周波数を27.12MHzとし、投入電力を1.
0kWとし、高周波電力の変調周期を100kHzとし、デュー
ティー比を5%、10%、20%、30%、50%とした以外
は、前記実施例1と同様の方法でSiO2膜の形成を行
い、各SiO2毎に成膜速度、絶縁耐圧、並びにフラッ
トバンド電圧を調べた。
The discharge frequency is 27.12 MHz and the input power is 1.
The SiO 2 film was formed in the same manner as in Example 1 except that 0 kW was used, the high frequency power modulation period was 100 kHz, and the duty ratio was 5%, 10%, 20%, 30%, 50%. The film forming rate, withstand voltage, and flat band voltage were examined for each SiO 2 .

【0052】調べた結果、デューティー比5%の場合に
おける成膜速度は300Å(0.03μm)/minであり、絶縁耐
圧は2.5MV/cm、フラットバンド電圧は-40Vであった 。
デューティー比10%の場合における成膜速度は400Å(0.
04μm)/minであり、絶縁耐圧は3.5MV/cm、フラットバ
ンド電圧は-35Vであった。デューティー比20%の場合に
おける成膜速度は600Å(0.06μm)/minであり、絶縁耐
圧は4.5MV/cm、フラットバンド電圧は-30Vであった。デ
ューティー比30%の場合における成膜速度は800Å(0.08
μm)/minであり、絶縁耐圧は6.0MV/cm、フラットバン
ド電圧は-25Vであった。デューティー比50%の場合にお
ける成膜速度は950Å(0.095μm)/minであり、絶縁耐圧
は7.0MV/cm、フラットバンド電圧は-15Vであった。
As a result of examination, the film formation rate at a duty ratio of 5% was 300Å (0.03 μm) / min, the withstand voltage was 2.5 MV / cm, and the flat band voltage was -40V.
When the duty ratio is 10%, the film formation rate is 400Å (0.
04μm) / min, withstand voltage was 3.5MV / cm, and flat band voltage was -35V. When the duty ratio was 20%, the film formation rate was 600Å (0.06 μm) / min, the withstand voltage was 4.5 MV / cm, and the flat band voltage was -30V. When the duty ratio is 30%, the film formation rate is 800Å (0.08
μm) / min, withstand voltage was 6.0 MV / cm, and flat band voltage was -25 V. When the duty ratio was 50%, the film formation rate was 950Å (0.095 μm) / min, the withstand voltage was 7.0 MV / cm, and the flat band voltage was -15V.

【0053】前記実施例では有機シラン系ガスとしてT
EOSガスを用い、これに混合するガスとして酸素ガス
を用いたが、TEOSガスに代えてテトラメトキシシラ
ン(TEMS)ガスを用いた場合、ガス中の不要となる
C、H、Oを高密度プラズマによって効率よく分解する
必要があるが、TEOSガスを用いた場合と全くと同様
の傾向が得られることが分かった。
In the above embodiment, T was used as the organic silane gas.
EOS gas was used and oxygen gas was used as a gas to be mixed therewith. However, when tetramethoxysilane (TEMS) gas is used instead of TEOS gas, unnecessary C, H, and O in the gas are high-density plasma. However, it was found that the same tendency as in the case of using TEOS gas can be obtained.

【0054】また、有機シラン系ガスに混合するガスと
して酸素ガス用いたが、酸素ガスに代えて、亜酸化窒素
ガス、水ガス(H2O)、窒素ガス、水素ガス、アルゴ
ンガス、ヘリウムガスのうち少なくとも1種類を用いた
場合においても、酸素ガスと同様の効果が得られた。
Although oxygen gas was used as a gas mixed with the organosilane-based gas, nitrous oxide gas, water gas (H 2 O), nitrogen gas, hydrogen gas, argon gas, helium gas was used instead of oxygen gas. Even when at least one of them was used, the same effect as oxygen gas was obtained.

【0055】[0055]

【発明の効果】本発明の絶縁膜の形成方法によるとき
は、基板上に絶縁膜であるPoly−SiTFT用ゲー
トSiO2膜を有機シラン系ガスを用いて形成させる場
合、投入電力を減少させることが可能となり、絶縁膜を
高速で高品質で形成することが出来、その結果、成膜装
置および高周波電源の小型化が可能となる等の効果があ
る。
According to the method of forming an insulating film of the present invention, when the gate SiO 2 film for Poly-Si TFT which is an insulating film is formed on the substrate by using the organic silane-based gas, the input power is reduced. It is possible to form the insulating film at high speed and with high quality, and as a result, it is possible to reduce the size of the film forming apparatus and the high frequency power source.

【0056】また、絶縁膜の成膜時に導入する高周波電
力をパルス状に変調導入してプラズマをパルス状にオ
ン、オフして成膜を行う工程において、高周波の変調周
期を10ないし300kHzとし、高周波電力のオン時間がオン
時間とオフ時間の合計の5ないし100%のパルス変調させ
ることにより、基板に与えるイオンダメージを減少させ
ることが出来て、高品質の絶縁膜を基板上に成膜するこ
とが出来る。
In the step of forming a film by turning on and off the plasma in a pulsed manner by modulating and introducing the high frequency power introduced during the formation of the insulating film in a pulsed manner, the high frequency modulation cycle is set to 10 to 300 kHz, By performing pulse modulation of 5 to 100% of the total on-time and off-time of high-frequency power, it is possible to reduce ion damage to the substrate and form a high-quality insulating film on the substrate. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施に使用した装置の1例の截断側
面図、
1 is a cutaway side view of an example of an apparatus used to practice the invention,

【図2】 本発明の1実施例の投入電力と成膜速度との
関係を示す特性線図、
FIG. 2 is a characteristic diagram showing the relationship between the input power and the film formation rate in one example of the present invention,

【図3】 本発明の1実施例の投入電力と絶縁耐圧との
関係を示す特性線図、
FIG. 3 is a characteristic diagram showing the relationship between input power and withstand voltage of one embodiment of the present invention,

【図4】 本発明の他の実施例の投入電力とフラットバ
ンド電圧との関係を示す特性線図。
FIG. 4 is a characteristic diagram showing a relationship between input power and flat band voltage according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽、 2 ガス導入系、 3 排
気系、4、5 電極、 6 変調器、 7
高周波電源、8 基板。
1 vacuum tank, 2 gas introduction system, 3 exhaust system, 4, 5 electrodes, 6 modulator, 7
High frequency power supply, 8 boards.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 道夫 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 中村 久三 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 戸川 淳 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 橋本 征典 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Ishikawa 523 Yokota, Yamatake-cho, Sanmu-gun, Chiba Japan Vacuum Technology Co., Ltd. Chiba Institute for Super Materials (72) Inventor Hisami Nakamura 523 Yokota, Yamatake-cho, Sanbu-gun, Japan 523 Japan Vacuum Technology Co., Ltd., Chiba Institute of Supermaterials (72) Inventor Jun Togawa 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Vacuum Technology Co., Ltd., Chiba Institute of Supermaterials (72) Inventor Sesunori Hashimoto Yokota, Yamatake-cho, Sanmu-gun, Chiba Prefecture 523 Japan Vacuum Technology Co., Ltd. Chiba Institute for Materials Research

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空槽内に有機シラン系ガスと酸素、
水、亜酸化窒素、アルゴン、窒素、ヘリウム、水素のう
ち少なくとも1種類との混合ガスを導入し、平行平板電
極に放電を発生させるプラズマCVD法により、基板上
に絶縁膜を形成する方法おいて、放電周波数として27.1
2MHzないし100MHzの高周波電力を用いることを特徴とす
る絶縁膜の形成方法。
1. An organic silane-based gas and oxygen in a vacuum chamber,
A method for forming an insulating film on a substrate by a plasma CVD method in which a mixed gas of at least one of water, nitrous oxide, argon, nitrogen, helium, and hydrogen is introduced and discharge is generated in parallel plate electrodes. , As discharge frequency 27.1
A method for forming an insulating film, which uses high-frequency power of 2 MHz to 100 MHz.
【請求項2】 前記有機シラン系ガスはテトラエトキシ
シラン、テトラメトキシシラン、シロキサン等分子中に
Si−O結合を有するガスのいずれかであることを特徴
とする請求項第1項に記載の絶縁膜の形成方法。
2. The insulation according to claim 1, wherein the organic silane-based gas is any one of gases having a Si—O bond in a molecule such as tetraethoxysilane, tetramethoxysilane, and siloxane. Method of forming a film.
【請求項3】 前記絶縁膜の成膜時に導入する高周波電
力をパルス状に変調導入してプラズマをパルス状にオ
ン、オフして成膜を行う工程において、高周波の変調周
期を10ないし300kHzとし、高周波電力のオン時間がオン
時間とオフ時間の合計の5ないし100%であることを特徴
とする請求項第1項または第2項に記載の絶縁膜の形成
方法。
3. A high frequency modulation cycle is set to 10 to 300 kHz in the step of forming a film by turning on and off the plasma in a pulse shape by modulating and introducing a high frequency power which is introduced at the time of forming the insulating film in a pulse shape. The method for forming an insulating film according to claim 1 or 2, wherein the on time of the high frequency power is 5 to 100% of the total of the on time and the off time.
JP08258395A 1995-04-07 1995-04-07 Method of forming insulating film Expired - Fee Related JP3388651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08258395A JP3388651B2 (en) 1995-04-07 1995-04-07 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08258395A JP3388651B2 (en) 1995-04-07 1995-04-07 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH08279505A true JPH08279505A (en) 1996-10-22
JP3388651B2 JP3388651B2 (en) 2003-03-24

Family

ID=13778510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08258395A Expired - Fee Related JP3388651B2 (en) 1995-04-07 1995-04-07 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP3388651B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159871A (en) * 1998-05-29 2000-12-12 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6287990B1 (en) 1998-02-11 2001-09-11 Applied Materials, Inc. CVD plasma assisted low dielectric constant films
US6303523B2 (en) 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
WO2003107409A1 (en) * 2002-06-01 2003-12-24 積水化学工業株式会社 Oxide film forming method and oxide film forming apparatus
JP2007287890A (en) * 2006-04-14 2007-11-01 Kochi Univ Of Technology Forming method of insulating film, manufacturing method of semiconductor device and plasma cvd apparatus
WO2009104531A1 (en) * 2008-02-19 2009-08-27 株式会社 アルバック Film forming method
JP2011068999A (en) * 2000-04-06 2011-04-07 Applied Materials Inc Deposition of teos oxide using pulsed rf plasma
JP2019035147A (en) * 2017-08-14 2019-03-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method for forming metal oxide film and plasma-enhanced chemical vapor deposition apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287990B1 (en) 1998-02-11 2001-09-11 Applied Materials, Inc. CVD plasma assisted low dielectric constant films
US6303523B2 (en) 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6562690B1 (en) 1998-02-11 2003-05-13 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6159871A (en) * 1998-05-29 2000-12-12 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6593655B1 (en) 1998-05-29 2003-07-15 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
JP2011068999A (en) * 2000-04-06 2011-04-07 Applied Materials Inc Deposition of teos oxide using pulsed rf plasma
WO2003107409A1 (en) * 2002-06-01 2003-12-24 積水化学工業株式会社 Oxide film forming method and oxide film forming apparatus
JP2007287890A (en) * 2006-04-14 2007-11-01 Kochi Univ Of Technology Forming method of insulating film, manufacturing method of semiconductor device and plasma cvd apparatus
WO2009104531A1 (en) * 2008-02-19 2009-08-27 株式会社 アルバック Film forming method
JPWO2009104531A1 (en) * 2008-02-19 2011-06-23 株式会社アルバック Deposition method
TWI477644B (en) * 2008-02-19 2015-03-21 Ulvac Inc Film forming method
JP2019035147A (en) * 2017-08-14 2019-03-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method for forming metal oxide film and plasma-enhanced chemical vapor deposition apparatus

Also Published As

Publication number Publication date
JP3388651B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
KR100557666B1 (en) Susceptor for supporting substrate and apparatus for depositing film comprising the same
JP4382265B2 (en) Method and apparatus for forming silicon oxide film
CN1926670B (en) Plasma processing method
US4692344A (en) Method of forming a dielectric film and semiconductor device including said film
US5437895A (en) Plasma CVD process for forming amorphous silicon thin film
JP2001164371A (en) Plasma cvd system and plasma cvd film deposition method
JPH0684888A (en) Formation of insulation film
US20100210093A1 (en) Method for forming silicon-based thin film by plasma cvd method
JP2748864B2 (en) Semiconductor device, method of manufacturing the same, method of manufacturing amorphous carbon film, and plasma CVD apparatus
US20020168483A1 (en) Method for forming film by plasma
JPH08279505A (en) Forming method of insulating film
JPH101774A (en) Formation of thin coating by plasma cvd and plasma cvd device
JPH02281734A (en) Treating method of surface by plasma
JPH0766186A (en) Anisotropic depositing method of dielectric
US6607790B1 (en) Method of forming a thin film for a semiconductor device
JPH05315268A (en) Plasma cvd apparatus
JP3593363B2 (en) Method for manufacturing active matrix type liquid crystal display device having semiconductor thin film
EP2045357B1 (en) Method of forming silicon nitride films
JPH07142400A (en) Plasma treating method and its apparatus
JPH08288223A (en) Manufacture of thin film
JP3440714B2 (en) Method for forming silicon compound based insulating film
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
JPH09102491A (en) Formation method for sio2 insulating film
JPH09326387A (en) Film formation method and its device
US20220293793A1 (en) Process to reduce plasma induced damage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees