JPH08277174A - Clay-humic acid compound porous body and its production - Google Patents

Clay-humic acid compound porous body and its production

Info

Publication number
JPH08277174A
JPH08277174A JP10311195A JP10311195A JPH08277174A JP H08277174 A JPH08277174 A JP H08277174A JP 10311195 A JP10311195 A JP 10311195A JP 10311195 A JP10311195 A JP 10311195A JP H08277174 A JPH08277174 A JP H08277174A
Authority
JP
Japan
Prior art keywords
clay
humic acid
porous body
sol
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311195A
Other languages
Japanese (ja)
Other versions
JP2691696B2 (en
Inventor
Hiromoto Nakazawa
弘基 中沢
Yoshinori Shimojo
芳範 下條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
National Institute for Research in Inorganic Material
Original Assignee
JSP Corp
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, National Institute for Research in Inorganic Material filed Critical JSP Corp
Priority to JP7103111A priority Critical patent/JP2691696B2/en
Publication of JPH08277174A publication Critical patent/JPH08277174A/en
Application granted granted Critical
Publication of JP2691696B2 publication Critical patent/JP2691696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/001Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing unburned clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00112Mixtures characterised by specific pH values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE: To prepare a clay-humic acid compound porous body solely consisting of compatible materials to the global environment, having a small average pore size and excellent in compression strength by mixing a clay sol with a humic acid solution each having a specific concentration in a specific ratio to prepare a mixture and rapidly freezing and drying the mixture. CONSTITUTION: This method for producing the clay-humic acid compound porous body is to prepare a mixture sol by mixing 80-60wt.% clay sol having 5-15wt.% clay concentration with 20-40wt.% humic acid solution having 5-15wt % humic acid concentration, adjust the mixture sol to pH4-8, freeze the adjusted mixture sol in 1×10<2> ml/sec average freezing velocity in a mold, then dry the frozen mixture in vacuum without melting and obtain the clay-humic acid compound porous body having 20-40wt.% humic acid component, 0.8-2.0μm average pore size and >=3.00kgf/cm<2> compression strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粘土−フミン酸複合多
孔体及びその製造方法に関するものであり、さらに詳し
くは、地球環境保全に配慮した緩衝材、断熱材、吸音材
等として有用な粘土−フミン酸複合多孔体及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clay-humic acid composite porous body and a method for producing the same, more specifically, a clay useful as a cushioning material, a heat insulating material, a sound absorbing material, etc. in consideration of global environmental protection. The present invention relates to a humic acid composite porous body and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、緩衝材、断熱材、或いは吸音
材等としては、軽量でかつ安価である等の理由からポリ
スチレン樹脂、ウレタン樹脂等の樹脂発泡体が広く一般
的に利用されている。しかしながら、これらの材料は、
化学的に安定であることから、地球上の生態系では分解
されず、仮に、不用意に河川や海浜などに廃棄された場
合、美観を損ね、環境を汚染するなどの問題を抱えてい
た。また、これら樹脂発泡体は、地球深部より人為的に
採掘された石油を原料としており、廃棄物の焼却に際し
ては、高熱を放出して焼却炉を破損し、同時に大量のガ
スを発生して地球環境汚染を引き起すという欠点があっ
た。
2. Description of the Related Art Conventionally, as a cushioning material, a heat insulating material, a sound absorbing material, etc., resin foams such as polystyrene resin and urethane resin have been widely and generally used because they are lightweight and inexpensive. . However, these materials
Since it is chemically stable, it is not decomposed in the earth's ecosystem, and if it is accidentally disposed of in rivers or beaches, it has a problem of spoiling the aesthetics and polluting the environment. In addition, these resin foams are made from petroleum that has been artificially mined from deep inside the earth, and when incinerating waste, it emits high heat and damages the incinerator, and at the same time generates a large amount of gas to generate a large amount of gas. It had the drawback of causing environmental pollution.

【0003】この様な実状に鑑み、本発明者らは、緩衝
材、断熱材、吸音材等の材料として用いられているポリ
スチレン等を代替する地球環境親和素材の実用化を目的
とし、粘土ゾルを急速凍結し、融解することなく乾燥し
て得られる粘土多孔体を出願した(特公平4−1791
3号)。このものは環境汚染がなく、吸着能、触媒能に
優れたものであるが、多孔体の強度、特に圧縮強度が若
干不足し、実用化には未だ十分なものではなかった。
In view of these circumstances, the present inventors have aimed to put a clay sol into practical use in order to put into practical use a global environment friendly material that substitutes polystyrene used as a material for a cushioning material, a heat insulating material, a sound absorbing material and the like. Applied for a clay porous body obtained by rapidly freezing and drying without melting (Japanese Patent Publication No. 4-1791).
No. 3). This product has no environmental pollution and is excellent in adsorption ability and catalyst ability, but the strength of the porous body, particularly the compression strength, is slightly insufficient, and it is not sufficient for practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術よ
り見られる前記問題を解決し、回収再利用が容易で、廃
棄するに際しては、天然の土壌に容易に変換され、生態
系の中に組込まれる地球環境親和素材のみからなり、平
均細孔径が小さく、圧縮強度に優れ、緩衝材、断熱材、
吸音材等として有用な粘土−フミン酸複合多孔体及びそ
の工業的に有利な製造方法を提供することをその課題と
する。
DISCLOSURE OF THE INVENTION The present invention solves the above problems found in the prior art, is easy to recover and reuse, and is easily converted into natural soil when it is discarded, and it is easy to use in the ecosystem. Made of only materials that are compatible with the global environment, have a small average pore size, excellent compressive strength, cushioning materials, heat insulating materials,
It is an object of the present invention to provide a clay-humic acid composite porous body useful as a sound absorbing material and the like and an industrially advantageous production method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、従来技術
より見られる前記問題を解決すべく鋭意研究を重ねた結
果、特定の濃度の粘土ゾル、並びにフミン酸溶液を、特
定のpH値に調整し、特定の混合比(重量比)により混
合せしめ、急速凍結し、次いでこの凍結体を融解するこ
となく乾燥して得られる多孔体が有効であることを見い
出し、本発明を完成するに至った。すなわち、本発明に
よれば、第一にフミン酸成分が20〜40wt%、平均
細孔径が0.8μm〜2.0μmであり、圧縮強度が、
3.00kgf/cm2以上であることを特徴とする粘
土−フミン酸複合多孔体が提供され、第二に、粘土濃度
が5〜15wt%の粘土ゾルとフミン酸濃度が5〜15
wt%のフミン酸溶液とを、粘土成分とフミン酸成分と
の混合(重量)比が、8:2〜6:4の割合で混合して
混合ゾルを得、pHが4〜8の該混合ゾルを1×102
ml/秒以上の平均凍結速度で急速凍結し、次いで融解
することなく乾燥することを特徴とする粘土−フミン酸
複合多孔体の製造方法が提供される。
Means for Solving the Problems As a result of intensive studies to solve the above problems found in the prior art, the present inventors have found that a clay sol having a specific concentration and a humic acid solution have a specific pH value. In order to complete the present invention, it was found that a porous body obtained by adjusting the mixture to a specific mixing ratio (weight ratio), rapidly freezing, and then drying this frozen body without thawing is effective. I arrived. That is, according to the present invention, firstly, the humic acid component is 20 to 40 wt%, the average pore diameter is 0.8 μm to 2.0 μm, and the compressive strength is
Provided is a clay-humic acid composite porous body, which is characterized by being 3.00 kgf / cm 2 or more, and secondly, a clay sol having a clay concentration of 5 to 15 wt% and a humic acid concentration of 5 to 15%.
A wt% humic acid solution is mixed at a mixing (weight) ratio of the clay component and the humic acid component of 8: 2 to 6: 4 to obtain a mixed sol having a pH of 4 to 8 1 x 10 2 of sol
Provided is a method for producing a clay-humic acid composite porous body, which comprises rapidly freezing at an average freezing rate of at least ml / sec and then drying without thawing.

【0006】本発明者らは、前記した粘土ゾルを急速凍
結し、ついで融解することなく乾燥することにより得ら
れる粘土多孔体の強度向上を図るために、他の無機物
質、例えばカオリナイト、雲母、水ガラス、ロックウー
ル、ガラスファイバー等との複合化により実用強度を有
する多孔体の製造を試みたがこれもまた十分なものでは
なかった。本発明者らは、これらの研究により粘度と他
の無機物質との複合化では強度アップは難しく、また、
脆さが伴うということを知見し、更なる複合素材の研究
を、地球環境親和素材という観点より探索した。その結
果、生物が土中で腐敗分解した最終生成物であるフミン
酸(腐植酸)は、粘土と同様な土質成分であり、しかも
天然の土壌に容易に変換され、生態系の中に組み込まれ
る地球環境親和素材であることから、これを粘土に特定
量添加したところ、環境に親和的で緩衝性を備え、しか
も平均細孔径が小さく、圧縮強度に優れた粘度多孔体が
得られることを見出し、本発明に到達した。
In order to improve the strength of the clay porous body obtained by rapidly freezing the above clay sol and then drying it without melting it, the present inventors have tried to improve the strength of other inorganic substances such as kaolinite and mica. Attempts were made to produce a porous body having practical strength by combining it with water glass, rock wool, glass fiber, etc., but this was also not sufficient. The inventors of the present invention have found that it is difficult to increase the strength by combining the viscosity with other inorganic substances, based on these studies.
Knowing that brittleness is involved, I searched for further research on composite materials from the viewpoint of materials that are friendly to the global environment. As a result, humic acid (humic acid), which is the final product of decay and decomposition of organisms in soil, is a soil component similar to clay, and is easily converted into natural soil and incorporated into ecosystems. Since it is a material compatible with the global environment, it was found that when a specific amount of this is added to clay, a viscous porous material that is environmentally friendly, has a buffering property, has a small average pore size, and has excellent compressive strength can be obtained. Has reached the present invention.

【0007】本発明に用いられる粘土としては、たとえ
ば、モンモリロナイト、サポナイト、バイデライト、カ
オリナイト、アロフェン、セピオライト及びベントナイ
トなどの粘土、または、これらの粘土を合成した合成粘
土等が用いられる。また、本発明で用いるフミン酸は、
天然もしくは、ニトロフミン酸、フミン酸アンモニウ
ム、フミン酸ナトリウム等、人工的に抽出合成されたも
のであってもよい。
Examples of the clay used in the present invention include clays such as montmorillonite, saponite, beidellite, kaolinite, allophane, sepiolite and bentonite, and synthetic clays obtained by synthesizing these clays. Further, humic acid used in the present invention is
It may be natural or artificially extracted and synthesized, such as nitrohumic acid, ammonium humate, or sodium humate.

【0008】本発明の粘土−フミン酸複合多孔体を製造
するには、まず粘土ゾル及びフミン酸溶液を調整する。
粘土は膨潤能を持っているため予めゾル化しておかない
と継子となり不均一となる恐れがある。また、フミン酸
の場合も同様であり溶液化して混合したほうが分散性の
点からも均一に混合が可能になる。粘土ゾル及びフミン
酸溶液を調整する場合、溶媒としては水、アルコール、
水−アルコール混合溶媒などが使用できるが、アルコー
ル溶媒は濃度変化を起しやすく、また地球環境親和素材
という意味でも、コスト的にも水の使用が最も好まし
い。
In order to produce the clay-humic acid composite porous material of the present invention, first, a clay sol and a humic acid solution are prepared.
Clay has a swelling ability, so if it is not made into a sol beforehand, it may become a step and become uneven. Further, the same applies to the case of humic acid, and it is possible to uniformly mix the humic acid when it is made into a solution and mixed in terms of dispersibility. When preparing a clay sol and humic acid solution, the solvent is water, alcohol,
Although a water-alcohol mixed solvent or the like can be used, it is most preferable to use water in terms of cost because the alcohol solvent easily causes a change in concentration and is also a material friendly to the global environment.

【0009】つぎに、本発明では、得られた粘土ゾル及
びフミン酸溶液を混合し、該混合物を成形型に入れて形
成し、凍結させ、該凍結体を融解することなく乾燥させ
る。粘土ゾルの濃度は5〜15wt%、好ましくは8〜
12wt%である。濃度が5wt%未満の場合,多孔体
としての実用強度が得られず、また、15wt%を越え
ると粘土性が高くなり、均一混練が難しくなる。フミン
酸溶液の濃度は、5〜15wt%好ましくは7〜12w
t%である。15wt%を越えるフミン酸を使用した場
合には沈殿が生じ、混合の際、添加量を制御することが
困難となる。また、フミン酸溶液の濃度が5wt%未満
であると、圧縮強度が不充分となる。本発明における凍
結乾燥は、1×102ml/秒以上の平均凍結速度で急
速に凍結することが必要である。このようにすると、ミ
クロンオーダーの微細空孔の多孔体が得られる。1×1
2ml/秒未満の場合には、多孔体の空孔が大きくな
りすぎ、強度が極めて小さくなるため、好ましくない。
Next, in the present invention, the obtained clay sol and humic acid solution are mixed, the mixture is put in a mold to form, frozen, and the frozen body is dried without being thawed. The concentration of clay sol is 5 to 15 wt%, preferably 8 to
12 wt%. When the concentration is less than 5 wt%, practical strength as a porous body cannot be obtained, and when it exceeds 15 wt%, the clay property becomes high and uniform kneading becomes difficult. The concentration of the humic acid solution is 5 to 15 wt%, preferably 7 to 12 w
t%. When humic acid exceeding 15 wt% is used, precipitation occurs, and it becomes difficult to control the addition amount during mixing. Further, if the concentration of the humic acid solution is less than 5 wt%, the compressive strength will be insufficient. Freeze-drying in the present invention requires rapid freezing at an average freezing rate of 1 × 10 2 ml / sec or more. By doing so, a porous body having microscopic pores of micron order can be obtained. 1 x 1
If it is less than 0 2 ml / sec, the pores of the porous body become too large and the strength becomes extremely small, which is not preferable.

【0010】本発明においては、粘土ゾル及びフミン酸
溶液の混合ゾルのpHを4〜8の調整する。このような
混合ゾルから作られた多孔体は、フミン酸が粘土中に細
かく均一に分散し、粘土単体で作成した多孔体より更に
細かい微細空孔が形成され、緩衝性に富む多孔体が得ら
れる。pHが6未満であった場合、粘土:フミン酸組成
比により異なるが、ある程度の強度を持つ多孔体は得ら
れるものの、圧縮強度が実用強度までに達しにくくな
り、更にpHが4未満の場合、酸性領域まで達すると粘
土鉱物中の金属イオン、及びシリカが溶出し、粘土の構
造が破壊される。またフミン酸はこのような酸性溶液中
では球状に凝集し粘土中に巨大粒子として分散し、粘土
の構造破壊とフミン酸の均一分散の悪化により得られる
多孔体は空孔が大きくなり、圧縮強度等の実用強度が得
られなくなる。一方、pHが8を越え、アルカリ性領域
下では、粘土構造中のシリカが溶出し、構造が破壊され
て得られる多孔体の圧縮強度等の実用強度が得られなく
なる。
In the present invention, the pH of the mixed sol of the clay sol and the humic acid solution is adjusted to 4-8. In the porous body made from such mixed sol, humic acid is finely and uniformly dispersed in clay, and finer pores are formed than in the porous body made of clay alone, so that a porous body having a high buffering property is obtained. To be When the pH is less than 6, although it depends on the composition ratio of clay: humic acid, a porous material having a certain level of strength can be obtained, but it is difficult to reach the practical strength of the compressive strength, and when the pH is less than 4, When it reaches the acidic region, the metal ions in the clay mineral and silica are eluted and the structure of the clay is destroyed. Humic acid aggregates spherically in such an acidic solution and disperses as huge particles in clay, and the porous body obtained by the structural destruction of clay and the deterioration of uniform dispersion of humic acid has large pores and compressive strength. It becomes impossible to obtain practical strength such as. On the other hand, when the pH exceeds 8 and in the alkaline range, silica in the clay structure is eluted and the structure is destroyed, so that the practical strength such as the compressive strength cannot be obtained.

【0011】pH調整には、通常、塩酸及び水酸化ナト
リウム水溶液が用いられるが、特にこれらに制限される
ものではなく、硫酸、硝酸、酢酸、燐酸、過塩素酸、硼
酸、水酸化カリウム、水酸化アルミニウム、及び水酸化
カルシウム等を使用してもよい。尚、上記pH調整は、
粘土成分とフミン酸成分の組成、混合比によっては不要
の場合もある。
For the pH adjustment, hydrochloric acid and an aqueous solution of sodium hydroxide are usually used, but the pH is not particularly limited to these, and sulfuric acid, nitric acid, acetic acid, phosphoric acid, perchloric acid, boric acid, potassium hydroxide, water are used. You may use aluminum oxide, calcium hydroxide, etc. In addition, the above pH adjustment is
It may not be necessary depending on the composition and mixing ratio of the clay component and the humic acid component.

【0012】また、本発明においては、粘土成分とフミ
ン酸成分の混合割合を重量比で8:2〜6:4、好まし
くは7:3〜6:4に混合することが必要である。混合
割合でフミン酸成分が20wt%未満の場合、フミン酸
添加による空孔の微細化、つまり強度アップの効果が薄
く、圧縮強度等が実用強度に達しない。一方フミン酸成
分が40wt%を越える場合、粘土成分が少なすぎて、
多孔体の圧縮強度等が低下する。
Further, in the present invention, it is necessary to mix the clay component and the humic acid component in a weight ratio of 8: 2 to 6: 4, preferably 7: 3 to 6: 4. If the humic acid component is less than 20 wt% in the mixing ratio, the effect of refining the pores by adding humic acid, that is, the effect of increasing the strength is small, and the compressive strength or the like does not reach the practical strength. On the other hand, when the humic acid component exceeds 40 wt%, the clay component is too small,
The compressive strength of the porous body is reduced.

【0013】上述の通り、本発明において、粘土とフミ
ン酸との混合比率、並びに混合ゾルのpHを変えること
により、多孔体の空孔の大きさを変え、機械的強度、特
に圧縮強度を3.00kgf/cm2以上、特に3.0
0〜3.80kgf/cm2に制御することができる。
本発明の多孔体を得る場合、原料混合物はゾル状である
と、形状は限定されず成形型に容易に充填し任意形状に
成形することができる。また凍結乾燥の際、水/氷の相
転移に伴う膨張の為、内圧を生じ、微細なガラス状の成
型が可能であり、収縮がなく、寸法精度の良いものが得
られる。本発明の多孔体は、乾燥後、そのまま製品とし
て使用でき、前記したように形状は板状体のほか、ブロ
ック体や柱状体、筒状体等の任意の形状とすることがで
きる。
As described above, in the present invention, by changing the mixing ratio of clay and humic acid and the pH of the mixed sol, the size of the pores of the porous body is changed, and the mechanical strength, particularly the compressive strength, is increased to 3 0.000 kgf / cm 2 or more, especially 3.0
It can be controlled to 0 to 3.80 kgf / cm 2 .
When the raw material mixture is in the form of a sol when obtaining the porous body of the present invention, the shape is not limited, and it can be easily filled in a molding die and molded into an arbitrary shape. Further, during freeze-drying, expansion occurs due to the phase transition of water / ice, so that internal pressure is generated, fine glass-like molding is possible, shrinkage does not occur, and a product with good dimensional accuracy can be obtained. The porous body of the present invention can be used as a product as it is after being dried, and as described above, the shape can be an arbitrary shape such as a block body, a columnar body, or a tubular body in addition to the plate body.

【0014】[0014]

【実施例】次に本発明を実施例により更に詳細に説明す
る。 実施例1〜6、比較例1〜17 山形県左沢産の天然ベントナイトとを水簸し、2μm以
下の鉱物のみを集めモンモリロナイト成分を濃集し、N
aCl水溶液を用いてモンモリロナイトの層間イオンを
Na+に置換し、水洗した後乾燥して原料とした。この
原料と塩酸水溶液又は水酸化ナトリウム水溶液を使用し
て適宜にpHを調整し、計量混合して、固:液比が1:
9の粘土ゾルを作り一昼夜放置して熟成した。フミン酸
は市販されているもの(フミン酸アンモニウム;CHA
−07:テルナイト社製)を使用し、塩酸水溶液又は水
酸化ナトリウム水溶液により同様にpHを調整し、固:
液比を1:9に計量しての水溶液を作成し、一昼夜放置
して熟成した。次いで粘土ゾル/フミン酸水溶液の比率
を100:0、90:10、80:20、70:30、
60:40、50:50、及び0:100に調整した。
ただし、粘土ゾル:フミン酸水溶液の比率が100:
0、及び0:100は、それぞれ粘土ゾル、フミン酸水
溶液だけである。これらは厳密には混合ゾルではない
が、混合ゾルと同様に扱った。これらの混合ゾルのpH
を表1記載のように調整し、ついで得られた混合ゾルを
内径20mmφ、高さ30mmのステンレス製の筒状容
器に入れ、容器ごと液体窒素に浸して、1×102ml
/秒以上の平均凍結速度で急速に凍結し、その後凍結体
を真空乾燥して、微細空孔を有する多孔体を作成した。
得られた多孔体の圧縮強度及び細孔径を測定し、評価を
行った。その結果を表−1に示す。併せて市販のポリス
チレンフォーム((株)JSP社製 ミラフォームMI
F)についても同様に圧縮強度を測定した。なお、作製
したすべての多孔体の密度は0.1g/cm3とした。
EXAMPLES The present invention will now be described in more detail with reference to Examples. Examples 1 to 6, Comparative Examples 1 to 17 Natural bentonite from Sazawa, Yamagata Prefecture was elutriated, and only minerals of 2 μm or less were collected to concentrate the montmorillonite component.
The interlayer ions of montmorillonite were replaced with Na + using an aCl aqueous solution, washed with water, and then dried to obtain a raw material. The pH is adjusted appropriately using this raw material and an aqueous solution of hydrochloric acid or an aqueous solution of sodium hydroxide, and the mixture is weighed and mixed to give a solid: liquid ratio of 1:
Clay sol No. 9 was prepared and left for one day and aged for aging. Humic acid is commercially available (ammonium humate; CHA
-07: manufactured by Ternite Co., Ltd.), the pH is similarly adjusted with an aqueous hydrochloric acid solution or an aqueous sodium hydroxide solution, and solid:
The liquid ratio was measured to be 1: 9 to prepare an aqueous solution, which was left to stand overnight for aging. Next, the ratio of clay sol / humic acid aqueous solution is 100: 0, 90:10, 80:20, 70:30,
Adjusted to 60:40, 50:50, and 0: 100.
However, the ratio of clay sol: humic acid aqueous solution is 100:
0 and 0: 100 are only clay sol and humic acid aqueous solution, respectively. Although these are not strictly mixed sols, they were treated similarly to mixed sols. PH of these mixed sols
Was adjusted as shown in Table 1, and then the obtained mixed sol was placed in a stainless steel cylindrical container having an inner diameter of 20 mmφ and a height of 30 mm, and the whole container was immersed in liquid nitrogen to obtain 1 × 10 2 ml.
The sample was rapidly frozen at an average freezing rate of not less than 1 sec / second, and then the frozen body was vacuum-dried to form a porous body having fine pores.
The compressive strength and pore size of the obtained porous body were measured and evaluated. The results are shown in Table-1. In addition, commercially available polystyrene foam (Mirafoam MI manufactured by JSP Corp.)
The compressive strength of F) was measured in the same manner. The density of all the prepared porous bodies was 0.1 g / cm 3 .

【0015】本実施例で用いた測定方法を以下に示す。 (圧縮強度) ・径20mmφ×高さ30mmの円柱状の多孔体を0.
5mm/minの試験速度で高さ方向に10%圧縮した
時の圧縮力から圧縮強度を算出した。(圧縮試験装置:
インストロン MODEL−1123) (平均細孔径) ・平均細孔径は水銀圧入式の水銀ポロシメーター(CA
RLOERBA Polosimeter Serie
s200)で測定した。 (多孔体評価) ◎ 優:圧縮強度が3.50kgf/cm2を超え、機
械的強度に優れると共に外観に優れる。 ○ 良:圧縮強度が3.00〜3.50kgf/cm2
であり、機械的強度に優れると共に外観に優れる。 × 悪:圧縮強度が3.00kgf/cm2未満であ
り、機械的強度に劣り、脆く、また外観が不良である。
The measuring method used in this example is shown below. (Compressive strength) ・ A cylindrical porous body having a diameter of 20 mmφ and a height of 30 mm was set to 0.
The compressive strength was calculated from the compressive force when 10% was compressed in the height direction at a test speed of 5 mm / min. (Compression tester:
Instron MODEL-1123) (Average pore size) -The average pore size is the mercury porosimetry mercury porosimeter (CA).
RLOERBA Porosimeter Series
s200). (Evaluation of Porous Material) Excellent: Compressive strength exceeds 3.50 kgf / cm 2 , excellent in mechanical strength and appearance. Good: Compressive strength of 3.00 to 3.50 kgf / cm 2
And has excellent mechanical strength and appearance. × Poor: Compressive strength is less than 3.00 kgf / cm 2 , mechanical strength is poor, brittle, and appearance is poor.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明において得られる多孔体は、粘土
とフミン酸という土質成分からなるものであるため、回
収再利用が可能であり、廃棄に際しても天然の土壌に容
易に変換され、生態系の中に組み込まれる非常に新しい
地球環境親和素材であり、緩衝材、断熱材、吸音材等と
して有利に用いられる。本発明の多孔体の製造方法は、
凍結乾燥の際、水/氷の相転移に伴う膨張の為、内圧を
生じ、微細なガラス状の成型が可能であり、また、収縮
がなく、寸法精度の良い多孔体が得られる。このため、
乾燥後すぐに製品として使用することができるという利
点を有する。また、粘土とフミン酸との混合比率、並び
に混合ゾルのpHを変えることにより、多孔体の細孔径
の制御並びに、機械的強度、特に圧縮強度を制御するこ
とができるという長所を有する。
Industrial Applicability The porous material obtained in the present invention is composed of clay and humic acid, which are soil components. Therefore, it can be recovered and reused, and can be easily converted to natural soil even when it is discarded. It is a very new material compatible with the global environment that is incorporated into the product, and is advantageously used as a cushioning material, heat insulating material, sound absorbing material, etc. The method for producing a porous body of the present invention is
During freeze-drying, expansion occurs due to the phase transition of water / ice, so that internal pressure is generated, fine glass-like molding is possible, and there is no shrinkage, and a porous body with good dimensional accuracy can be obtained. For this reason,
It has the advantage that it can be used as a product immediately after drying. Further, by changing the mixing ratio of clay and humic acid and the pH of the mixed sol, it is possible to control the pore size of the porous body and the mechanical strength, particularly the compressive strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フミン酸成分が20〜40wt%、平均
細孔径が0.8μm〜2.0μmであり、圧縮強度が
3.00kgf/cm2以上であることを特徴とする粘
土−フミン酸複合多孔体。
1. A clay-humic acid composite having a humic acid component of 20 to 40 wt%, an average pore diameter of 0.8 μm to 2.0 μm, and a compressive strength of 3.00 kgf / cm 2 or more. Porous body.
【請求項2】 粘土濃度が5〜15wt%の粘土ゾルと
フミン酸濃度が5〜15wt%のフミン酸溶液とを、粘
土成分とフミン酸成分との混合(重量)比が、8:2〜
6:4の割合で混合して混合ゾルを得、pHが4〜8の
該混合ゾルを1×102ml/秒以上の平均凍結速度で
急速凍結し、次いで融解することなく乾燥することを特
徴とする粘土−フミン酸複合多孔体の製造方法。
2. A clay sol having a clay concentration of 5 to 15 wt% and a humic acid solution having a humic acid concentration of 5 to 15 wt% have a mixing (weight) ratio of the clay component and the humic acid component of 8: 2.
A mixed sol is obtained by mixing in a ratio of 6: 4, and the mixed sol having a pH of 4 to 8 is rapidly frozen at an average freezing rate of 1 × 10 2 ml / sec or more, and then dried without thawing. A method for producing a clay-humic acid composite porous body characterized.
JP7103111A 1995-04-04 1995-04-04 Clay-humic acid composite porous body and method for producing the same Expired - Lifetime JP2691696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103111A JP2691696B2 (en) 1995-04-04 1995-04-04 Clay-humic acid composite porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103111A JP2691696B2 (en) 1995-04-04 1995-04-04 Clay-humic acid composite porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08277174A true JPH08277174A (en) 1996-10-22
JP2691696B2 JP2691696B2 (en) 1997-12-17

Family

ID=14345505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103111A Expired - Lifetime JP2691696B2 (en) 1995-04-04 1995-04-04 Clay-humic acid composite porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2691696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245549A2 (en) 2001-03-28 2002-10-02 Asahi Glass Company Ltd. Process for preparing silicate porous product
WO2008084530A1 (en) 2007-01-10 2008-07-17 Shiseido Company, Ltd. Dispersion solution of humic substance
CN104474787A (en) * 2014-12-08 2015-04-01 西安建筑科技大学 Filter material for sewage treatment and preparation method for filter material for sewage treatment
WO2020178538A1 (en) * 2019-03-06 2020-09-10 Materr'up Method for selecting the composition of a construction material comprising an excavated clay soil, method and system for preparing such a construction material
FR3128954A1 (en) * 2022-11-07 2023-05-12 Materrup Method for selecting the composition of a building material comprising an excavated clay soil, method and system for preparing such a building material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245549A2 (en) 2001-03-28 2002-10-02 Asahi Glass Company Ltd. Process for preparing silicate porous product
WO2008084530A1 (en) 2007-01-10 2008-07-17 Shiseido Company, Ltd. Dispersion solution of humic substance
CN104474787A (en) * 2014-12-08 2015-04-01 西安建筑科技大学 Filter material for sewage treatment and preparation method for filter material for sewage treatment
WO2020178538A1 (en) * 2019-03-06 2020-09-10 Materr'up Method for selecting the composition of a construction material comprising an excavated clay soil, method and system for preparing such a construction material
FR3093513A1 (en) * 2019-03-06 2020-09-11 Materr'up Method of selecting the composition of a building material comprising excavated clay soil, method and system for preparing such a building material
US11401215B2 (en) 2019-03-06 2022-08-02 Materr'up Method for selecting the composition of a construction material comprising an excavated clay soil, method and system for preparing such a construction material
US11827573B2 (en) 2019-03-06 2023-11-28 Materrup Method for selecting the composition of a construction material comprising an excavated clay soil, method and system for preparing such a construction material
FR3128954A1 (en) * 2022-11-07 2023-05-12 Materrup Method for selecting the composition of a building material comprising an excavated clay soil, method and system for preparing such a building material

Also Published As

Publication number Publication date
JP2691696B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US9919974B2 (en) High-strength geopolymer composite cellular concrete
KR101731666B1 (en) Cellular phosphate ceramics and methods of manufacture and use
Sata et al. Use of construction and demolition waste (CDW) for alkali-activated or geopolymer concrete
CA3019760A1 (en) Geopolymer foam formulation
WO1985004862A1 (en) High porosity body used for adsorption or absorption purposes, particularly for animal litters, method for producing it and utilization thereof
CN103011896A (en) Foam concrete
KR20100085112A (en) Method of preparing a controlled porosity geopolymer, the resulting geopolymer and the various applications thereof
DE102014003104A1 (en) Alkali aluminosilicate foam or slurry compositions or bodies and process for their preparation and their use
CN111718160A (en) Alkali-activated regenerated micro-powder solidified dehydrated sludge/slurry and preparation method thereof
JP2018118895A (en) Method for preparing porous material
CN106478131A (en) A kind of geopolymer foam concrete and preparation method thereof
Li et al. Fabrication and application of porous materials made from coal gangue: A review
JP2691696B2 (en) Clay-humic acid composite porous body and method for producing the same
Perumal et al. Porous alkali-activated materials
Bhuyan et al. Peracetic acid as a novel blowing agent in the direct foaming of alkali-activated materials
CN107129205A (en) A kind of materials for wall and preparation method thereof
Ghorbani et al. Stabilization of problematic silty sands using microsilica and lime
Yao et al. Freeze-thaw resistance of cement-stabilized gangue bonding materials: Effects of an ionic stabilizer
RU2311236C2 (en) Method of utilization of the ash and slag after incineration of the rubbish
RU2448929C1 (en) Crude mixture and method of producing said mixture for nanostructured autoclave foamed concrete
JP3154786B2 (en) Method for producing artificial aggregate for concrete and artificial aggregate for concrete
Ibrahim et al. A Review of Geopolymer Based Metakaolin Membrane as an Effective Adsorbent for Waste Water Treatment.
JPH0151468B2 (en)
DE3810683A1 (en) LIGHTWEIGHT CONCRETE BODY WITH A LIGHT EXTRACT OF FOAM CEMENT AND METHOD FOR THE PRODUCTION THEREOF
Miryuk Porous aggregate development for lightweight concrete

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term