JPH08278287A - Method and device for diagnosing steel material heat history - Google Patents

Method and device for diagnosing steel material heat history

Info

Publication number
JPH08278287A
JPH08278287A JP8029495A JP8029495A JPH08278287A JP H08278287 A JPH08278287 A JP H08278287A JP 8029495 A JP8029495 A JP 8029495A JP 8029495 A JP8029495 A JP 8029495A JP H08278287 A JPH08278287 A JP H08278287A
Authority
JP
Japan
Prior art keywords
steel material
diagnosed
history
amplification factor
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8029495A
Other languages
Japanese (ja)
Inventor
Teruaki Matsumoto
曜明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8029495A priority Critical patent/JPH08278287A/en
Publication of JPH08278287A publication Critical patent/JPH08278287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce an inspection site on periodical inspection and at the same time secure the reliability for judging deterioration conditions and reduce and rationalize the periodical inspection by finding a non-sound part out of a number of steel materials to be diagnosed and precisely inspecting only the non-sound part. CONSTITUTION: A coil 2 is brought into contact with a steel material 10 to be diagnosed where static magnetic field is applied and pulse current is fed to the coil 2 to generate eddy current on the surface of the steel material 10. The detection sensitivity of electromagnetic ultrasonic waves is amplified and at the same time sensitivity amplification factor is displayed, the change in the specific permeability of the steel material 10 is obtained from the sensitivity amplification factor, and the heat history of the steel material 10 is diagnosed according to the change in the specific permeability. Namely, the steel material 10 is diagnosed as a non-sound part with a high-temperature scale-generation heat history when the change in the specific permeability is equal to or more than a specific value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラ伝熱管等の高温
にさらされる鋼材の劣化管理に係り、特に定期検査で劣
化部位(非健全部)を抽出して診断するのに好適な鋼材
熱履歴診断方法及び診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to deterioration management of steel materials exposed to high temperatures, such as boiler heat transfer tubes, and particularly suitable for extracting and diagnosing deteriorated parts (unhealthy parts) in periodic inspections. The present invention relates to a history diagnosis method and a diagnosis device.

【0002】[0002]

【従来の技術】ボイラ伝熱管は、運転中に高温の燃焼ガ
スにさらされているため、高温クリープ、高温腐食又は
高温疲労等による劣化現象を生じる。この劣化現象は、
低合金鋼及び低炭素鋼を含むボイラ伝熱管等の鋼材で
は、メタル温度が500〜600℃の熱履歴を受けて顕
著に発生する。従来は、非加熱部のボイラ伝熱管の炉幅
方向に数本おきにメタル温度計を設置し、運転によって
これまでに受けてきたボイラ伝熱管の熱履歴を管理して
いたが、これは間接的な熱履歴診断方法であり、同じボ
イラ伝熱管であっても、局部的に管内外スケールが付着
して発生する局部過熱やメタル温度計を設置していない
ボイラ伝熱管の過熱状況を診断することができなかっ
た。そのため、これらのボイラ伝熱管の劣化現象は、定
期検査時、経験を基にして任意の場所のボイラ伝熱管よ
りレプリカ等を採取して非破壊検査し、その金属組織よ
り判断し管理していた。
2. Description of the Related Art Boiler heat transfer tubes are exposed to high temperature combustion gas during operation, so that deterioration phenomena due to high temperature creep, high temperature corrosion or high temperature fatigue occur. This deterioration phenomenon is
In steel materials such as boiler heat transfer tubes including low alloy steel and low carbon steel, the metal temperature is remarkably generated upon receiving a heat history of 500 to 600 ° C. Conventionally, metal thermometers were installed every few tubes in the width direction of the boiler heat transfer tube in the non-heating part, and the heat history of the boiler heat transfer tube that had been received so far was managed by operation. This is a method for diagnosing heat history, and even for the same boiler heat transfer tube, local overheating caused by local adhesion of scale inside and outside the tube and overheat status of the boiler heat transfer tube without metal thermometer are diagnosed. I couldn't. Therefore, the deterioration phenomenon of these boiler heat transfer tubes was managed by judging from the metal structure of the boiler heat transfer tubes at any place based on experience during non-destructive inspections, based on experience during regular inspections. .

【0003】従来の鋼材熱履歴診断方法においては、熱
履歴により劣化した鋼材の管理を、健全部又は非健全部
を診断することなく、多くの検査点より経験的にサンプ
ルを決めて非破壊検査するため、サンプルが非健全部に
当たらなければ劣化状況の判断を誤るという危険性を持
っていた。
In the conventional method for diagnosing heat history of steel products, nondestructive inspection is conducted by empirically determining samples from many inspection points to manage the steel products deteriorated by heat history without diagnosing sound or unhealthy parts. Therefore, if the sample does not hit the unhealthy part, there is a risk that the judgment of the deterioration state is erroneous.

【0004】[0004]

【発明が解決しようとする課題】従来の鋼材熱履歴診断
方法にあっては、熱履歴を有する鋼材の健全部又は非健
全部を診断することなく、多くの検査点より経験的にサ
ンプルを決めて非破壊検査するため、サンプルが非健全
部に当たらなければ劣化状況の判断を誤るという問題点
があった。
In the conventional method for diagnosing heat history of steel products, a sample is empirically determined from many inspection points without diagnosing a sound part or a non-health part of a steel product having a heat history. Since the sample is subjected to nondestructive inspection, there is a problem that the deterioration state is erroneously judged unless the sample hits the unhealthy portion.

【0005】本発明の目的は、多数の被診断鋼材の中よ
り熱履歴により劣化した非健全部を見つけ出すことので
きる鋼材熱履歴診断方法及び診断装置を提供することに
ある。
An object of the present invention is to provide a steel material heat history diagnosis method and a diagnosis apparatus capable of finding an unhealthy portion deteriorated by heat history from a large number of steel materials to be diagnosed.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る鋼材熱履歴診断方法は、熱履歴により
比透磁率の変化した被診断鋼材に静磁界を印加するとと
もにコイルを当接し、コイルにパルス電流を流して被診
断鋼材の表面に渦電流を発生させ、比透磁率に応じて変
化した渦電流密度を電磁超音波感度で検出して感度増幅
率により表示し、感度増幅率より比透磁率を求めて熱履
歴を診断する構成とする。
In order to achieve the above object, a method for diagnosing a steel material thermal history according to the present invention applies a static magnetic field to a steel material to be diagnosed whose relative magnetic permeability has changed due to thermal history and applies a coil. In contact with each other, a pulse current is applied to the coil to generate an eddy current on the surface of the steel to be diagnosed, and the eddy current density that changes according to the relative permeability is detected by electromagnetic ultrasonic sensitivity and displayed by the sensitivity amplification factor, and the sensitivity amplification The relative magnetic permeability is obtained from the coefficient to diagnose the thermal history.

【0007】そして被診断鋼材は、比透磁率が所定値以
上変化した際に高温又はスケール生成の熱履歴を有する
非健全部と診断される構成でもよい。
The steel material to be diagnosed may be so constructed as to be diagnosed as an unhealthy portion having a high temperature or a thermal history of scale formation when the relative permeability changes by a predetermined value or more.

【0008】また鋼材熱履歴診断装置においては、前記
いずれか一つの鋼材熱履歴診断方法に用いられ、静磁界
を発生する永久磁石と、永久磁石に付設されかつ被診断
鋼材に当接されるコイルと、コイルにパルス電流を流し
て被診断鋼材に渦電流を発生するパルサと、検出した電
磁超音波感度を増幅するアンプと、その感度増幅率を表
示する表示装置と、感度増幅率より被診断鋼材の比透磁
率を求めて熱履歴を診断する手段とを備えた構成とす
る。
In the steel material heat history diagnosing device, a permanent magnet for generating a static magnetic field is used in any one of the steel material heat history diagnosing methods, and a coil attached to the permanent magnet and abutting on a steel material to be diagnosed. A pulser that applies a pulse current to the coil to generate an eddy current in the steel to be diagnosed, an amplifier that amplifies the detected electromagnetic ultrasonic sensitivity, a display that displays the sensitivity amplification factor, and a diagnosis based on the sensitivity amplification factor. And a means for diagnosing the thermal history by obtaining the relative permeability of the steel material.

【0009】さらにボイラ伝熱管の熱履歴管理方法にお
いては、前記の鋼材熱履歴診断装置を、熱履歴を有する
少なくとも一つのボイラ伝熱管に当接し、比透磁率が所
定値以上に変化し非健全部と診断されたそれぞれのボイ
ラ伝熱管を非破壊検査し、非破壊検査の結果を記録して
それぞれのボイラ伝熱管の熱履歴による劣化を管理する
構成とする。
Further, in the heat history management method for a boiler heat transfer tube, the above-mentioned steel material heat history diagnosis device is brought into contact with at least one boiler heat transfer tube having a heat history, and the relative magnetic permeability changes to a predetermined value or more and becomes unhealthy. Each boiler heat transfer tube diagnosed as a part is non-destructively inspected, and the result of the non-destructive inspection is recorded to manage deterioration of each boiler heat transfer tube due to thermal history.

【0010】[0010]

【作用】鋼材例えば低炭素鋼のボイラ伝熱管の比透磁率
は、図2に示すように、メタル温度の500〜600℃
にかけて大きく変化する特性を有する。静磁界を印加し
た鋼材にコイルを近付け、コイルにパルス電流を流すこ
とによって発生する渦電流の浸透深さδは、(数1)式
に示すように比透磁率によって変化する。
As shown in FIG. 2, the relative magnetic permeability of the boiler heat transfer tube made of steel material, for example, low carbon steel, is 500 to 600 ° C. which is the metal temperature.
It has the property of changing greatly over time. The penetration depth δ of the eddy current generated by bringing the coil closer to the steel material to which the static magnetic field is applied and passing a pulse current through the coil changes depending on the relative permeability as shown in the formula (1).

【0011】[0011]

【数1】 [Equation 1]

【0012】すなわち比透磁率が大きくなると渦電流の
浸透深さが浅くなり、渦電流密度が高くなる。静磁界が
印加された状態の中で渦電流密度が変化するとローレン
ツ力が変化し、このローレンツ力の変化がボイラ伝熱管
表面の振動の振幅を変化させ、結果的に電磁超音波の変
化として表れる。
That is, when the relative permeability increases, the penetration depth of the eddy current becomes shallow and the eddy current density becomes high. When the eddy current density changes while the static magnetic field is applied, the Lorentz force changes, and this change in Lorentz force changes the amplitude of vibration on the surface of the boiler heat transfer tube, resulting in changes in electromagnetic ultrasonic waves. .

【0013】したがって、ボイラ伝熱管の熱履歴が、比
透磁率の変化、つまり電磁超音波の感度変化として検出
されるため、電磁超音波センサをボイラ伝熱管に当てる
ことにより、ボイラ伝熱管の個々の部位の熱履歴が診断
可能となる。
Therefore, since the heat history of the boiler heat transfer tube is detected as a change in relative permeability, that is, a change in sensitivity of electromagnetic ultrasonic waves, by applying an electromagnetic ultrasonic sensor to the boiler heat transfer tube, the individual boiler heat transfer tubes can be detected. It becomes possible to diagnose the heat history of the part.

【0014】ボイラ伝熱管のメタル温度が600℃以上
になった場合、管外表面にスケール(Fe34)が生成
する。このスケールは絶縁体であるが強磁性体であり、
静磁界を印加した場合、この強磁性体の膜によりボイラ
伝熱管の金属内の磁界を強める働きがあるため、ローレ
ンツ力が増加し、かつ電磁超音波の検出感度が増加する
現象を生じる。したがって本実施例により、ボイラ伝熱
管のメタル温度が500〜600℃の間のみならず、ス
ケール生成現象を含め600℃以上の広い範囲の熱履歴
管理が可能となる。
When the metal temperature of the boiler heat transfer tube exceeds 600 ° C., scale (Fe 3 O 4 ) is produced on the outer surface of the tube. This scale is an insulator but a ferromagnet,
When a static magnetic field is applied, the ferromagnetic film acts to strengthen the magnetic field in the metal of the boiler heat transfer tube, so that the Lorentz force increases and the electromagnetic ultrasonic wave detection sensitivity increases. Therefore, according to the present embodiment, not only the metal temperature of the boiler heat transfer tube is in the range of 500 to 600 ° C., but also the heat history can be managed in a wide range of 600 ° C. or higher including the scale generation phenomenon.

【0015】[0015]

【実施例】本発明の一実施例を図1を参照しながら説明
する。図1に示すように鋼材熱履歴診断方法は、熱履歴
により比透磁率の変化した被診断鋼材10に静磁界7を
印加するとともにコイル2を当接し、コイル2にパルス
電流を流して被診断鋼材10の表面に渦電流を発生さ
せ、比透磁率に応じて変化した渦電流密度を電磁超音波
感度で検出して感度増幅率5により表示し、感度増幅率
5より比透磁率を求めて被診断鋼材10の熱履歴を診断
する構成であり、被診断鋼材は、比透磁率の変化が所定
以上の際に高温又はスケール生成の熱履歴を有する非健
全部と診断されるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the steel material thermal history diagnosis method applies a static magnetic field 7 to the steel material to be diagnosed 10 whose relative magnetic permeability has changed due to thermal history, abuts the coil 2, and applies a pulse current to the coil 2 to perform the diagnosis. An eddy current is generated on the surface of the steel material 10, the eddy current density changed according to the relative magnetic permeability is detected by electromagnetic ultrasonic sensitivity and displayed by the sensitivity amplification factor 5, and the relative permeability is calculated from the sensitivity amplification factor 5. It is configured to diagnose the heat history of the steel material 10 to be diagnosed, and the steel material to be diagnosed is to be diagnosed as an unhealthy portion having a heat history of high temperature or scale formation when the change in relative permeability exceeds a predetermined value.

【0016】次に一実施例の動作を説明する。定期検査
時に、ボイラ伝熱管等の被診断鋼材10に永久磁石1と
コイル2とよりなる電磁超音波センサ11を当接させた
後、パルサ3よりコイル2にパルス電流を流して被診断
鋼材10の表面に渦電流を発生させる。500〜600
℃の高温にさらされた被診断鋼材10は図2に示すよう
に、例えば比透磁率が500μ以上に変化しており、比
透磁率が大きくなると(数1)式に示すように、渦電流
の浸透深さが浅くなって渦電流密度が高くなる。渦電流
密度が変化するとローレンツ力Fが変化して被診断鋼材
10表面の超音波振動の振幅が図示Aのように変化す
る。結果的に電磁超音波の感度変化として感度増幅率が
表示装置6に表示されるため、感度増幅率より比透磁率
を求めることにより、被診断鋼材10が高温又は600
℃以上のスケール生成の熱履歴を有する非健全部である
ことが診断できる。この被診断鋼材よりスンプを採取し
て非破壊検査により金属組織を調べることにより、全体
の被診断鋼材のうちの高温の熱履歴を受けた非健全部の
劣化状態が診断できる。
Next, the operation of the embodiment will be described. During the periodic inspection, after the electromagnetic ultrasonic sensor 11 including the permanent magnet 1 and the coil 2 is brought into contact with the steel material 10 to be diagnosed such as a boiler heat transfer tube, a pulse current is passed from the pulsar 3 to the coil 2 to make the steel material 10 to be diagnosed. Generates an eddy current on the surface of. 500-600
As shown in FIG. 2, the steel material to be diagnosed 10 exposed to a high temperature of ℃ has a relative magnetic permeability of, for example, 500 μ or more. When the relative magnetic permeability becomes large, the eddy current becomes The permeation depth becomes shallow and the eddy current density increases. When the eddy current density changes, the Lorentz force F changes, and the amplitude of ultrasonic vibration on the surface of the steel 10 to be diagnosed changes as shown by A in the figure. As a result, the sensitivity amplification factor is displayed on the display device 6 as a change in the sensitivity of the electromagnetic ultrasonic wave. Therefore, by determining the relative permeability from the sensitivity amplification factor, the steel material 10 to be diagnosed has a high temperature or 600
It can be diagnosed that it is an unhealthy part having a heat history of scale generation of ℃ or more. By collecting the sump from the steel to be diagnosed and examining the metal structure by nondestructive inspection, it is possible to diagnose the deteriorated state of the unhealthy portion of the entire steel to be diagnosed that has undergone a high-temperature heat history.

【0017】本発明によれば、ボイラ伝熱管の熱履歴診
断によりボイラ伝熱管の劣化部位(非健全部)を多くの
ボイラ伝熱管の中より見付けだすことができるととも
に、劣化部位のみの定期的な精密点検を行うことがで
き、定期検査時の点検部位の削減ができしかも高い熱履
歴の信頼性を確保できる。言い替えれば、最小の精密点
検で高信頼性を得る検査が可能となり、定期検査期間の
短縮化や合理化をもたらす効果がある。
According to the present invention, it is possible to find a deteriorated portion (non-healthy portion) of the boiler heat transfer tube from many boiler heat transfer tubes by the heat history diagnosis of the boiler heat transfer tube, and to periodically check only the deteriorated portion. It is possible to perform various precise inspections, reduce inspection parts during regular inspections, and ensure high reliability of thermal history. In other words, it is possible to perform highly reliable inspection with a minimum of precision inspection, which has the effect of shortening and rationalizing the periodic inspection period.

【0018】本発明の他の実施例として鋼材熱履歴診断
装置は、図1に示すように、前記鋼材熱履歴診断方法に
用いられ、静磁界7を発生する永久磁石1と、永久磁石
1に付設されかつ被診断鋼材10に当接されるコイル2
と、コイル2にパルス電流を流して被診断鋼材10に渦
電流を発生するパルサ3と、検出した電磁超音波感度を
増幅するアンプ4と、その感度増幅率5を表示する表示
装置6と、感度増幅率5より被診断鋼材10の比透磁率
を求めて熱履歴を診断する手段、例えば図2に示す比透
磁率グラフとよりなる構成である。
As shown in FIG. 1, a steel material heat history diagnosing device according to another embodiment of the present invention is used in the steel material heat history diagnosing method, and includes a permanent magnet 1 for generating a static magnetic field 7 and a permanent magnet 1. Coil 2 attached and abutted on the steel 10 to be diagnosed
A pulser 3 that generates a eddy current in the steel 10 to be diagnosed by applying a pulse current to the coil 2, an amplifier 4 that amplifies the detected electromagnetic ultrasonic sensitivity, and a display device 6 that displays the sensitivity amplification factor 5. It is configured by means for obtaining the relative magnetic permeability of the steel material 10 to be diagnosed from the sensitivity amplification factor 5 and diagnosing the thermal history, for example, the relative magnetic permeability graph shown in FIG.

【0019】すなわち永久磁石1とコイル2とで電磁超
音波センサ11が形成され、パルサ3とアンプ4とを加
えて電磁超音波検出装置が形成され、電磁超音波検出装
置に表示装置6を付加して鋼材熱履歴診断装置が構成さ
れている。
That is, an electromagnetic ultrasonic sensor 11 is formed by the permanent magnet 1 and the coil 2, an electromagnetic ultrasonic detecting device is formed by adding the pulsar 3 and the amplifier 4, and a display device 6 is added to the electromagnetic ultrasonic detecting device. Then, a steel material heat history diagnostic device is configured.

【0020】本実施例によれば、電磁超音波センサを被
診断鋼材に当接し、感度増幅率の表示より被診断鋼材の
熱履歴を診断できるため、非健全部の発見が容易でかつ
正確になる効果がある。
According to this embodiment, since the electromagnetic ultrasonic sensor is brought into contact with the steel material to be diagnosed and the thermal history of the steel material to be diagnosed can be diagnosed from the display of the sensitivity amplification factor, the unhealthy portion can be easily and accurately found. There is an effect.

【0021】また本発明の他の実施例としてボイラ伝熱
管の熱履歴管理方法は、図1に示すように、前記鋼材熱
履歴診断装置を、熱履歴を有する少なくとも一つのボイ
ラ伝熱管(被診断鋼材)10に当接し、比透磁率が所定
値以上に変化し非健全部と診断されたそれぞれのボイラ
伝熱管10を非破壊検査し、非破壊検査の結果を記録し
てそれぞれのボイラ伝熱管の熱履歴による劣化を管理す
る構成とする。
As another embodiment of the present invention, a method for managing heat history of a boiler heat transfer tube is as follows. As shown in FIG. 1, at least one boiler heat transfer tube having a heat history is installed in the steel material heat history diagnostic device. Steel material) 10 and the relative magnetic permeability has changed to a predetermined value or more and each boiler heat transfer tube 10 that has been diagnosed as an unhealthy portion is non-destructively inspected, and the results of the non-destructive inspection are recorded to record the boiler heat transfer tubes. It is configured to manage the deterioration due to the heat history of.

【0022】本実施例によれば、多数のボイラ伝熱管の
中より劣化を生じたボイラ伝熱管を見つけ出し、そのボ
イラ伝熱管のみを精密検査することにより、劣化状況を
正確に把握できるため、定期検査期間が短縮されるとと
もに、定期検査が合理化される効果がある。
According to the present embodiment, since the deteriorated boiler heat transfer tube is found out of a large number of boiler heat transfer tubes and the boiler heat transfer tube is precisely inspected, it is possible to accurately grasp the deterioration state, so This has the effect of shortening the inspection period and streamlining regular inspections.

【0023】[0023]

【発明の効果】本発明によれば、多数の被診断鋼材の中
より非健全部を見付けだし、非健全部のみの精密点検を
行うことことにより、定期検査時の点検部数を削減でき
とともに劣化状況の判断の信頼性を確保でき、検査期間
の短縮化や合理化が可能となる効果がある。
According to the present invention, an unhealthy portion is found out of a large number of steel materials to be diagnosed, and a precise inspection of only the unhealthy portion is carried out, whereby the number of inspected portions at the time of the periodic inspection can be reduced and deterioration is caused. There is an effect that the reliability of the judgment of the situation can be secured and the inspection period can be shortened and rationalized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】比透磁率を説明するグラフである。FIG. 2 is a graph illustrating relative permeability.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 コイル 3 パルサ 4 アンプ 5 感度増幅率 6 表示装置 7 静磁界 10 被診断鋼材 1 permanent magnet 2 coil 3 pulser 4 amplifier 5 sensitivity amplification factor 6 display device 7 static magnetic field 10 steel to be diagnosed

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱履歴により比透磁率の変化した被診断
鋼材に静磁界を印加するとともにコイルを当接し、該コ
イルにパルス電流を流して前記被診断鋼材の表面に渦電
流を発生させ、前記比透磁率に応じて変化した渦電流密
度を電磁超音波感度で検出して感度増幅率により表示
し、該感度増幅率より前記比透磁率を求めて前記熱履歴
を診断することを特徴とする鋼材熱履歴診断方法。
1. A static magnetic field is applied to a steel material to be diagnosed whose relative magnetic permeability has changed due to thermal history, a coil is brought into contact with the steel material, and a pulse current is applied to the coil to generate an eddy current on the surface of the steel material to be diagnosed. The eddy current density changed according to the relative permeability is detected by electromagnetic ultrasonic sensitivity and displayed by the sensitivity amplification factor, and the thermal history is diagnosed by obtaining the relative permeability from the sensitivity amplification factor. Steel material heat history diagnosis method.
【請求項2】 被診断鋼材は、比透磁率が所定値以上変
化した際に高温又はスケール生成の熱履歴を有する非健
全部と診断されることを特徴とする請求項1又は2記載
の鋼材熱履歴診断方法。
2. The steel material according to claim 1, wherein the steel material to be diagnosed is diagnosed as an unhealthy portion having a high temperature or a thermal history of scale formation when the relative permeability changes by a predetermined value or more. Thermal history diagnosis method.
【請求項3】 請求項2記載の鋼材熱履歴診断方法に用
いられ、静磁界を発生する永久磁石と、該永久磁石に付
設されかつ被診断鋼材に当接されるコイルと、該コイル
にパルス電流を流して前記被診断鋼材に渦電流を発生す
るパルサと、検出した電磁超音波感度を増幅するアンプ
と、その感度増幅率を表示する表示装置と、該感度増幅
率より前記被診断鋼材の比透磁率を求めて熱履歴を診断
する手段とを備えたことを特徴とする鋼材熱履歴診断装
置。
3. A method for diagnosing a steel material thermal history according to claim 2, wherein a permanent magnet for generating a static magnetic field, a coil attached to the permanent magnet and abutting on a steel material to be diagnosed, and a pulse for the coil. A pulser that applies an electric current to generate an eddy current in the steel material to be diagnosed, an amplifier that amplifies the detected electromagnetic ultrasonic sensitivity, a display device that displays the sensitivity amplification factor thereof, and a display device that displays the sensitivity amplification factor of the steel material to be diagnosed from the sensitivity amplification factor. A steel material thermal history diagnostic device, comprising: means for diagnosing thermal history by obtaining relative permeability.
【請求項4】 請求項3記載の鋼材熱履歴診断装置を、
熱履歴を有する少なくとも一つのボイラ伝熱管に当接
し、比透磁率が所定値以上に変化し非健全部と診断され
たそれぞれのボイラ伝熱管を非破壊検査し、該非破壊検
査の結果を記録してそれぞれのボイラ伝熱管の熱履歴に
よる劣化を管理することを特徴とするボイラ伝熱管の熱
履歴管理方法。
4. A steel material heat history diagnostic device according to claim 3,
A non-destructive inspection is performed on each boiler heat transfer tube that is in contact with at least one boiler heat transfer tube having a heat history, and the relative permeability has changed to a predetermined value or more and is diagnosed as an unhealthy portion, and the result of the nondestructive inspection is recorded. A heat history management method for a boiler heat transfer tube, characterized in that deterioration of each boiler heat transfer tube due to heat history is managed.
JP8029495A 1995-04-05 1995-04-05 Method and device for diagnosing steel material heat history Pending JPH08278287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8029495A JPH08278287A (en) 1995-04-05 1995-04-05 Method and device for diagnosing steel material heat history

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8029495A JPH08278287A (en) 1995-04-05 1995-04-05 Method and device for diagnosing steel material heat history

Publications (1)

Publication Number Publication Date
JPH08278287A true JPH08278287A (en) 1996-10-22

Family

ID=13714258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8029495A Pending JPH08278287A (en) 1995-04-05 1995-04-05 Method and device for diagnosing steel material heat history

Country Status (1)

Country Link
JP (1) JPH08278287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053119A (en) * 2004-07-15 2006-02-23 Hitachi Building Systems Co Ltd Method and apparatus for diagnosing degradation of laminated structure having embedded magnetic object
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
CN108802185A (en) * 2018-06-26 2018-11-13 哈尔滨工业大学 Metal material defects detection sensor based on impulse eddy current and electromagnetic acoustic
RU192700U1 (en) * 2019-04-08 2019-09-26 Открытое акционерное общество "Святогор" WATER BOILER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053119A (en) * 2004-07-15 2006-02-23 Hitachi Building Systems Co Ltd Method and apparatus for diagnosing degradation of laminated structure having embedded magnetic object
JP2009139137A (en) * 2007-12-04 2009-06-25 Babcock Hitachi Kk Graphitization damage diagnosing method of carbon steel and mo steel for boiler
CN108802185A (en) * 2018-06-26 2018-11-13 哈尔滨工业大学 Metal material defects detection sensor based on impulse eddy current and electromagnetic acoustic
CN108802185B (en) * 2018-06-26 2020-12-29 哈尔滨工业大学 Metal material defect detection sensor based on pulse eddy current and electromagnetic ultrasound
RU192700U1 (en) * 2019-04-08 2019-09-26 Открытое акционерное общество "Святогор" WATER BOILER

Similar Documents

Publication Publication Date Title
EP0840110B1 (en) Nondestructive testing:transient depth thermography
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
EP1517138B1 (en) Method and apparatus for acoustic thermography inspection
Sadek NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations
Barakat et al. A one-dimensional approach towards edge crack detection and mapping using eddy current thermography
Xu et al. Investigation of metal magnetic memory signals of welding cracks
Beine et al. NDT for CFRP aeronautical components a comparative study
JP3639958B2 (en) Quantitative nondestructive evaluation method of cracks
JPH08278287A (en) Method and device for diagnosing steel material heat history
JP5188466B2 (en) Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detection apparatus using the same
Daw et al. Update on ultrasonic thermometry development at idaho national laboratory
da Silva et al. Non-invasive fast detection of internal fouling layers in tubes and ducts by acoustic vibration analysis
Berndt NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.
JP3803314B2 (en) Creep void non-destructive detection method
Nanekar et al. Nondestructive Evaluation of Corrosion: Case Studies I
JP2005274381A (en) Nondestructive inspection method and nondestructive inspection apparatus of back defect and material characteristics by electromagnetic method
Carreon Detection of creep damage in a nickel-based superalloy turbine bucket using eddy current imaging
Cuffe et al. Eddy current measurement of case hardened depth of steel components
EP1564551A1 (en) Non-destructive method for the detection of creep damage in ferromagnetic parts with a device consisting of an eddy current coil and a hall sensor
Dmitriev et al. Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer
Matsumoto Non-destructive evaluation of fatiguebythermal, acoustic and electromagnetic techniques
Khan et al. Delta T source location in AE signal processing technique
JPH0658911A (en) Method and device for predicting life of high-temperature equipment by magnetic ae
Sato et al. Non‐destructive evaluation of fatigue and creep‐fatigue damage by means of the induced‐current focused potential drop technique
Kim et al. Detection and evaluation of backside crack in spot-welding component of heat-resistant alloy using electromagnetic field distortion