JPH08278254A - Damage inspection apparatus of long-rod insulator - Google Patents

Damage inspection apparatus of long-rod insulator

Info

Publication number
JPH08278254A
JPH08278254A JP7106924A JP10692495A JPH08278254A JP H08278254 A JPH08278254 A JP H08278254A JP 7106924 A JP7106924 A JP 7106924A JP 10692495 A JP10692495 A JP 10692495A JP H08278254 A JPH08278254 A JP H08278254A
Authority
JP
Japan
Prior art keywords
long
fringe
axis
image receiving
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7106924A
Other languages
Japanese (ja)
Other versions
JP3450512B2 (en
Inventor
Satoshi Suzuki
智 鈴木
Tetsuro Hirai
哲朗 平井
Shinichi Fukuhara
信一 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Hitachi High Tech Corp
Original Assignee
Central Japan Railway Co
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co, Hitachi Electronics Engineering Co Ltd filed Critical Central Japan Railway Co
Priority to JP10692495A priority Critical patent/JP3450512B2/en
Publication of JPH08278254A publication Critical patent/JPH08278254A/en
Application granted granted Critical
Publication of JP3450512B2 publication Critical patent/JP3450512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE: To obtain a damage inspection apparatus by which the damage of a long-rod insulator at every electric train can be inspected automatically while the electric train is running to an inspection and repair depot. CONSTITUTION: A damage inspection apparatus is provided with an optical system 5 which is composed of two light sources 51a, 51b which are arranged and installed at both sidewalls 41 of an inspection and repair depot 4 and which shine illumination light at both side faces of respective long-rod insulators 31 (R), 31 (L) at two electric trains 1M, 1N entering the depot and two each of image receiving cameras 52a, 52b and 53a, 53b. The damage inspection apparatus is constituted of a wheel detector 6 which is installed at the lower part of the optical system 5, a train-number judgment circuit 71 which is installed at a proper place, a shutter control circuit 72, an image processing part 73 which processes image signals of the respective image receiving cameras, a quality judgment part 74 which comprises a microprocessor 745 and a memory 746 and a data processing part 7 which is composed of an output part 75.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電車の屋根上に設け
た長幹碍子の破損の検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for inspecting damage to a long-distance insulator provided on a roof of a train.

【0002】[0002]

【従来の技術】新幹線においては、速度がより高速化さ
れた新型列車が相次いで開発され、一部はすでに稼働し
ている。図8は稼働中の新型列車の一例を示し、列車は
複数両、例えば16両の電車1A,1B,1C……によ
り編成されている。各電車はパンタグラフ11によりトロ
リ線2より電力を受電して走行するが、パンタグラフ11
は風圧により高速化に対して不利であり、また破損のチ
ャンスも多い。このため、その個数は必要最小限に少な
くされ、1個のパンタグラフ11より数両の電車に対して
電力を供給する方式がとられ、このために各電車の連結
部には電力接続部3が設けてある。
2. Description of the Related Art In Shinkansen, new trains with higher speed have been developed one after another, and some of them are already in operation. FIG. 8 shows an example of a new train in operation. The train is composed of a plurality of trains, for example 16 trains 1A, 1B, 1C .... Each train receives electric power from the trolley wire 2 by the pantograph 11 and travels.
Is disadvantageous for speeding up due to wind pressure, and there are many opportunities for damage. For this reason, the number of the electric trains is reduced to the minimum necessary, and a method of supplying electric power to several trains from one pantograph 11 is adopted. For this reason, the electric power connecting unit 3 is provided in the connecting portion of each train. It is provided.

【0003】図9は電力接続部3の構成を示す平面およ
び側面図である。電力接続部3は、同一構造の長幹碍子
31(L) ,31(R) を有し、これらが隣接する電車1Mと1
Nの屋根12の上に対向して設けられる。各長幹碍子31
は、後端の金属板33が支持部材35に、支持部材35は屋根
12にそれぞれ固定され、この部分は絶縁カバー37により
カバーされている。各長幹碍子31の軸中心には接続ケー
ブル34が貫通し、それぞれの先端の接続金具32は、屈曲
した接続導体36により互いに接続されている。両長幹碍
子31は、複数n個のフリンジ311(1)〜311(n)を有し、そ
れぞれの直径は後端より先端の方がやや小さく、その傾
斜角θa は約5°あり、各長幹碍子31は角度θa 傾斜し
て固定されて、それぞれの上面はほぼ水平である。
FIG. 9 is a plan view and a side view showing the structure of the power connection unit 3. The power connection part 3 is a long insulator having the same structure.
It has 31 (L) and 31 (R), which are adjacent to trains 1M and 1
It is provided to face the roof 12 of N. Each principal insulator 31
The metal plate 33 at the rear end is the support member 35, and the support member 35 is the roof.
They are fixed to 12 respectively, and this portion is covered with an insulating cover 37. A connection cable 34 extends through the center of each long-axis insulator 31, and the connection fittings 32 at the ends thereof are connected to each other by a bent connection conductor 36. Both long stem insulators 31 have a plurality of n fringes 311 (1) to 311 (n), the diameter of each of which is slightly smaller at the tip than at the rear end, and the inclination angle θ a is about 5 °. Each long insulator 31 is fixed with an inclination of an angle θ a , and the upper surface of each is substantially horizontal.

【0004】[0004]

【発明が解決しようとする課題】列車が走行すると、礫
の衝突などにより、長幹碍子31はいずれかのフリンジ31
1 が破損することがある。各フリンジ311 はセラミック
ス(陶器)であり、底面は比較的に安全であるが、上面
と両側面が破損する場合が多い。図10は、フリンジ31
1 の破損状態を例示するもので、(イ) または(ロ) のよう
にかなりの程度に欠損している。このように外周が欠損
したフリンジ311 は、内部にクラックなどを伴う場合が
あり、このために長幹碍子31は絶縁が劣化して供給電力
の高電圧(20〜30kV)に耐えられない。これに対
して従来は、列車が検修車庫に入庫したとき、各電車の
屋根上に検査員が登って、打検や目視により長幹碍子31
を点検して良否が検査されている。良否の判定基準とし
ては、フリンジ311 の直径は約300mmあり、外周に
おける欠損の長さが2.5mm以上のときは要注意とさ
れ、これが50mm以上の場合は不良として交換などの
措置がとられている。しかし、このような人手による検
査方法は非能率であり、また屋根上作業は危険であるの
で、各フリンジ311 の破損を自動検査する装置が望まれ
ている。ただし、良否の判定は上記のように、欠損の外
周における長さを基準とするので、この外周長を正確に
測定することが必要である。以下便宜上、外周長を検査
する方法を検査条件とよんでおく。この発明は以上に鑑
みてなされたもので、各長幹碍子31のフリンジ311 の破
損を、上記の検査条件に従って自動検査する装置を提供
することを目的とする。
When the train runs, the long-distance insulator 31 is caused to fall in any fringe 31 due to the collision of gravel.
1 may be damaged. Each fringe 311 is a ceramic (ceramic), the bottom is relatively safe, but the top and both sides are often damaged. Figure 10 shows the fringe 31
This is an example of the damaged state of 1 and it is significantly damaged like (a) or (b). The fringe 311 having a defective outer periphery in this way may be accompanied by cracks or the like inside, so that the insulation of the long insulator 31 deteriorates and cannot withstand the high voltage (20 to 30 kV) of the supplied power. On the other hand, in the past, when a train entered the inspection garage, an inspector climbed on the roof of each train,
Is checked to see if it is good or bad. As a criterion for quality, the fringe 311 has a diameter of about 300 mm, and caution is required when the length of the fringe 311 is 2.5 mm or more. If it is 50 mm or more, it is considered defective and measures such as replacement are taken. ing. However, since such a manual inspection method is inefficient and roof work is dangerous, an apparatus for automatically inspecting each fringe 311 for damage is desired. However, since the quality judgment is based on the length at the outer circumference of the defect as described above, it is necessary to accurately measure the outer circumference. Hereinafter, for convenience, the method of inspecting the outer peripheral length is referred to as an inspection condition. The present invention has been made in view of the above, and an object thereof is to provide an apparatus for automatically inspecting the fringe 311 of each long-distance insulator 31 for breakage in accordance with the above-mentioned inspection conditions.

【0005】[0005]

【課題を解決するための手段】この発明は長幹碍子の破
損検査装置であって、前記の列車に対する検修車庫の天
井または両側壁に、検修車庫に入庫する2両の電車の各
長幹碍子の両側面に対して、照明光を照射する2個の光
源と、これらの両側面に対して適当な受像角度に設定さ
れた、2個1組の受像カメラの2組よりなる光学系を配
設する。また、光学系の下部に設けられ、検修車庫に入
庫する各電車の車輪を検出する車輪検出器と、適当な箇
所にそれぞれ設けられ、入力した車輪検出器の検出信号
より、電車の号車番号を判定して判定信号を出力する号
車判定回路と、判定信号の入力により各受像カメラのシ
ャッターを切って該各長幹碍子を同時に撮像するシャッ
ター制御回路、各受像カメラより出力される画像信号を
それぞれ処理して、各長幹碍子の複数のフリンジの輪郭
線を抽出する画像処理部、および、マイクロプロセッサ
とメモリとを有し、抽出された各輪郭線をマイクロプロ
セッサにより適当な間隔でサンプリングしてそれぞれの
座標値を算出し、算出された各座標値を、予め測定され
てメモリに記憶された正常な各フリンジの座標データに
比較して、両者の差が許容値より大きいフリンジを不良
と判定し、その不良データに対して、上記の判定信号の
示す電車の号車番号を付加して出力する良否判定部とに
より構成される。上記において、各長幹碍子の中心軸の
方向をX軸、直角断面の水平方向をY軸、垂直方向をZ
軸とし、各組の2個の受像カメラの受像角度を、YZ面
に対してそれぞれ約60°に設定して、両受像カメラの
撮像範囲を、長幹碍子の各フリンジの外周の、底面を除
く約270°とする。上記において、各組の2個の受像
カメラの受像角度を、X軸に対してそれぞれ約45°に
設定して、長幹碍子の円形の各フリンジをそれぞれ楕円
形に変換して撮像し、撮像された各画像信号を画像処理
部により処理して、各フリンジの楕円形の輪郭線を抽出
し、抽出された各輪郭線の楕円形を回転して、その長軸
をY軸、その直角方向をZ軸に一致させ、マイクロプロ
セッサにより、楕円形の中心座標値(y0.z0)と、長軸
の半径Ra とをそれぞれ求め、円形の各フリンジの外周
を複数の微小な円弧に等分し、各円弧の長さΔLに対応
したY軸上の微小距離Δy: Δy=(Ra 2−y21/2・ΔL/Ra ………(1) をそれぞれ算出して上記メモリに記憶する。このΔyの
間隔で、楕円形の輪郭線をサンプリングしてそれぞれの
Z座標値を求め、えられた各Z座標値を、予め、正常な
各フリンジの楕円形の輪郭線に対し、Δyの間隔で同様
にサンプリングしてメモリに記憶された各Z座標データ
に比較するものである。
SUMMARY OF THE INVENTION The present invention is a damage inspection device for a long-distance insulator, wherein each of the two trains entering the inspection garage is installed on the ceiling or both side walls of the inspection garage for the train. An optical system consisting of two light sources for illuminating both sides of the porcelain insulator and two image-receiving cameras each set to an appropriate image-receiving angle with respect to these both sides. To arrange. In addition, a wheel detector installed in the lower part of the optical system that detects the wheels of each train entering the repair garage and a wheel detector installed at an appropriate place and detected by the input wheel detector The vehicle number determination circuit that determines and outputs a determination signal, the shutter control circuit that simultaneously releases the shutter of each image receiving camera by inputting the determination signal and images each of the long insulators, and the image signal output from each image receiving camera. An image processing unit for processing and extracting contour lines of a plurality of fringes of each long insulator, and a microprocessor and a memory are provided, and each extracted contour line is sampled by the microprocessor at appropriate intervals. To calculate each coordinate value and compare each calculated coordinate value to the coordinate data of each normal fringe measured in advance and stored in the memory, and the difference between the two is allowed. A larger fringe is determined to be defective, for the defective data, constituted by a quality determining section for outputting by adding the car number of the train indicated by the determination signal. In the above, the direction of the central axis of each long insulator is the X axis, the horizontal direction of the right angle cross section is the Y axis, and the vertical direction is the Z direction.
With the axis as the axis, the image receiving angles of the two image receiving cameras of each set are set to about 60 ° with respect to the YZ plane, and the image capturing range of both image receiving cameras is set to the outer circumference of each fringe of the long insulator. Exclude about 270 °. In the above, the image receiving angle of each of the two image receiving cameras is set to about 45 ° with respect to the X-axis, and each circular fringe of the long insulator is converted into an elliptical shape for imaging. Each of the extracted image signals is processed by the image processing unit to extract an elliptical contour line of each fringe, the ellipse of each extracted contour line is rotated, and its major axis is the Y axis and its orthogonal direction. With the Z-axis, the central coordinate value (y 0 .z 0 ) of the ellipse and the radius R a of the major axis are obtained by the microprocessor, and the outer circumference of each circular fringe is divided into a plurality of minute arcs. Divide into equal parts and calculate the minute distance Δy on the Y-axis corresponding to the length ΔL of each arc: Δy = (R a 2 −y 2 ) 1/2 · ΔL / R a ………… (1) Store in the memory. At this Δy interval, the elliptical contour line is sampled to obtain each Z coordinate value, and the obtained Z coordinate values are previously set to the Δy interval with respect to the normal elliptical contour line of each fringe. In the same manner, the data is sampled and compared with each Z coordinate data stored in the memory.

【0006】[0006]

【作用】上記の長幹碍子の破損検査装置においては、検
修車庫の天井または両側壁に配設された光学系の、2個
の光源は検修車庫に低速度で入庫する2両の電車の各長
幹碍子の両側面に対して照明光を照射し、各組の2個の
受像カメラは、対応する長幹碍子の両側面に対して適当
な受像角度に設定される。車輪検出器は逐次に入庫する
各電車の車輪を検出し、その検出信号は号車判定回路に
入力して、各電車の号車番号が判定されて判定信号が出
力され、これが入力したシャッター制御回路は各受像カ
メラのシャッターを切って各長幹碍子が同時に撮像され
る。各受像カメラが出力する画像信号は画像処理部によ
り処理されて、各長幹碍子の複数のフリンジの輪郭線が
抽出され、これらは良否判定部のマイクロプロセッサに
より適当な間隔でサンプリングされてそれぞれの座標値
が算出される。算出された各座標値は、予め測定されて
メモリに記憶された正常な各フリンジの座標データに比
較され、両者の差が許容値より大きいフリンジは不良と
判定され、その不良データに対して、判定信号の示す電
車の号車番号を付加して出力される。上記において、各
組の2個の受像カメラの受像角度をYZ面に対してそれ
ぞれ約60°に設定すると、両受像カメラの撮像範囲
は、長幹碍子の各フリンジの外周の底面を除く約270
°となり、破損が発生し易い範囲が撮像される。また上
記において、各受像カメラの受像角度をX軸に対してそ
れぞれ約45°に設定すると、長幹碍子の各フリンジ面
に対する適切な受像角度となり、円形の各フリンジは各
受像カメラのそれぞれに楕円形に変換して撮像される。
撮像された各画像信号は画像処理部により処理されて、
各楕円形の輪郭線が抽出されて、それぞれの長軸がY
軸、短軸がZ軸に一致するように適当な角度回転され
る。マイクロプロセッサにより、楕円形の中心座標値
(y0,z0)と、長軸の半径Ra とがそれぞれ求められ、
上記の式(1) によりY軸上の微小距離Δyが算出されて
メモリに記憶される。各Δyは円形の各フリンジの外周
を等分した微小な円弧の長さΔLに対応しており、Δy
の間隔で楕円形の輪郭線をサンプリングすることにより
前記の検査条件が満たされる。各サンプリングより求め
た各Z座標値は、予め、正常な各フリンジの楕円形の輪
郭線に対し、Δyの間隔で同様にサンプリングしてメモ
リに記憶された各Z座標データに比較され、上記のよう
に、両者の差が許容値より大きいときは、このフリンジ
は不良と判定される。
In the above-mentioned damage inspection device for long-distance insulators, the two light sources of the optical system arranged on the ceiling or both side walls of the repair garage are two trains that enter the repair garage at low speed. Illuminating light is radiated to both sides of each long insulator, and the two image receiving cameras of each set are set to appropriate image receiving angles with respect to both sides of the corresponding long insulator. The wheel detector detects the wheels of each train that sequentially enters, and the detection signal is input to the car determination circuit, the car number of each train is determined, and a determination signal is output. The shutter of each image-receiving camera is released and each long insulator is simultaneously imaged. The image signal output from each image receiving camera is processed by the image processing unit to extract contour lines of a plurality of fringes of each long insulator, and these are sampled at appropriate intervals by the microprocessor of the quality determination unit. Coordinate values are calculated. Each calculated coordinate value is compared with the coordinate data of each normal fringe measured in advance and stored in the memory, and a fringe in which the difference between the two is larger than the allowable value is determined to be defective, and for the defective data, The car number of the train indicated by the determination signal is added and output. In the above description, when the image receiving angles of the two image receiving cameras of each set are set to about 60 ° with respect to the YZ plane, the image capturing range of both image receiving cameras is about 270 excluding the outer peripheral bottom surface of each fringe of the long insulator.
The angle becomes °, and an area where damage is likely to occur is imaged. Further, in the above, if the image receiving angle of each image receiving camera is set to about 45 ° with respect to the X axis, an appropriate image receiving angle is obtained for each fringe surface of the long insulator, and each circular fringe is an ellipse for each image receiving camera. It is converted into a shape and imaged.
Each captured image signal is processed by the image processing unit,
The outline of each ellipse is extracted, and the major axis of each is Y
The axis and the minor axis are rotated by an appropriate angle so as to coincide with the Z axis. The central coordinate value (y 0 , z 0 ) of the ellipse and the radius R a of the major axis are obtained by the microprocessor,
The minute distance Δy on the Y-axis is calculated by the above equation (1) and stored in the memory. Each Δy corresponds to the length ΔL of a minute circular arc that equally divides the outer circumference of each circular fringe, and Δy
The inspection condition is satisfied by sampling the elliptical contour line at intervals of. Each Z coordinate value obtained from each sampling is previously compared with each Z coordinate data stored in the memory similarly sampled at intervals of Δy with respect to the oval contour line of each normal fringe, and As described above, when the difference between the two is larger than the allowable value, this fringe is determined to be defective.

【0007】[0007]

【実施例】図1〜図7は、この発明の一実施例を示し、
図1は各受像カメラの配置を示し、(a) は平面図、(b)
は側面図、(c) は正面図である。図2はデータ処理部の
概略のブロック構成図、図3は各受像カメラの受像角度
の解析図、図4は長幹碍子の受像範囲と、撮像された各
フリンジの楕円形画像の説明図、図5は楕円輪郭線に対
するサンプリング方法の問題点の説明図、図6はフリン
ジの外周を等分するサンプリング方法の解析図、図7
は、この発明における楕円輪郭線のサンプリング方法の
説明図である。
1 to 7 show one embodiment of the present invention,
Figure 1 shows the layout of each image receiving camera, (a) is a plan view, (b)
Is a side view and (c) is a front view. 2 is a schematic block configuration diagram of the data processing unit, FIG. 3 is an analysis diagram of an image receiving angle of each image receiving camera, FIG. 4 is an explanatory diagram of an image receiving range of a long insulator, and an elliptical image of each fringe imaged, FIG. 5 is an explanatory diagram of problems of the sampling method for the elliptical contour line, FIG. 6 is an analysis diagram of the sampling method for equally dividing the outer periphery of the fringe, and FIG.
FIG. 6 is an explanatory diagram of a sampling method of an elliptic contour line according to the present invention.

【0008】図1(a),(b),(c) において、4は検修車庫
を示し、その両側壁41(または天井42) の適当な位置
に、2個の光源51a,51b と、長幹碍子21(R) に対する2
個の受像カメラ52a,52b 、および長幹碍子21(L) に対す
る受像カメラ53a,53b よりなる光学系5を配設する。各
受像カメラ52a 〜53b の受像角度は、Y軸に対して
φY,Z軸に対してφZ ,X軸に対してφX (φX は図
示省略)とし、これらの角度関係については後述する。
また光学系5の下部には、投光器61と受光センサ62より
なり、入庫する電車1の車輪13を検出する車輪検出器6
を設ける。
In FIGS. 1 (a), 1 (b) and 1 (c), 4 indicates an inspection garage, and two light sources 51a and 51b are provided at appropriate positions on both side walls 41 (or ceiling 42) thereof. 2 against the long insulator 21 (R)
An optical system 5 including individual image receiving cameras 52a and 52b and image receiving cameras 53a and 53b for the long insulator 21 (L) is provided. Receiving angle of each image-receiving cameras 52a ~53B is, phi Y to the Y-axis, phi with respect to the Z axis Z, phi X with respect to the X-axis (phi X is not shown) and, later on these angular relationships To do.
Further, a wheel detector 6 for detecting the wheels 13 of the train 1 to be stored is provided below the optical system 5 with a projector 61 and a light receiving sensor 62.
To provide.

【0009】図2に示すデータ処理部7は、号車判定回
路71と、シャッター制御回路72、輪郭抽出部73、破損判
定部74および出力部75とにより構成される。シャッター
制御回路72は受光センサ62に接続され、輪郭抽出部73は
4個の輪郭抽出回路731 〜734 よりなり、それぞれは受
像カメラ52a 〜53b に接続される。また破損判定部74
は、4個のA/D変換器(A/D)741 〜744 とマイク
ロプロセッサ(MPU)745 、メモリ(MEM)746 よ
りなり、図示のように接続される。
The data processing unit 7 shown in FIG. 2 is composed of a car number determining circuit 71, a shutter control circuit 72, a contour extracting unit 73, a damage determining unit 74 and an output unit 75. The shutter control circuit 72 is connected to the light receiving sensor 62, and the contour extracting unit 73 is composed of four contour extracting circuits 731 to 734, which are respectively connected to the image receiving cameras 52a to 53b. In addition, the damage determination unit 74
Is composed of four A / D converters (A / D) 741 to 744, a microprocessor (MPU) 745, and a memory (MEM) 746, which are connected as shown.

【0010】図3(a) において、各受像カメラ52a 〜53
b の受像角度は、前記のように、X軸に対してφX ,Y
軸に対してφY ,Z軸に対してφZ をなしている。い
ま、受像カメラの受像点P0 のXYZ座標を(x0 ,y
0 ,z0)とし、座標原点Oと点P0 の距離をr0 とする
と、 cosφX =x0/r0 ,cosφY =y0/r0 ,cosφZ =z0/r0 …(2) であり、これらの間には、 x0 2+y0 2+z0 2=r0 2 ………(3) が成立する。次に(b) において、点P0 のYZ面に対す
る投影点P0 ’の、Z軸に対する角度φYZを求めると、
その正切は、 tanφYZ=y0/z0 ………(4) である。両受像カメラ52a,52b は、長幹碍子21(L) の底
面を除く外周の、できるだけ広い範囲を受像することが
必要であるから、角度φYZを大きく、例えば60°に設
定する。他方の受像カメラ 53a,53bも同様である。角度
φYZを60°に設定すると、式(4) は、tanφYZ=√
3=y0/z0 となり、また式(2) により、y0/z0 =c
osφY /cosφZ であるから、結局、 cosφZ = cosφY /√3 ………(5) なる関係式がえられる。ここで、角度φY を45°〜7
0°の範囲とし、式(3) と(5) により、それぞれに対す
る角度φX とφZ の値を概算すると、角度φYZ=60°
に対して、 φY(°) 45 50 55 60 70 φX 55 48 42 35 33 φZ 66 68 70 73 80 の角度表がえられる。ここで角度φX には、長幹碍子21
の各フリンジ311 と、その破損を撮像するための、適当
な角度範囲がある。例えばこれを高角度にすると、フリ
ンジ311 とその破損は重なり合って両者の識別が難し
い。また低角度にすると、各フリンジ311 がすべて重な
り合って、破損が隠れてしまう。よって、角度φX には
45°付近が適当である。なお長幹碍子21は、前記した
ように約5°傾斜していることを考慮し、角度φX を4
2°とすると実効的に約45°となり、上表により角度
φY は55°、角度φZ は70°に決まる。
In FIG. 3 (a), each of the image receiving cameras 52a-53
As described above, the image receiving angle of b is φ X , Y with respect to the X axis.
The axis is φ Y and the Z axis is φ Z. Now, let the XYZ coordinates of the image receiving point P 0 of the image receiving camera be (x 0 , y
0 , z 0 ), and the distance between the coordinate origin O and the point P 0 is r 0 , cos φ X = x 0 / r 0 , cos φ Y = y 0 / r 0 , cos φ Z = z 0 / r 0 ( 2), and between them, x 0 2 + y 0 2 + z 0 2 = r 0 2 (3) holds. Next, in (b), when the angle φ YZ of the projection point P 0 ′ of the point P 0 on the YZ plane with respect to the Z axis is calculated ,
The normal cut is tan φ YZ = y 0 / z 0 (4). Both of the image receiving cameras 52a and 52b need to receive the image as wide as possible in the outer periphery except the bottom surface of the long insulator 21 (L). Therefore, the angle φ YZ is set large, for example, 60 °. The same applies to the other image receiving cameras 53a and 53b. Setting the angle phi YZ to 60 °, equation (4) is, tan [phi YZ = √
3 = y 0 / z 0 , and from the equation (2), y 0 / z 0 = c
Since osφ Y / cos φ Z , the following relational expression is obtained: cos φ Z = cos φ Y / √3 (5) Here, the angle φ Y is 45 ° to 7
When the values of the angles φ X and φ Z for the respective values are roughly calculated by the equations (3) and (5) within the range of 0 °, the angle φ YZ = 60 °
In contrast, an angle table of φ Y (°) 45 50 55 60 70 φ X 55 55 48 42 35 33 φ Z 66 68 70 73 80 is obtained. Here, at the angle φ X , the long insulator 21
There is an appropriate angular range for imaging each fringe 311 and its damage. For example, if this is set at a high angle, the fringe 311 and its damage overlap and it is difficult to distinguish between them. At low angles, the fringes 311 all overlap and hide the damage. Therefore, it is suitable for the angle φ X to be around 45 °. Considering that the long insulator 21 is inclined by about 5 ° as described above, the angle φ X is set to 4
When it is set to 2 °, it effectively becomes about 45 °, and the angle φ Y is determined to be 55 ° and the angle φ Z is determined to be 70 ° from the above table.

【0011】図4は、上記の各角度φYZ,φX に設定さ
れた各受像カメラ52a 〜53b の受像範囲を示す。(a) は
YZ面を示し、60°の角度φYZにより、受像カメラと
長幹碍子の距離Lがあまり小さくない限り、受像カメラ
52a(53a)は、各フリンジ311の外周の、点pa と点pb
の間のほぼ180°が撮像範囲である。同様に受像カメ
ラ52b(53b)は、点pc と点pd の間のほぼ180°が撮
像範囲であり、両撮像範囲は上面付近で重なるので、各
フリンジ311 は、底面の約90°の範囲を除いた約27
0°の範囲が両受像カメラ52a,52b (53a,53b )に撮像
される。次に(b) はXZ面を示し、約45°の角度φX
により、各受像カメラには各フリンジ311 と、その破損
が重なることなく撮像される。(c) は撮像された画像の
一例を示し、円形の各フリンジ311 は楕円形に変換され
て撮像されている。図中の欠損(イ) と(ロ) は、前記した
図10の欠損(イ),(ロ) に対応する。
FIG. 4 shows the image receiving range of each of the image receiving cameras 52a to 53b set to the above angles φ YZ and φ X. (a) shows the YZ plane, and the angle φ YZ of 60 ° allows the image receiving camera to be provided unless the distance L between the image receiving camera and the long insulator is very small.
52a (53a) is a point p a and a point p b on the outer periphery of each fringe 311.
The imaging range is approximately 180 ° between. Similarly, in the image receiving camera 52b (53b), the imaging range is approximately 180 ° between points p c and p d , and since both imaging ranges overlap near the top surface, each fringe 311 has an imaging area of approximately 90 ° on the bottom surface. About 27 excluding range
The range of 0 ° is imaged by both image receiving cameras 52a, 52b (53a, 53b). Next, (b) shows the XZ plane, which is an angle φ X of about 45 °.
As a result, each fringe 311 and its damage are picked up by each image receiving camera without overlapping. (c) shows an example of an imaged image, and each circular fringe 311 is imaged after being converted into an ellipse. Defects (a) and (b) in the figure correspond to the defects (a) and (b) in FIG. 10 described above.

【0012】次に、上記により楕円形に撮像された各フ
リンジ311 の良否を検査するための、サンプリング方法
について説明する。図5において、本来は円形のフリン
ジ311 の外周が、図示の楕円形の輪郭線に変換されたと
する。ただし楕円形は任意でよい。前記したように、フ
リンジの良否の判定は、欠損の外周長の長短により判定
するものであり、このためには、図5の左半分に示すよ
うに、一定の微小角度Δθごとに楕円形の輪郭線をサン
プリングすれば、その長さΔL’は角度θにより異なる
が、フリンジ311 の外周上では一定の間隔ΔLに対応し
て、前記の検査条件を満足する。しかし、画像面上の楕
円形の輪郭線を一定の微小角度Δθごとにサンプリング
することは、案外難しい。これに対して、例えば右半分
に示すように、Y軸方向の一定の間隔δyごとにサンプ
リングすると、円形のフリンジ311 の外周のサンプリン
グ間隔δLは、yの位置により大幅に変化して、検査条
件は満たされない。そこで図6により、検査条件を満足
するY軸方向のサンプリング間隔を解析する。
Next, a sampling method for inspecting the quality of each fringe 311 imaged in the elliptical shape as described above will be described. In FIG. 5, it is assumed that the outer circumference of the originally circular fringe 311 is converted into the elliptical contour line shown. However, the elliptical shape may be arbitrary. As described above, the quality of the fringe is determined by the length of the outer peripheral length of the defect, and for this purpose, as shown in the left half of FIG. When the contour line is sampled, its length ΔL ′ varies depending on the angle θ, but on the outer periphery of the fringe 311 the above condition is satisfied corresponding to a constant interval ΔL. However, it is unexpectedly difficult to sample the elliptical contour line on the image plane at a constant small angle Δθ. On the other hand, as shown in the right half, for example, when sampling is performed at regular intervals δy in the Y-axis direction, the sampling interval δL on the outer periphery of the circular fringe 311 changes significantly depending on the position of y, and the inspection condition Is not satisfied. Therefore, referring to FIG. 6, the sampling interval in the Y-axis direction that satisfies the inspection condition is analyzed.

【0013】図6において、半径Ra の円周上の任意の
点pP をとり、その座標を(yP,zP)とする。円周曲線
は次式: yP 2+zP 2=Ra 2 ………(6) で表される。式(6) の両辺を微分して変形すると、 dz/dy=yP /zP ………(7) がえられ、また、 dL2 =dy2 +dz2 ………(8) である。一定のdLに対するdyを、上記の各式により
求めると、 dy2 =[1−(yP/Ra)2 ]・dL2 ………(9) がえられる。ここで、dL,dyは無限小の微分量であ
るが、有限で微小なΔL,Δyとしても上記の各式は成
立する。よって、dy,dLをΔy,ΔLに置き換えて
平方根をとると、前記の式(1) がえられる。 Δy=(Ra 2−y21/2・ΔL/Ra ……(1) Δyを間隔として楕円形をサンプリングすれば、フリン
ジ311 は外周が一定ΔLの間隔で検査されるわけであ
る。
In FIG. 6, an arbitrary point p P on the circumference of the radius R a is taken and its coordinates are (y P , z P ). The circumferential curve is expressed by the following equation: y P 2 + z P 2 = R a 2 (6). Differentiating both sides of the equation (6) and transforming gives dz / dy = y P / z P (7), and dL 2 = dy 2 + dz 2 (8). And dy for a given dL, when determined by the above equations, dy 2 = [1- (y P / R a) 2] · dL 2 ......... (9) will be obtained. Here, dL and dy are infinitesimally differentiating amounts, but the above equations hold even with finite and minute ΔL and Δy. Therefore, by replacing dy and dL with Δy and ΔL and taking the square root, the above equation (1) is obtained. Δy = (R a 2 −y 2 ) 1/2 · ΔL / R a (1) If the ellipse is sampled with Δy as the interval, the fringe 311 is inspected at a constant ΔL interval on the outer circumference. .

【0014】図7は、上記の間隔Δyによりサンプリン
グされる楕円輪郭線を示し、間隔ΔyをなすY軸上の各
点p1,p2 ………に対応する、フリンジ311 の外周の各
点はすべて一定の間隔ΔLとなる。ただし図7の楕円輪
郭線は、図4(c) に示したように、YZ系に対して傾斜
しているので、これを適当な角度回転してYZ系に一致
してある。
FIG. 7 shows an elliptic contour line sampled by the interval Δy, and each point on the outer circumference of the fringe 311 corresponding to each point p 1 , p 2 ... On the Y axis forming the interval Δy. All have a constant interval ΔL. However, since the elliptical contour line in FIG. 7 is inclined with respect to the YZ system as shown in FIG. 4C, it is rotated by an appropriate angle to match the YZ system.

【0015】以下、図7に図1などを併用して各フリン
ジ311 の検査方法を説明する。まず、各フリンジ311 が
破損してない正常な長幹碍子31を両受像カメラ52a,52b
により撮像し、それぞれの画像信号を輪郭抽出部73によ
り処理してり楕円輪郭線を抽出し、抽出された各輪郭線
のデータを、A/D変換器741 〜744 によりデジタル化
してMPU745 に入力し、楕円輪郭線の中心座標(y0,
0)と長軸の半径Ra とを求め、式(1) により、図7に
示すY軸上の各点y1,y2 ……に対するΔyをそれぞれ
算出してメモリ746 に記憶する。ついで、これらをMP
U745 により順次に読出して、各点y1,y2 ……に対応
する楕円輪郭線の各点p1’, p2’……をサンプリング
し、それぞれのZ座標値z1,z2 ……を求めてメモリ74
6に記憶する。なおメモリ746 には、各フリンジ311 の
破損に対する許容値を設定する。図1において、列車が
検修車庫4に低速度VL で入庫すると、各電車1の車輪
13が車輪検出器6により逐次に検出され、検出信号は号
車判定回路71に入力して当該電車の号車番号が判定さ
れ、この判定信号がシャッター制御回路72に入力すると
各受像カメラ52a 〜53b の各シャッターが切られて、2
個の長幹碍子31(R),31(L) が同時に撮像される。各受像
カメラの画像信号は、対応する輪郭抽出回路731 〜734
によりぞれぞれの楕円輪郭線が抽出され、各データはA
/D変換器741 〜744 によりデジタル化されてMPU74
5 に入力し、上記と同様のサンプリングにより、各楕円
輪郭線のZ座標値が求められてMPU755 に転送され、
上記によりメモリ746 に記憶されている正しい各Z座標
値に比較されて、両者の差が求められる。これらの差が
大きく、かつメモリ746 に設定されている外周上の長さ
許容値を越えて連続しているときは、当該長幹碍子21は
不良と判定され、その不良データに対して、号車判定回
路71より与えられる当該長幹碍子31の所属する電車の号
車番号が付加されて、出力部75に出力される。
A method of inspecting each fringe 311 will be described below with reference to FIG. 7 and FIG. First, mount the normal long-distance insulator 31 in which each fringe 311 is not damaged, to both the image receiving cameras 52a and 52b.
The image of each contour line is extracted by the contour extraction unit 73 to extract the elliptical contour line, and the data of each contour line extracted is digitized by the A / D converters 741 to 744 and input to the MPU745. Then, the center coordinates (y 0 ,
z 0 ) and the radius R a of the major axis are calculated, and Δy for each point y 1 , y 2 ... On the Y-axis shown in FIG. 7 is calculated by the formula (1) and stored in the memory 746. Then, MP these
U745 is sequentially read out to sample each point p 1 ', p 2 ' ... Of the elliptical contour line corresponding to each point y 1 , y 2 ..., and the respective Z coordinate values z 1 , z 2 ... Seeking memory 74
Remember in 6. In the memory 746, the allowable value for damage of each fringe 311 is set. In FIG. 1, when a train enters the inspection garage 4 at a low speed V L , the wheels of each train 1
13 are sequentially detected by the wheel detector 6, and the detection signal is input to the car number judging circuit 71 to judge the car number of the train concerned. When this judgment signal is inputted to the shutter control circuit 72, each of the image receiving cameras 52a to 53b is detected. Each shutter is released, 2
The individual long-distance insulators 31 (R) and 31 (L) are simultaneously imaged. The image signal of each image-receiving camera has a corresponding contour extraction circuit 731-734.
Each elliptical contour line is extracted by
Digitized by the / D converters 741 to 744
Input to 5 and by the same sampling as above, the Z coordinate value of each elliptical contour is obtained and transferred to the MPU755.
As described above, the correct Z coordinate values stored in the memory 746 are compared, and the difference between the two is obtained. If these differences are large and the lengths on the outer circumference that are set in the memory 746 continue and exceed the permissible length, the long insulator 21 is determined to be defective, and the car The car number of the train to which the long-distance insulator 31 belongs is added from the determination circuit 71 and is output to the output unit 75.

【0016】[0016]

【発明の効果】以上の説明のとおり、この発明の長幹碍
子の破損検査装置によれば、検修車庫に低速度で入庫す
る各電車の各長幹碍子は、検修車庫の両側壁に配設され
た各受像カメラにより、各フリンジの底面を除く外周の
約270°の破損し易い範囲を、その破損が隠れること
なく楕円形に逐次に撮像して、それぞれの輪郭線が抽出
され、これらをフリンジの外周の一定の長さΔLに対応
したΔyの間隔でサンプリングし、正常な各フリンジの
データに比較してそれぞれの良否を判定するもので、各
電車の長幹碍子は列車の入庫中に迅速に検査され、従来
の人手による点検作業の省力化と危険防止に寄与する効
果には大きいものがある。
As described above, according to the damage inspection device for a long-distance insulator of the present invention, each long-distance insulator of each train entering the repair garage at a low speed is provided on both side walls of the repair garage. With each of the image receiving cameras arranged, the fragile range of about 270 ° of the outer periphery excluding the bottom surface of each fringe is sequentially imaged in an elliptical shape without hiding the damage, and each contour line is extracted. These are sampled at intervals of Δy corresponding to a fixed length ΔL of the outer periphery of the fringe, and the quality of each is judged by comparing with the data of each normal fringe. It has a great effect in that it is quickly inspected and contributes to labor saving and risk prevention of the conventional manual inspection work.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は各受像カメラの配置を示し、(a) は平面
図、(b) は側面図、(c) は正面図である。
FIG. 1 shows the arrangement of image receiving cameras, (a) is a plan view, (b) is a side view, and (c) is a front view.

【図2】図2は、データ処理部の概略のブロック構成図
である。
FIG. 2 is a schematic block configuration diagram of a data processing unit.

【図3】図3は、各受像カメラの受像角度の解析図であ
って、(a)は受像角度の説明図、(b)は、そのZ軸との関
係の説明図である。
FIG. 3 is an analysis diagram of an image receiving angle of each image receiving camera, (a) is an explanatory diagram of an image receiving angle, and (b) is an explanatory diagram of a relationship with the Z axis.

【図4】図4は、長幹碍子の受像範囲と、撮像された各
フリンジの楕円形画像の説明図であって、(a)は、その
YZ面の説明図、(b)はそのXZ面の説明図、(c)は、撮
像された画像の説明図である。
FIG. 4 is an explanatory diagram of an image receiving range of a long-stem insulator and an elliptical image of each fringe imaged, (a) is an explanatory diagram of its YZ plane, and (b) is its XZ image. FIG. 3C is an explanatory diagram of a surface, and FIG. 7C is an explanatory diagram of a captured image.

【図5】図5は、楕円輪郭線に対するサンプリング方法
の問題点の説明図である。
FIG. 5 is an explanatory diagram of a problem of a sampling method for an elliptic contour line.

【図6】図6は、フリンジの外周を等分するサンプリン
グ方法の解析図である。
FIG. 6 is an analysis diagram of a sampling method for equally dividing the outer periphery of a fringe.

【図7】図7は、この発明における楕円輪郭線のサンプ
リング方法の説明図である。
FIG. 7 is an explanatory diagram of a sampling method of an elliptic contour line according to the present invention.

【図8】図8は、新型列車の編成図である。FIG. 8 is an organization diagram of a new train.

【図9】図9は、電力接続部の構成を示す平面および側
面図である。
FIG. 9 is a plan view and a side view showing a configuration of a power connection unit.

【図10】図10は、フリンジが破損した長幹碍子の外
観図である。
FIG. 10 is an external view of a long insulator with a broken fringe.

【符号の説明】[Explanation of symbols]

1,1A,1B…電車、11…パンタグラフ、 12 …屋
根、13…車輪、2…トロリ線、3…電力接続部、31…長
幹碍子、311 …フリンジ、32…接続金具、33…金属板、
34…接続ケーブル、35…支持部材、36…接続導体、37…
絶縁カバー、4…検修車庫、41…側壁、42…天井、5…
光学系、51a,51b …光源、52a,52b,53a,53b …受像カメ
ラ、6…車輪検出器、61…投光器、62…受光センサ、7
…データ処理部、71…号車判定回路、72…シャッター制
御回路、73…輪郭抽出部、731 〜734 …輪郭抽出回路、
74…良否判定部、741 〜744 …A/D変換器、745 …マ
イクロプロセッサ(MPU)、746 …メモリ(ME
M)、75…出力部、φXYZ …受像カメラのX,
Y,Z軸に対する受像角度、φYZ…受像カメラのYZ面
に対する受像角度。
1, 1A, 1B ... Train, 11 ... Pantograph, 12 ... Roof, 13 ... Wheels, 2 ... Trolley wire, 3 ... Power connection part, 31 ... Long insulator, 311 ... Fringe, 32 ... Connection fitting, 33 ... Metal plate ,
34 ... Connection cable, 35 ... Support member, 36 ... Connection conductor, 37 ...
Insulation cover, 4 ... Inspection garage, 41 ... Side wall, 42 ... Ceiling, 5 ...
Optical system, 51a, 51b ... Light source, 52a, 52b, 53a, 53b ... Image receiving camera, 6 ... Wheel detector, 61 ... Emitter, 62 ... Light receiving sensor, 7
... data processing unit, 71 ... car determination circuit, 72 ... shutter control circuit, 73 ... contour extraction unit, 731 to 734 ... contour extraction circuit,
74 ... Pass / fail judgment unit, 741 to 744 ... A / D converter, 745 ... Microprocessor (MPU), 746 ... Memory (ME
M), 75 ... Output unit, φ X , φ Y , φ Z ... X of image receiving camera,
Image receiving angle with respect to Y and Z axes, φ YZ ... Image receiving angle with respect to YZ plane of image receiving camera.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福原 信一 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Fukuhara 3-16-3 Higashi, Shibuya-ku, Tokyo Hitachi Electronics Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数両の電車により編成された列車の、隣
接する2両の屋根上に対向して設けられた、パンタグラ
フよりの電力の接続導線に対する2個の長幹碍子を同時
検査の対象とし、該列車に対する検修車庫の天井または
両側壁に、該検修車庫に入庫する前記2両の各長幹碍子
の両側面に対して、照明光を照射する2個の光源と、該
各長幹碍子の両側面に対して適当な受像角度に設定され
た、2個1組の受像カメラの2組よりなる光学系を配設
し、該光学系の下部に設けられ、前記検修車庫に入庫す
る各電車の車輪を検出する車輪検出器と、適当な箇所に
それぞれ設けられ、入力した該車輪検出器の検出信号に
より、各電車の号車番号を判定して判定信号を出力する
号車判定回路と、該判定信号の入力により、前記各受像
カメラのシャッターを切って該各長幹碍子を同時に撮像
するシャッター制御回路、該各受像カメラより出力され
る画像信号をそれぞれ処理して、各長幹碍子の複数のフ
リンジの輪郭線を抽出する画像処理部、および、マイク
ロプロセッサとメモリとを有し、該抽出された各輪郭線
を該マイクロプロセッサにより適当な間隔でサンプリン
グしてそれぞれの座標値を算出し、該算出された各座標
値を、予め測定されてメモリに記憶された正常な各フリ
ンジの座標データに比較し、両者の差が許容値より大き
いフリンジを不良と判定し、該不良データに対して、前
記判定信号の示す号車番号を付加して出力する破損判定
部とにより構成されたことを特徴とする、長幹碍子の破
損検査装置。
1. A simultaneous inspection of two long-distance insulators for a connecting conductor of electric power from a pantograph, which is provided on two adjacent roofs of a train composed of a plurality of trains so as to face each other. In the ceiling or both side walls of the inspection garage for the train, two light sources that irradiate illumination light to both side surfaces of each of the two main insulators that enter the inspection garage, and An optical system consisting of two sets of two image-receiving cameras, each set at an appropriate image-receiving angle with respect to both side surfaces of the long insulator, is provided, and the optical system is provided below the optical system. Wheel detectors that detect the wheels of each train entering the car, and the car number that determines the car number of each train by the input detection signal of each wheel detector that is provided at an appropriate location and outputs a judgment signal. A circuit and a shutter of each of the image receiving cameras by inputting the determination signal. A shutter control circuit that simultaneously cuts each of the long stem insulators, processes an image signal output from each of the image receiving cameras, and extracts an outline of a plurality of fringes of each long stem insulator. And a microprocessor and a memory, each of the extracted contour lines is sampled by the microprocessor at appropriate intervals to calculate each coordinate value, and each calculated coordinate value is measured in advance. The normal fringe coordinate data stored in the memory is compared with each other, and a fringe whose difference between the two is larger than the allowable value is determined to be defective, and the car number indicated by the determination signal is added to the defective data. A damage inspection device for a long-distance insulator, comprising: a damage determination unit for outputting.
【請求項2】前記各長幹碍子の中心軸の方向をX軸、直
角断面の水平方向をY軸、垂直方向をZ軸とし、前記各
組の2個の受像カメラの受像角度を、YZ面に対してそ
れぞれ約60°に設定して、該両受像カメラの撮像範囲
を、該長幹碍子の各フリンジの外周の、底面を除く約2
70°とすることを特徴とする、請求項1記載の長幹碍
子の破損検査装置。
2. A central axis of each of the long insulators is defined as an X axis, a horizontal direction of a right-angled cross section is defined as a Y axis, and a vertical direction is defined as a Z axis, and an image receiving angle of each of the two image receiving cameras is defined as YZ. Each of them is set at about 60 ° with respect to the surface, and the imaging range of both of the image receiving cameras is set to about 2 at the outer circumference of each fringe of the long insulator except for the bottom surface.
It is 70 degrees, The damage inspection apparatus of the long insulator of Claim 1 characterized by the above-mentioned.
【請求項3】前記各組の2個の受像カメラの受像角度
を、前記X軸に対してそれぞれ約45°に設定して、該
長幹碍子の円形の各フリンジをそれぞれ楕円形に変換し
て撮像し、該撮像された各画像信号を前記画像処理部に
より処理して、該各フリンジの楕円形の輪郭線を抽出
し、該抽出された各輪郭線の楕円形を回転して、その長
軸をY軸、その直角方向をZ軸に一致させ、前記マイク
ロプロセッサの処理により、該楕円形の中心座標値(y
0.z0)と、該長軸の半径Ra とをそれぞれ求め、前記円
形の各フリンジの外周を複数の微小な円弧に等分し、該
各円弧の長さΔLに対応したY軸上の微小距離Δy: Δy=(Ra 2−y21/2・ΔL/Ra ………(1) をそれぞれ算出して前記メモリに記憶し、該Δyの間隔
で該楕円形の輪郭線をサンプリングしてそれぞれのZ座
標値を求め、えられた各Z座標値を、予め、正常な各フ
リンジの楕円形の輪郭線に対し、該Δyの間隔で同様に
サンプリングして前記メモリに記憶された各Z座標デー
タに比較することを特徴とする、請求項1または2記載
の長幹碍子の破損検査装置。
3. The image receiving angles of the two image receiving cameras of each set are set to about 45 ° with respect to the X-axis, respectively, and each circular fringe of the long insulator is converted into an elliptical shape. The captured image signal is processed by the image processing unit, the elliptical contour line of each fringe is extracted, and the elliptical contour line of each extracted contour line is rotated. The major axis is made to coincide with the Y axis, and the direction perpendicular thereto is made to coincide with the Z axis, and the central coordinate value (y
0 .z 0) and, respectively obtained and the radius R a of the long axis, the circular outer peripheral of each fringe aliquoted into a plurality of small circular arc, each of said arc on the Y-axis corresponding to the length ΔL Minute distance Δy: Δy = (R a 2 −y 2 ) 1/2 · ΔL / R a ... (1) is calculated and stored in the memory, and the elliptical contour is formed at intervals of Δy. The line is sampled to obtain each Z coordinate value, and each obtained Z coordinate value is sampled in advance in the same manner at the interval of Δy with respect to the oval contour line of each normal fringe in advance. The damage inspection device for a long insulator according to claim 1 or 2, which compares the stored Z coordinate data.
JP10692495A 1995-04-06 1995-04-06 Long trunk insulator damage inspection device Expired - Fee Related JP3450512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10692495A JP3450512B2 (en) 1995-04-06 1995-04-06 Long trunk insulator damage inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10692495A JP3450512B2 (en) 1995-04-06 1995-04-06 Long trunk insulator damage inspection device

Publications (2)

Publication Number Publication Date
JPH08278254A true JPH08278254A (en) 1996-10-22
JP3450512B2 JP3450512B2 (en) 2003-09-29

Family

ID=14445972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10692495A Expired - Fee Related JP3450512B2 (en) 1995-04-06 1995-04-06 Long trunk insulator damage inspection device

Country Status (1)

Country Link
JP (1) JP3450512B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112116550A (en) * 2019-06-20 2020-12-22 上海电机学院 Insulator defect detection method based on multi-corner registration
CN113495009A (en) * 2021-05-24 2021-10-12 柳州龙燊汽车部件有限公司 Quality detection method and system for matching manufacturing of carriage
CN113533369A (en) * 2021-06-21 2021-10-22 国网山东省电力公司鱼台县供电公司 Transmission line inspection device
CN115610280A (en) * 2022-12-20 2023-01-17 长沙润伟机电科技有限责任公司 Comprehensive monitoring and protecting system for rail transit traction power supply
CN116735497A (en) * 2023-06-14 2023-09-12 超创数能科技有限公司 Automatic detection device, method and system for annular concave structure of porcelain insulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112116550A (en) * 2019-06-20 2020-12-22 上海电机学院 Insulator defect detection method based on multi-corner registration
CN112116550B (en) * 2019-06-20 2024-05-31 上海电机学院 Insulator defect detection method based on multi-angle point registration
CN113495009A (en) * 2021-05-24 2021-10-12 柳州龙燊汽车部件有限公司 Quality detection method and system for matching manufacturing of carriage
CN113495009B (en) * 2021-05-24 2022-11-04 柳州龙燊汽车部件有限公司 Quality detection method and system for matching manufacturing of carriage
CN113533369A (en) * 2021-06-21 2021-10-22 国网山东省电力公司鱼台县供电公司 Transmission line inspection device
CN113533369B (en) * 2021-06-21 2024-05-17 国网山东省电力公司鱼台县供电公司 Power transmission line inspection device
CN115610280A (en) * 2022-12-20 2023-01-17 长沙润伟机电科技有限责任公司 Comprehensive monitoring and protecting system for rail transit traction power supply
CN116735497A (en) * 2023-06-14 2023-09-12 超创数能科技有限公司 Automatic detection device, method and system for annular concave structure of porcelain insulator
CN116735497B (en) * 2023-06-14 2024-04-26 超创数能科技有限公司 Automatic detection device, method and system for annular concave structure of porcelain insulator

Also Published As

Publication number Publication date
JP3450512B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
KR940007111B1 (en) Method and apparatus for the optical determination of surface profiles
US9677879B2 (en) Tire appearance inspection apparatus and method
JP3450512B2 (en) Long trunk insulator damage inspection device
KR101701160B1 (en) Cantilever defect inspection system
JP5277585B2 (en) Trolley wire detector
JP4685494B2 (en) Trolley wire position measuring device
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
JP5629478B2 (en) Pantograph monitoring device
JP2004163426A (en) Visual examination apparatus
JP2008051664A (en) Method and apparatus for inspecting vane shape of impeller
JPH04221748A (en) Image processing device
EP2159534A1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
KR0130958B1 (en) Line image processing method
JP3261199B2 (en) Pantograph frame deformation inspection device
JPH0896132A (en) Image processor and processing method
JP2910567B2 (en) Surface flaw inspection equipment for seamless steel pipe drilling plugs
JPH0646503A (en) Obstacle inspection system for pantograph
JPH07329615A (en) Crossover section examining device of trolley wire
JPH09232797A (en) Ic component position detecting device
JP2576768B2 (en) Printed circuit board pattern inspection equipment
EP4182201A1 (en) Diagnostic inspection system for inspecting railway components
JPH03257308A (en) Checking apparatus of outer appearance
JPS63289945A (en) Device for inspecting electronic component
JPH03154173A (en) Defective deciding image processor
CN114112448A (en) Testing device and testing method for dynamic limit of magnetic levitation vehicle based on F rail

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees