JPH08277440A - Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof - Google Patents

Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof

Info

Publication number
JPH08277440A
JPH08277440A JP7081490A JP8149095A JPH08277440A JP H08277440 A JPH08277440 A JP H08277440A JP 7081490 A JP7081490 A JP 7081490A JP 8149095 A JP8149095 A JP 8149095A JP H08277440 A JPH08277440 A JP H08277440A
Authority
JP
Japan
Prior art keywords
electron beam
less
steel
corrosion cracking
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7081490A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okamura
義弘 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7081490A priority Critical patent/JPH08277440A/en
Publication of JPH08277440A publication Critical patent/JPH08277440A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To provide a method for producing a high strength steel excellent in stress corrosion cracking resistance in the electron beam weld zone and having >=780MPa yield strength and to provide a method for producing a steel structural body thereof. CONSTITUTION: By incorporating 0.03 to 0.12% C, 0.02 to 0.50% Si, 0.1 to 0.8% Mn, <=0.008% P, <=0.005% S, 3.0 to 7.5% Ni, 0.2 to 1.5% Cr, 0.1 to 1.5% Mo, 0.01 to 0.15% V, 0.01 to 0.06% Al and <=0.0050% N into a steel, a high strength steel excellent in stress corrosion cracking resistance in the electron beam weld zone can be obtd., and moreover, in a steel structural body using the same steel, electron beam welding is executed, and thereafter, heat treatment is executed, by which the high strength structural body excellent in stress corrosion cracking resistance can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子ビーム溶接部の耐応
力腐食割れ性に優れた降伏強度780MPa以上の高強
度鋼およびその鋼構造体の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having a yield strength of 780 MPa or more excellent in stress-corrosion cracking resistance of electron beam welds and a method for producing a steel structure thereof.

【0002】[0002]

【従来の技術】近年、エネルギー需要の増加に伴い、そ
の安定供給確保のため海洋資源開発や海底地殻地質調査
など海洋開発に対する関心が高まり、この海底調査作業
船、あるいは海底石油生産基地などの鋼構造体の構想が
活発化している。これら構造体に使用される鋼材には、
構造上高溶接性、高強度、且つ高靭性が要求されてお
り、更に海水等の使用環境条件においても耐応力腐食割
れ性を具備することが望まれている。その要求は当然、
構造物の一部を構成する溶接部に対してもなされる。
2. Description of the Related Art In recent years, as energy demand has increased, interest in marine development such as ocean resource development and submarine crust geological survey has increased to secure a stable supply of steel. The concept of the structure is becoming active. Steel materials used for these structures include
Structurally, high weldability, high strength, and high toughness are required, and further, it is desired to have stress corrosion cracking resistance even under use environment conditions such as seawater. The demand is of course
It is also applied to the welded portion that constitutes a part of the structure.

【0003】前記構造物における従来の溶接はMIG溶
接、TIG溶接、被覆アーク溶接(SMAW)、または
潜弧溶接(SAW)が主体である。これらの溶接では板
厚が厚くなるにつれ加速度的に積層数が増加して、施工
時間が膨大なものとなる。又、ブローホール、スラグ巻
き等の溶接欠陥も発生しやすく信頼性に欠ける。これら
の溶接施工効率の向上および信頼性の向上に応えるため
に、電子ビーム溶接の適用が考えられるようになってき
た。
The conventional welding in the structure is mainly MIG welding, TIG welding, covered arc welding (SMAW), or latent arc welding (SAW). In these weldings, as the plate thickness increases, the number of laminated layers increases at an accelerating rate, resulting in an enormous amount of construction time. Also, welding defects such as blowholes and slag winding are likely to occur, resulting in poor reliability. In order to respond to these improvements in welding construction efficiency and reliability, application of electron beam welding has come to be considered.

【0004】電子ビーム溶接は従来の溶接法(MIG、
TIG、SMAW、SAW)と比べて、溶接部厚が特に
50mmを超える範囲では現在の技術水準においてもコ
スト的に有利な領域となり、板厚が厚くなるほどその効
果は大きくなる。又、電子ビーム溶接は従来の溶接と異
なり、鋼板そのものを溶融させ接合するものであるた
め、構造体の製造にあたっては、溶接部の強度、靭性お
よび耐応力腐食割れ性を考慮した成分設計または施工を
行なう必要がある。しかしながら、従来にはこの点の考
慮が全くなされていなかったと言っても過言でない。
Electron beam welding is a conventional welding method (MIG,
Compared with (TIG, SMAW, SAW), particularly in the range where the weld thickness exceeds 50 mm, it is a region advantageous in terms of cost even at the current state of the art, and the effect increases as the plate thickness increases. In addition, unlike conventional welding, electron beam welding involves melting and joining the steel sheet itself, so when manufacturing the structure, component design or construction considering the strength, toughness, and stress corrosion cracking resistance of the welded part. Need to do. However, it is no exaggeration to say that no consideration has been given to this point in the past.

【0005】これまでは、例えば、特公昭60−246
41号公報、特公平1−25371号公報のように、従
来の溶接法で溶接することを前提にPcm(溶接割れ感
受性指数)を制限し、溶接熱影響部の溶接性向上を図っ
てきた。しかし、冷却速度の速い電子ビーム溶接部にお
いては粗粒のマルテンサイト組織となり靭性および降伏
強度が著しく低下すること、また、海水中での応力腐食
割れを考慮に入れた検討はなされていない。
So far, for example, Japanese Patent Publication No. 60-246.
As disclosed in Japanese Patent Publication No. 41 and Japanese Patent Publication No. 1-25371, Pcm (welding crack susceptibility index) is limited on the assumption that welding is performed by a conventional welding method to improve the weldability of the heat affected zone. However, no study has been made in consideration of coarse grain martensite structure in the electron beam welded portion having a high cooling rate, which significantly reduces toughness and yield strength, and stress corrosion cracking in seawater.

【0006】このような問題解決のために、本発明者ら
はすでに特開平2−282446号公報において、電子
ビーム溶接性の優れた高靭性高張力鋼を提案し、電子ビ
ーム溶接部については強度および靭性を向上することが
できたが、更に、電子ビーム溶接部の特に降伏強度の高
強度化および耐応力腐食割れ性の改善が望まれている。
In order to solve such a problem, the inventors of the present invention have already proposed in JP-A-2-282446 a high toughness and high strength steel having an excellent electron beam weldability, and the strength of the electron beam weld portion is high. Although the toughness could be improved, it is further desired that the yield strength of the electron beam welded portion be increased and the resistance to stress corrosion cracking be improved.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の問題点
を解決するためのもので、電子ビーム溶接による溶接を
行なっても、溶接部の降伏強度、低温靭性および耐応力
腐食割れ性の良好な電子ビーム溶接部の耐応力腐食割れ
性に優れた高強度鋼およびその鋼構造体の製造法を提供
するものである。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems, and the yield strength, low temperature toughness and stress corrosion cracking resistance of the welded portion are good even if the welding is carried out by electron beam welding. The present invention provides a high-strength steel excellent in stress corrosion cracking resistance of an electron beam welded portion and a method for manufacturing the steel structure thereof.

【0008】[0008]

【課題を解決するための手段】本発明は重量%で、C:
0.03〜0.12%、Si:0.02〜0.50%、
Mn:0.1〜0.8%、P:0.008%以下、S:
0.005%以下、Ni:3.0〜7.5%、Cr:
0.2〜1.5%、Mo:0.1〜1.5%、V:0.
01〜0.15%、Al:0.01〜0.06%、N:
0.0050%以下を含有し、残部がFeおよび不可避
的不純物からなる鋼、および上記成分に更にCu:0.
1〜1.5%、Nb:0.005〜0.05%、Ti:
0.005〜0.03%からなる強度改善元素群の一種
または二種以上を含有することを特徴とする電子ビーム
溶接部の耐応力腐食割れ性に優れた高強度鋼であり、
又、電子ビーム溶接した後、300℃〜Ac1 点以下の
温度で熱処理を行なう前記鋼を用いた鋼構造体の製造法
である。
The present invention, in% by weight, comprises C:
0.03 to 0.12%, Si: 0.02 to 0.50%,
Mn: 0.1 to 0.8%, P: 0.008% or less, S:
0.005% or less, Ni: 3.0 to 7.5%, Cr:
0.2-1.5%, Mo: 0.1-1.5%, V: 0.
01-0.15%, Al: 0.01-0.06%, N:
Steel containing 0.0050% or less, with the balance being Fe and inevitable impurities, and Cu: 0.
1-1.5%, Nb: 0.005-0.05%, Ti:
A high-strength steel excellent in stress corrosion cracking resistance of an electron beam weld, characterized by containing one or more of a strength improving element group consisting of 0.005 to 0.03%.
Further, it is a method for producing a steel structure using the above-mentioned steel, which is heat-treated at a temperature of 300 ° C. to Ac 1 point or less after electron beam welding.

【0009】[0009]

【作用】以下本発明について詳細に説明する。電子ビー
ム溶接は従来の溶接法のように溶接部に別の材料を供給
し、溶接部の特性向上を図るのではなく、被溶接体その
ものを溶融させ溶接するものである。そのため、降伏強
度780MPa以上の高強度鋼のような被溶接体の製造
にあたっては、焼入れ焼戻し処理等によりオーステナイ
ト粒の細粒化と焼戻しマルテンサイト組織(または焼戻
し下部ベテナイト組織)により高強度と高靭性を有する
鋼板に調整されるが、電子ビーム溶接部においては、溶
融・凝固組織のためオーステナイト粒が著しく粗粒とな
り、冷却速度が速いことと相俟って、急冷ままのマルテ
ンサイト組織(または下部ベイナイト組織)となり降伏
強度が著しく低下する。また、マルテンサイト主体組織
の場合は下部ベイナイト主体組織に比べ著しく靭性が低
下する。更に、溶接ままのために海水中における耐応力
腐食割れ性が低下する傾向がある。
The present invention will be described in detail below. Unlike the conventional welding method, the electron beam welding is not to supply another material to the welded portion and improve the characteristics of the welded portion, but to melt and weld the object to be welded. Therefore, when manufacturing a welded object such as high strength steel with a yield strength of 780 MPa or more, austenite grains are refined by quenching and tempering and the tempered martensite structure (or tempered lower betenite structure) provides high strength and high toughness. However, in the electron beam welded part, the austenite grains become remarkably coarse due to the melting and solidifying structure, and the rapid cooling rate contributes to the martensite structure (or lower part It becomes a bainite structure) and the yield strength is significantly reduced. Further, in the case of a martensite-based structure, the toughness is significantly reduced as compared with the lower bainite-based structure. Furthermore, since the as-welded state, the resistance to stress corrosion cracking in seawater tends to decrease.

【0010】発明者らは、電子ビーム溶接部で海水中あ
るいは塩水中における耐応力腐食割れ性を具備し、より
良好な降伏強度、低温靭性を有する鋼材を種々検討した
結果、粗粒のマルテンサイト主体組織ではCおよびPが
高いと粒界、粒内が著しく脆化し、電子ビーム溶接部の
低温靭性および耐応力腐食割れ性を低下させる。
The inventors have conducted various studies on steel materials having resistance to stress corrosion cracking in seawater or salt water at electron beam welds and having better yield strength and low temperature toughness, and as a result, coarse grain martensite has been obtained. If C and P are high in the main structure, the grain boundaries and the inside of the grains are significantly embrittled, and the low temperature toughness and stress corrosion cracking resistance of the electron beam welded portion are reduced.

【0011】また、溶接ままでは電子ビーム溶接部の降
伏強度が著しく低下するが、溶接後に適性温度で後熱処
理することで著しく降伏強度が向上し、更に、後熱処理
による硬さの低下や炭化物微細析出(前記炭化物は水素
のトラップサイトとなり、水素が粒界に集積し脆化する
のを抑制する効果があると考えられる。)により耐応力
腐食割れ性も向上することなどを知見した。尚、鋼材と
しては、厚板、鋼管、形鋼、条鋼などいずれであっても
かまわない。
Further, the yield strength of the electron beam welded portion is remarkably lowered in the as-welded state, but the post-heat treatment at an appropriate temperature after welding remarkably improves the yield strength, and further, the hardness is lowered by the post-heat treatment and the carbide fineness is increased. It has been found that stress corrosion cracking resistance is also improved by precipitation (the carbide is considered to be a trap site for hydrogen and is considered to have an effect of suppressing hydrogen from accumulating at grain boundaries and embrittlement). The steel material may be any of thick plate, steel pipe, shaped steel, and bar steel.

【0012】図1は表1に示す鋼H(0.09%C-0.25%Si-
0.8%Mn-5.0%Ni-0.5%Cr-0.5%Mo-0.06%V-0.03%Al-0.0030%
N系)を基本成分とし、C量とP量を変化させた場合
の、電子ビーム溶接部の3.5%NaClの人工海水中
における応力腐食割れ試験(KIscc試験)を行なった結
果で、限界KIscc値に及ぼすCとPの影響を示す図であ
る。C量を0.13%以下、P量を0.008%以下と
することによりKIscc≧125MPa√mの良好な耐応
力腐食割れ性が得られる。更に、上記のように、C量お
よびP量が適切であっても、基本成分が適切でないと降
伏強度780MPa以上としての優れた強度、靭性が得
られない。
FIG. 1 shows steel H (0.09% C-0.25% Si-) shown in Table 1.
0.8% Mn-5.0% Ni-0.5% Cr-0.5% Mo-0.06% V-0.03% Al-0.0030%
N-type) as a basic component, and the C and P contents were changed, the results were obtained by conducting a stress corrosion cracking test (KIscc test) in artificial seawater of 3.5% NaCl at electron beam welds. It is a figure which shows the influence of C and P which influences a KIscc value. By setting the C content to 0.13% or less and the P content to 0.008% or less, good stress corrosion cracking resistance of KIscc ≧ 125 MPa√m can be obtained. Further, as described above, even if the C content and the P content are appropriate, if the basic components are not appropriate, excellent strength and toughness at a yield strength of 780 MPa or more cannot be obtained.

【0013】以下に成分の限定理由について説明する。 C:Cは強度を確保するのに必要な元素で、0.03%
未満では目標の降伏強度の確保が困難となる。しかし、
0.13%を超えると電子ビーム溶接部の耐応力腐食割
れ性が著しく低下する。従って、Cの含有量を0.03
〜0.13%とした。
The reasons for limiting the components will be described below. C: C is an element necessary to secure strength, 0.03%
If it is less than the above, it becomes difficult to secure the target yield strength. But,
If it exceeds 0.13%, the stress corrosion cracking resistance of the electron beam welded portion is significantly lowered. Therefore, the content of C is 0.03
˜0.13%.

【0014】Si:Siは強度向上に有効であるが、高
いと低温靭性および溶接性を低下させるため上限を0.
50%とする。しかし、製鋼上0.02%は必要であ
る。従って、Siの含有量を0.02〜0.50%とし
た。
Si: Si is effective for improving the strength, but if it is high, the low temperature toughness and weldability are deteriorated, so the upper limit is set to 0.
50%. However, 0.02% is necessary for steelmaking. Therefore, the Si content is set to 0.02 to 0.50%.

【0015】Mn:Mnは強度を上昇させる元素で、そ
の下限は0.1%である。しかし、0.8%を超えると
電子ビーム溶接部の低温靭性および耐応力腐食割れ性が
低下する。従って、Mnの含有量を0.1〜0.8%と
した。
Mn: Mn is an element that increases the strength, and its lower limit is 0.1%. However, if it exceeds 0.8%, the low temperature toughness and the stress corrosion cracking resistance of the electron beam welded portion deteriorate. Therefore, the Mn content is set to 0.1 to 0.8%.

【0016】P:Pは先に述べたように、電子ビーム溶
接部の低温靭性および耐応力腐食割れ性を改善させる重
要な元素であり、0.008%以下に低減させる必要が
ある。S:Sは靭性に有害な元素であり、0.005%
以下に低減する必要がある。
P: P is an important element for improving the low temperature toughness and stress corrosion cracking resistance of the electron beam welded portion, as described above, and it is necessary to reduce it to 0.008% or less. S: S is an element harmful to toughness, and 0.005%
It needs to be reduced to:

【0017】Ni:Niは低温靭性の向上および強度を
向上させるのに有効な元素であるが、電子ビーム溶接部
の降伏強度を確保するためには3.0%以上が必要であ
る。しかし、7.5%を超えるとその効果は飽和し、か
えってコスト上昇を招く。従って、Niの含有量を3.
0〜7.5%とした。
Ni: Ni is an element effective for improving the low temperature toughness and the strength, but 3.0% or more is necessary to secure the yield strength of the electron beam welded portion. However, if it exceeds 7.5%, the effect is saturated, and the cost is rather increased. Therefore, the Ni content is set to 3.
It was set to 0 to 7.5%.

【0018】Cr:Crは強度確保に有効である。しか
し、0.2%未満ではその効果が減少する。又、1.5
%を超えると低温靭性が低下する。従って、Crの含有
量を0.2〜1.5%とした。
Cr: Cr is effective for ensuring strength. However, if less than 0.2%, the effect is reduced. Also, 1.5
%, The low temperature toughness decreases. Therefore, the content of Cr is set to 0.2 to 1.5%.

【0019】Mo:MoもCrと同様に強度確保に有効
である。しかし、0.1%未満ではその効果が減少す
る。又、1.5%を超えると低温靭性が低下する。従っ
て、Moの含有量を0.1〜1.5%とした。
Mo: Mo, like Cr, is also effective for securing strength. However, if it is less than 0.1%, the effect is reduced. Further, if it exceeds 1.5%, the low temperature toughness decreases. Therefore, the content of Mo is set to 0.1 to 1.5%.

【0020】V:Vは強度確保に有効な元素である。特
に電子ビーム溶接後の後熱処理において炭化物を形成し
析出硬化により電子ビーム溶接部の降伏強度確保に有効
であり、その下限は0.01%である。しかし、0.1
5%を超えると電子ビーム溶接部の靭性が低下する。
V: V is an element effective for securing strength. Particularly, it is effective in securing the yield strength of the electron beam welded portion by forming carbide in the post heat treatment after electron beam welding and precipitation hardening, and the lower limit is 0.01%. But 0.1
If it exceeds 5%, the toughness of the electron beam welded portion is lowered.

【0021】Al:AlはNと結合しオーステナイト粒
を微細化して靭性を向上させる元素である。従って、母
材の細粒化のためには0.01%必要である。しかし、
電子ビーム溶接部においては、溶融後の冷速が速いため
にAlを多量添加してもNとAlは結合せず、かえって
固溶Alが増加し靭性が低下する傾向にあり、0.06
0%を上限とする。従って、Alの含有量を0.01〜
0.06%とした。
Al: Al is an element that combines with N to refine austenite grains and improve toughness. Therefore, 0.01% is required to make the base material finer. But,
In the electron beam welded portion, since the cooling rate after melting is fast, even if a large amount of Al is added, N and Al do not bond with each other, and solute Al tends to increase and the toughness tends to decrease.
The upper limit is 0%. Therefore, the Al content is 0.01 to
It was set to 0.06%.

【0022】N:Nは電子ビーム溶接部の低温靭性およ
び耐応力腐食割れ性に有害な元素である。又、N量が高
いと電子ビーム溶接部のビーム先端部において、溶け込
み不良等の溶接欠陥が発生しやすい。これらのことか
ら、N含有量を0.0050%以下とした。
N: N is an element detrimental to low temperature toughness and stress corrosion cracking resistance of electron beam welds. Further, if the N content is high, welding defects such as poor penetration easily occur at the beam tip of the electron beam weld. From these things, N content was 0.0050% or less.

【0023】以上は本発明における鋼の基本成分である
が、更に本発明は強度および靭性を一層改善するため以
下の強度靭性改善元素群の一種または二種以上を添加す
ることができる。 Cu:Cuは靭性を低下させずに強度上昇させるのに有
効であり、その下限量は0.1%である。しかし、1.
5%を超えると熱間加工性や電子ビーム溶接部の高温割
れを生じるおそれがある。従って、Cuの含有量を0.
1〜1.5%とした。
Although the above are the basic components of the steel in the present invention, in the present invention, in order to further improve the strength and toughness, one or more of the following strength / toughness improving element groups can be added. Cu: Cu is effective in increasing the strength without lowering the toughness, and its lower limit is 0.1%. However, 1.
If it exceeds 5%, hot workability and hot cracking of electron beam welds may occur. Therefore, the Cu content is set to 0.
It was set to 1 to 1.5%.

【0024】Nb:Nbは強度確保と細粒化による靭性
確保に有効であり、その下限量は0.005%である。
しかし、0.05%を超えると電子ビーム溶接部の靭性
を低下させる。従って、Nbの含有量を0.005〜
0.05%とした。
Nb: Nb is effective for securing strength and toughness by fine graining, and its lower limit is 0.005%.
However, if it exceeds 0.05%, the toughness of the electron beam welded portion is lowered. Therefore, the Nb content is 0.005
It was set to 0.05%.

【0025】Ti:TiはNと結合し、オーステナイト
粒を細粒化させる元素であり、母材靭性およびHAZ
(溶接熱影響部)靭性の向上のために添加する。0.0
05%未満ではその効果が小さく、又、0.03%を超
えるとかえって母材靭性およびHAZ靭性を低下させ
る。従って、Tiの含有量を0.005〜0.03%と
した。
Ti: Ti is an element that combines with N to make austenite grains finer, and has a base material toughness and HAZ.
(Welding heat affected zone) Add to improve toughness. 0.0
If it is less than 05%, its effect is small, and if it exceeds 0.03%, the toughness of the base material and the HAZ toughness are rather lowered. Therefore, the content of Ti is set to 0.005 to 0.03%.

【0026】この鋼を溶製するにあたっては、電気炉、
転炉のいずれを用いてもよい。又、鋼材製造にあたって
は、鍛造、圧延、成形のいずれを用いてもよい。又、鋼
材の熱処理は、焼入れ焼戻し処理を行なうことが好まし
い。この場合の焼入れ処理は再加熱により二回以上繰り
返してもよく、あるいは圧延後直接焼入れ処理で行なっ
てもよいし、直接焼入れ処理後に再加熱焼入れ処理を施
しても良い。
In melting this steel, an electric furnace,
Any of the converters may be used. Further, in manufacturing the steel material, any of forging, rolling and forming may be used. The heat treatment of the steel material is preferably a quenching and tempering treatment. The quenching treatment in this case may be repeated twice or more by reheating, or may be performed by direct quenching treatment after rolling, or may be performed by reheating quenching treatment after direct quenching treatment.

【0027】次に本発明のもう一つの骨子である構造体
の製造法について述べる。上記の鋼からなる構造体の電
子ビーム溶接部に対し、目的の降伏強度および更に良好
な低温靭性および耐応力腐食割れ性を得るには電子ビー
ム溶接後に熱処理を行なうことが望ましい。
Next, a method for manufacturing a structure, which is another skeleton of the present invention, will be described. It is desirable to heat-treat the electron beam welded part of the above-mentioned steel structure after the electron beam welding in order to obtain the desired yield strength and further favorable low temperature toughness and stress corrosion cracking resistance.

【0028】すなわち、電子ビーム溶接された鋼構造体
は、その後300℃〜Ac1 点以下の温度で後熱処理を
行なう。図2は本発明組成鋼Bについて電子ビーム溶接
部の降伏強度に及ぼす後熱処理温度の影響を示す図であ
る。後熱処理温度が300℃未満では溶接ままのマルテ
ンサイト組織の焼戻しが小さく微細炭化物析出が起こら
ず、目的の降伏強度780MPa以上が得られず、又、
Ac1 点以上では残留オーステナイトの生成により降伏
強度が著しく低下する。
That is, the electron beam welded steel structure is then subjected to post heat treatment at a temperature of 300 ° C. to Ac 1 point or lower. FIG. 2 is a diagram showing the influence of the post heat treatment temperature on the yield strength of the electron beam welded portion of the composition steel B of the present invention. If the post heat treatment temperature is less than 300 ° C., the as-welded martensite structure is not tempered so that precipitation of fine carbide does not occur, and the desired yield strength of 780 MPa or more cannot be obtained.
At an Ac of 1 or more, the yield strength is significantly reduced due to the formation of retained austenite.

【0029】又、更に300℃〜Ac1 点以下の温度範
囲では、耐応力腐食割れ性が向上する。尚、後熱処理後
の冷却は、300℃〜500℃以下では水冷、空冷およ
び徐冷のいずれの冷却でもよいが、500℃〜Ac1
以下では靭性面から水冷が好ましいが、特に限定はしな
い。
Further, in the temperature range of 300 ° C. to Ac 1 point or lower, the stress corrosion cracking resistance is improved. The cooling after the post heat treatment may be any of water cooling, air cooling, and slow cooling at 300 ° C. to 500 ° C. or less, but water cooling is preferable at 500 ° C. to Ac 1 point or less from the viewpoint of toughness, but is not particularly limited. .

【0030】[0030]

【実施例】表1に示す化学成分のうち、鋼A〜鋼Rは本
発明鋼で、鋼S〜鋼Xは比較鋼である。鋼は転炉により
溶製し、連続鋳造および鋼塊分解法により鋼片とした
後、厚板圧延により鋼板(板厚50〜100mm)に圧
延した。鋼板の熱処理条件は、焼入れ処理840〜91
0℃水冷に続き、焼戻し処理(焼戻し温度が550〜6
50℃)を施した。その後、これら鋼板に電子ビーム溶
接した後に、表2に示す本発明法と比較法の各々の熱処
理温度で後熱処理を行なった。但し、電子ビーム溶接条
件は、加速電圧150kV、ビーム電流100〜180
mA、溶接速度20〜30cm/minである。
EXAMPLES Among the chemical components shown in Table 1, steels A to R are steels of the present invention, and steels S to X are comparative steels. Steel was melted in a converter, made into a slab by continuous casting and a steel ingot decomposition method, and then rolled into a steel plate (plate thickness 50 to 100 mm) by plate rolling. The heat treatment conditions for the steel sheet are quenching treatments 840 to 91.
Following 0 ° C water cooling, tempering treatment (tempering temperature 550-6
50 ° C.). Then, after electron beam welding to these steel sheets, post heat treatment was performed at each heat treatment temperature of the method of the present invention and the comparative method shown in Table 2. However, the electron beam welding conditions are an acceleration voltage of 150 kV and a beam current of 100 to 180.
mA, welding speed is 20 to 30 cm / min.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表3に、これら鋼板の母材部および電子ビ
ーム溶接部の引張試験(JISZ2201に準拠)、シ
ャルピー衝撃試験(JISZ2202に準拠)および
3.5%NaClの人工海水中でのASTM E 39
9に示される試験片を使ったIscc試験結果を示す。尚、
各試験片の採取位置および切欠位置は母材の場合は板厚
中心部であり、電子ビーム溶接部の場合は溶着金属部の
板厚中心部中央である。
Table 3 shows the tensile test (according to JISZ2201), the Charpy impact test (according to JISZ2202) and the ASTM E 39 of artificial seawater of 3.5% NaCl of the base metal part and electron beam welded part of these steel sheets.
The Iscc test result using the test piece shown in 9 is shown. still,
The sampling position and the notch position of each test piece are the center of the plate thickness in the case of the base metal, and the center of the center of the thickness of the weld metal in the case of the electron beam welded part.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表中の太い下線の部分は、発明範囲をはず
れる箇所および特性が不十分なものを示す。本発明例
(本発明鋼と本発明法との組合わせたA−1〜R−1
8)においては、良好な電子ビーム溶接部の降伏強度、
靭性および耐応力腐食割れ性を有している。
The thick underlined portions in the table indicate locations outside the scope of the invention and those with insufficient characteristics. Examples of the present invention (A-1 to R-1 in which the steel of the present invention and the method of the present invention are combined
In 8), good yield strength of electron beam welded part,
It has toughness and stress corrosion cracking resistance.

【0037】これに対し、本発明法であっても本発明に
より限定された化学組成範囲を逸脱した比較鋼(S〜
X)と組合わせた比較例においては、例S−19は
〔C〕量が高いために電子ビーム溶接部の限界KIsccが
低い。例T−20は〔P〕量が高く電子ビーム溶接部の
靭性および限界KIsccが低い。例U−21は〔V〕が添
加されていないために電子ビーム溶接後の後熱処理にお
いて析出硬化が期待できず780MPa級の降伏強度が
得られない。
On the other hand, even in the method of the present invention, the comparative steels (S to S) which deviate from the chemical composition range limited by the present invention.
In the comparative example combined with X), the limit [KIscc] of the electron beam weld is low in Example S-19 due to the high [C] content. Example T-20 has a high [P] content and low toughness and limit KIscc of the electron beam weld. In Example U-21, since [V] is not added, precipitation hardening cannot be expected in the post heat treatment after electron beam welding, and a yield strength of 780 MPa class cannot be obtained.

【0038】例V−22は〔N〕量が高く電子ビーム溶
接部の靭性および限界KIsccが低い。例W−23は〔N
i〕量が低いために母材および電子ビーム溶接部で88
0MPa級の降伏強度が得られない。例X−24は〔M
o〕量が低く母材および電子ビーム溶接部で880MP
a級の降伏強度が得られない。
In Example V-22, the [N] content is high and the toughness and limit KIscc of the electron beam weld are low. Example W-23 is [N
i) 88 in the base metal and electron beam welds due to the low amount
Yield strength of 0 MPa class cannot be obtained. Example X-24 is [M
o] Low amount and 880MP in base metal and electron beam weld
A class yield strength cannot be obtained.

【0039】次に、本発明鋼であっても本発明法の範囲
を逸脱した比較法(製造条件No.25〜33)と組合
わせた比較例において、例B−25、H−28、N−3
1は電子ビーム溶接後に後熱処理がされていないために
電子ビーム溶接部の降伏強度および限界KIsccが低い。
例B−26、H−29、N−32は電子ビーム溶接後の
後熱処理温度が低いために降伏強度および限界KIsccが
低い。例B−27、H−30、N−33は電子ビーム溶
接後の後熱処理温度がAc1 点を超えており降伏強度、
靭性および限界KIsccが著しく低い。
Next, even in the case of the steel of the present invention, Examples B-25, H-28, N in Comparative Examples in combination with the comparative method (manufacturing conditions No. 25 to 33) deviating from the scope of the method of the present invention. -3
In No. 1, the post-heat treatment after electron beam welding is not performed, and therefore the yield strength and the limit KIscc of the electron beam welded portion are low.
Examples B-26, H-29 and N-32 have low yield strength and critical KIscc due to the low post heat treatment temperature after electron beam welding. In Examples B-27, H-30, and N-33, the post heat treatment temperature after electron beam welding exceeded the Ac 1 point, and the yield strength was
Remarkably low toughness and critical KIscc.

【0040】[0040]

【発明の効果】本発明の成分範囲と電子ビーム溶接後の
後熱処理との組合わせにより、電子ビーム溶接部の良好
な降伏強度、靭性および耐応力腐食割れ性を有する高強
度鋼が、安定して提供するものであり、産業上多大な効
果を奏するものである。
The combination of the component range of the present invention and the post heat treatment after electron beam welding stabilizes the high strength steel having good yield strength, toughness and stress corrosion cracking resistance of the electron beam welded portion. It is provided as a result and has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子ビーム溶接部の限界KIscc値に及ぼすP量
とC量の影響を示す図表。
FIG. 1 is a chart showing the influence of P amount and C amount on a limit KIscc value of an electron beam welded portion.

【図2】電子ビーム溶接部の降伏強さに及ぼす後熱処理
温度の影響を示す図表。
FIG. 2 is a chart showing the effect of post heat treatment temperature on the yield strength of electron beam welds.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/50 C22C 38/50 38/60 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/50 C22C 38/50 38/60 38/60

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.13% Si:0.02〜0.50% Mn:0.1〜0.8% P :0.008%以下 S :0.005%以下 Ni:3.0〜7.5% Cr:0.2〜1.5% Mo:0.1〜1.5% V :0.01〜0.15% Al:0.01〜0.06% N :0.0050%以下を含有し、残部がFeおよび
不可避的不純物からなることを特徴とする電子ビーム溶
接部の耐応力腐食割れ性に優れた高強度鋼。
1. C .: 0.03 to 0.13% Si: 0.02 to 0.50% Mn: 0.1 to 0.8% P: 0.008% or less S: 0.0. 005% or less Ni: 3.0 to 7.5% Cr: 0.2 to 1.5% Mo: 0.1 to 1.5% V: 0.01 to 0.15% Al: 0.01 to 0 0.06% N: 0.0050% or less, the balance being Fe and unavoidable impurities, and a high-strength steel excellent in stress corrosion cracking resistance of an electron beam weld.
【請求項2】 重量%で、 C :0.03〜0.13% Si:0.02〜0.50% Mn:0.1〜0.8% P :0.008%以下 S :0.005%以下 Ni:3.0〜7.5% Cr:0.2〜1.5% Mo:0.1〜1.5% V :0.01〜0.15% Al:0.01〜0.06% N :0.0050%以下を含有し、更に Cu:0.1〜1.5% Nb:0.005〜0.05% Ti:0.005〜0.03%からなる強度靭性改善元
素群のうちの一種または二種以上を含有し、残部が鉄お
よび不可避的不純物からなることを特徴とする電子ビー
ム溶接部の耐応力腐食割れ性に優れた高強度鋼。
2. C .: 0.03 to 0.13% Si: 0.02 to 0.50% Mn: 0.1 to 0.8% P: 0.008% or less S: 0.0. 005% or less Ni: 3.0 to 7.5% Cr: 0.2 to 1.5% Mo: 0.1 to 1.5% V: 0.01 to 0.15% Al: 0.01 to 0 0.06% N: 0.0050% or less is contained, and further, Cu: 0.1-1.5% Nb: 0.005-0.05% Ti: 0.005-0.03% Strength and toughness improvement A high-strength steel excellent in stress corrosion cracking resistance of an electron beam weld, which contains one or more elements from the element group and the balance is iron and inevitable impurities.
【請求項3】 重量%で、 C :0.03〜0.13% Si:0.02〜0.50% Mn:0.1〜0.8% P :0.008%以下 S :0.005%以下 Ni:3.0〜7.5% Cr:0.2〜1.5% Mo:0.1〜1.5% V :0.01〜0.15% Al:0.01〜0.06% N :0.0050%以下を含有し、残部がFeおよび
不可避的不純物からなる鋼構造体において電子ビーム溶
接した後、300℃〜Ac1 点以下の温度で後熱処理す
ることを特徴とする電子ビーム溶接部の耐応力腐食割れ
性に優れた高強度鋼構造体の製造法。
3. By weight%, C: 0.03 to 0.13% Si: 0.02 to 0.50% Mn: 0.1 to 0.8% P: 0.008% or less S: 0.0. 005% or less Ni: 3.0 to 7.5% Cr: 0.2 to 1.5% Mo: 0.1 to 1.5% V: 0.01 to 0.15% Al: 0.01 to 0 0.06% N: 0.0050% or less is contained, and after the electron beam welding is performed on a steel structure having the balance of Fe and inevitable impurities, post heat treatment is performed at a temperature of 300 ° C. to Ac 1 point or less. Of high strength steel structure with excellent resistance to stress corrosion cracking of electron beam welds.
【請求項4】 重量%で、 C :0.03〜0.13% Si:0.02〜0.50% Mn:0.1〜0.8% P :0.008%以下 S :0.005%以下 Ni:3.0〜7.5% Cr:0.2〜1.5% Mo:0.1〜1.5% V :0.01〜0.15% Al:0.01〜0.06% N :0.0050%以下を含有し、更に Cu:0.1〜1.5% Nb:0.005〜0.05% Ti:0.005〜0.03%からなる強度靭性改善元
素群のうちの一種または二種以上を含有し、残部が鉄お
よび不可避的不純物からなる鋼構造体において電子ビー
ム溶接した後、300℃〜Ac1 点以下の温度で後熱処
理することを特徴とする電子ビーム溶接部の耐応力腐食
割れ性に優れた高強度鋼構造体の製造法。
4. C .: 0.03 to 0.13% Si: 0.02 to 0.50% Mn: 0.1 to 0.8% P: 0.008% or less S: 0.0. 005% or less Ni: 3.0 to 7.5% Cr: 0.2 to 1.5% Mo: 0.1 to 1.5% V: 0.01 to 0.15% Al: 0.01 to 0 0.06% N: 0.0050% or less is contained, and further, Cu: 0.1-1.5% Nb: 0.005-0.05% Ti: 0.005-0.03% Strength and toughness improvement A steel structure containing one or more elements selected from the group of elements, the balance being iron and unavoidable impurities, and electron beam welding, followed by post heat treatment at a temperature of 300 ° C. to Ac 1 point or less. Of high strength steel structure with excellent resistance to stress corrosion cracking of electron beam welds.
JP7081490A 1995-04-06 1995-04-06 Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof Withdrawn JPH08277440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7081490A JPH08277440A (en) 1995-04-06 1995-04-06 Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7081490A JPH08277440A (en) 1995-04-06 1995-04-06 Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof

Publications (1)

Publication Number Publication Date
JPH08277440A true JPH08277440A (en) 1996-10-22

Family

ID=13747850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7081490A Withdrawn JPH08277440A (en) 1995-04-06 1995-04-06 Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof

Country Status (1)

Country Link
JP (1) JPH08277440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038470A1 (en) * 2008-10-01 2010-04-08 新日本製鐵株式会社 Steel plate which exhibits excellent low-tempreature toughness both in base metal and in weld-heat affected zone and has small strength anisotropy and process for manufacturing same
JP2011115829A (en) * 2009-12-04 2011-06-16 Nippon Steel Corp Large-sized welded steel pipe having excellent fatigue resistance characteristic and method of highly efficiently manufacturing the same
JP2012106290A (en) * 2012-02-24 2012-06-07 Nippon Steel Corp Electronic beam weld joint with excellent resistance to generation of brittle fracture
JP2020204074A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038470A1 (en) * 2008-10-01 2010-04-08 新日本製鐵株式会社 Steel plate which exhibits excellent low-tempreature toughness both in base metal and in weld-heat affected zone and has small strength anisotropy and process for manufacturing same
JP4538095B2 (en) * 2008-10-01 2010-09-08 新日本製鐵株式会社 Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
US7967923B2 (en) 2008-10-01 2011-06-28 Nippon Steel Corporation Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JPWO2010038470A1 (en) * 2008-10-01 2012-03-01 新日本製鐵株式会社 Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP2011115829A (en) * 2009-12-04 2011-06-16 Nippon Steel Corp Large-sized welded steel pipe having excellent fatigue resistance characteristic and method of highly efficiently manufacturing the same
JP2012106290A (en) * 2012-02-24 2012-06-07 Nippon Steel Corp Electronic beam weld joint with excellent resistance to generation of brittle fracture
JP2020204074A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Similar Documents

Publication Publication Date Title
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
US20190352749A1 (en) Steel material for high heat input welding
JP3891039B2 (en) High heat input electroslag welding wire
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JPH06235044A (en) High tensile strength steel for welding structure excellent in fatigue strength and toughness at weld heat-affected zone
JPH08277440A (en) Production of high strength steel excellent in stress corrosion cracking resistance in electron beam weld zone and steel structural body thereof
JP7410438B2 (en) steel plate
JP3785940B2 (en) High toughness steel sheet pile having a web thickness of 15 mm or more and method for producing the same
JP7506305B2 (en) High-strength steel plate for large heat input welding
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JP2688312B2 (en) High strength and high toughness steel plate
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP2020204075A (en) High strength steel sheet for high heat input welding
JPH0118967B2 (en)
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP7506306B2 (en) High-strength steel plate for large heat input welding
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP7381838B2 (en) steel plate
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
JP2012046808A (en) Thick high-tensile-strength steel sheet excellent in low temperature toughness at welding portion, and method for producing the same
JPH11323477A (en) Extremely thick wide flange shape having high strength and high toughness
JP2803839B2 (en) Pressure vessel steel plate with excellent electron beam welding characteristics
JPH0625392B2 (en) High-toughness and high-strength steel with a yield strength of 60 kgf / ▲ mm2 ▼ and above with excellent electron beam weldability
JP2020204073A (en) High strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702