JPH0151468B2 - - Google Patents

Info

Publication number
JPH0151468B2
JPH0151468B2 JP6519981A JP6519981A JPH0151468B2 JP H0151468 B2 JPH0151468 B2 JP H0151468B2 JP 6519981 A JP6519981 A JP 6519981A JP 6519981 A JP6519981 A JP 6519981A JP H0151468 B2 JPH0151468 B2 JP H0151468B2
Authority
JP
Japan
Prior art keywords
calcium silicate
gel
sio
silicate hydrate
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6519981A
Other languages
Japanese (ja)
Other versions
JPS57183344A (en
Inventor
Kenichi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6519981A priority Critical patent/JPS57183344A/en
Publication of JPS57183344A publication Critical patent/JPS57183344A/en
Publication of JPH0151468B2 publication Critical patent/JPH0151468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 本発明は、CaOとSiO2のモル比が0.5から2.0の
間にあるゲル状のけい酸カルシウム水和物に水硬
性物質と起泡剤を加えて水性スラリーをつくり、
これを成形型枠に注形して凝固させ、さらに蒸気
養生することを特徴とする軽量気泡コンクリート
の製造方法に関するものである。
[Detailed description of the invention] The present invention creates an aqueous slurry by adding a hydraulic substance and a foaming agent to a gel-like calcium silicate hydrate in which the molar ratio of CaO and SiO 2 is between 0.5 and 2.0. ,
The present invention relates to a method for producing lightweight cellular concrete, which is characterized by casting this into a mold, solidifying it, and then curing it with steam.

けい酸カルシウム水和物系の軽量気泡コンクリ
ートは、通常は、けい酸質原料と石灰質原料、す
なわち、けい石、生石灰およびポルトランドセメ
ントを原料とし、これに金属アルミニウムあるい
は蛋白質系の起泡剤を添加した水性スラリーを成
形型枠に注形して凝固させたのちに切断して、さ
らに蒸気養生することによつて製造されている。
そして、一般的にはその密度は0.3ないし1.2g/
cm3である。しかしながら、この方法は3つの欠点
をもつている。第1は、成形型枠に注形したスラ
リーを凝固させるための条件調整、すなわち温度
と時間の調整が難かしく、切断時に形がくずれた
り、あるいは硬くなりすぎて切断できなくなつた
りし易いという不都合である。第2は、蒸気養生
に数時間を要し、しかも高温・高圧のもとで行な
うために多量のエネルギーを必要とする不経済性
である。そして、第3は、投入する原料が製造工
程の途中で精製されずに、不純分を含んだまま製
品になつてしまうために、たとえばけい石のよう
な天然物を使用する場合に、その選別に大きな制
約があるということである。
Calcium silicate hydrate-based lightweight cellular concrete is usually made from silicic acid and calcareous raw materials, namely silica, quicklime, and portland cement, to which metallic aluminum or protein-based foaming agents are added. It is manufactured by pouring the aqueous slurry into a mold, solidifying it, cutting it, and then curing it with steam.
And generally its density is 0.3 to 1.2g/
cm3 . However, this method has three drawbacks. First, it is difficult to adjust the conditions for solidifying the slurry poured into the mold, i.e., the temperature and time, and the shape tends to collapse when cutting, or the slurry becomes too hard to cut. It's inconvenient. The second reason is that steam curing takes several hours and is uneconomical since it requires a large amount of energy because it is carried out under high temperature and pressure. Thirdly, the input raw materials are not refined during the manufacturing process and end up as products containing impurities, so when using natural products such as silica, the selection is difficult. This means that there are major restrictions.

本発明者は、軽量気泡コンクリートの製造技術
における上述の欠陥を克服すべく研究を積上げて
きた結果、本発明を完成するに至つた。
The present inventor has completed the present invention as a result of accumulated research in order to overcome the above-mentioned deficiencies in the manufacturing technology of lightweight cellular concrete.

すなわち、本発明は、CaOとSiO2のモル比の
範囲を規定したゲル状のけい酸カルシウム水和物
をあらかじめつくつておき、これを出発原料の主
成分とし、これにけい酸カルシウム系水硬化性物
質と起泡剤を加えたスラリーを蒸気養生すること
を特徴とする軽量気泡コンクリートの新しい製造
方法を提供するものである。また、本発明におけ
る気泡コンクリートの密度は0.3ないし1.2g/cm3
の範囲である。
That is, in the present invention, a gel-like calcium silicate hydrate with a defined molar ratio range of CaO and SiO 2 is prepared in advance, this is used as the main component of the starting material, and a calcium silicate-based water-curing solution is added to the gel-like calcium silicate hydrate. The present invention provides a new method for producing lightweight cellular concrete, which is characterized by steam-curing a slurry containing a foaming agent and a foaming agent. Further, the density of the aerated concrete in the present invention is 0.3 to 1.2 g/cm 3
is within the range of

本発明におけるCaOとSiO2のモル比の範囲は
0.5から2.0の間にあることが必要である。このモ
ル比が0.5未満および2.0を超えると、水性スラリ
ーの凝固時間が長く、また蒸気養生時間も長くな
つて、前述の通常の場合と有意差がなくなるのみ
ならず、蒸気養生後の特性、とくに圧縮強度にお
いて通常の場合よりも劣る。
The range of molar ratio of CaO and SiO 2 in the present invention is
Must be between 0.5 and 2.0. If this molar ratio is less than 0.5 or more than 2.0, the coagulation time of the aqueous slurry and the steam curing time will become longer, and not only will there be no significant difference from the normal case described above, but the characteristics after steam curing, especially Compressive strength is inferior to normal case.

CaOとSiO2のモル比の範囲が0.5から2.0の間の
ゲル状のけい酸カルシウム水和物は、CaO成分と
しての生石灰および/または消石灰とSiO2成分
としてのけい石、別府白土あるいはシラス等、さ
らには両成分をもつているポルトランドセメント
を、それぞれの化学成分分析値からCaOとSiO2
のモル比が計算上で0.5から2.0の間になるように
調合し、これに水を加えた水性スラリーを加熱し
つつかき混ぜることによつて容易につくられる。
この場合、必らずしも高圧にする必要はなく、た
とえば、90℃程度でも可能である。
Gel-like calcium silicate hydrate with a molar ratio of CaO and SiO 2 in the range of 0.5 to 2.0 is composed of quicklime and/or slaked lime as the CaO component and silica, Beppu white clay or shirasu as the SiO 2 component. Furthermore, Portland cement, which has both components, was analyzed for CaO and SiO 2 based on the respective chemical component analysis values.
It can be easily made by mixing the slurry so that the molar ratio is between 0.5 and 2.0, then adding water to the aqueous slurry and stirring it while heating.
In this case, it is not necessarily necessary to use a high pressure; for example, a pressure of about 90°C is also possible.

本発明におけるけい酸カルシウム系水硬性物質
とは、セメント追加あるいは粉砕されたけい石に
生石灰を混合したものを指す。
The calcium silicate-based hydraulic material in the present invention refers to a mixture of quicklime added to cement or crushed silica stone.

ところで、このゲル状のけい酸カルシウム水和
物は、工業的に比較的容易に製造し得るものであ
るが、これだけを蒸気養生しても、十分な強度を
もつには至らず、いわゆる軽量気泡コンクリート
というレベルのものにはならない。そこで、この
ゲル状のけい酸カルシウム水和物を主原料とし、
これにけい酸カルシウム系水硬性物質を混合し、
さらに気泡を形成させるために、たとえば蛋白質
系あるいは合成界面活性剤等の起泡剤、または金
属アルミニウム粉末あるいはそのペースト状物の
発泡性のある起泡剤を加えて得た水性スラリーを
成形型枠に流し込めば、その後の蒸気養生により
建築材料等に使用できる程度の材料、すなわち軽
量気泡コンクリートが得られる。この場合の蒸気
養生の条件を、たとえば180℃で3時間にすれば、
得られる軽量気泡コンクリートは、走査型電子顕
微鏡で容易に観察できる人工合成鉱物結晶の集合
体であり、この鉱物結晶は、X線回折により11.3
Åにピークをもつトバモライトであることが分か
るものである。このことは、主原料のゲル状のけ
い酸カルシウム水和物が蒸気養生によつてトバモ
ライト系結晶になり、またけい酸カルシウム系水
硬性物質としてポルトランドセメント、あるいは
粉砕されたけい石と生石灰の混合物を用いた場合
には、この物質が、最初のうちはその水硬化性に
よつて、成形型枠に従つた成形体に凝固させる働
きを発揮するが、その後の蒸気養生によつて、こ
れもトバモライト結晶になりうるものである。し
たがつて、こうして得られた軽量気泡コンクリー
トは、みかけ上、通常の方法によつて製造された
ものと同様のものである。
By the way, this gel-like calcium silicate hydrate can be produced industrially with relative ease, but even if it is steam-cured alone, it does not have sufficient strength, and it cannot be used as a lightweight foam. It will not reach the level of concrete. Therefore, using this gel-like calcium silicate hydrate as the main raw material,
A calcium silicate hydraulic substance is mixed with this,
Furthermore, in order to form bubbles, an aqueous slurry obtained by adding a foaming agent such as a protein-based or synthetic surfactant, or a foaming agent such as metal aluminum powder or a paste thereof, is placed in a molding mold. If the concrete is poured into a container and then steam-cured, a material suitable for use as a building material, ie, lightweight aerated concrete, can be obtained. In this case, if the steam curing conditions are set to 180℃ for 3 hours, for example,
The resulting lightweight cellular concrete is an aggregate of artificially synthesized mineral crystals that can be easily observed with a scanning electron microscope.
It can be seen that it is tobermorite with a peak at Å. This means that the main raw material, gel-like calcium silicate hydrate, becomes tobermorite-based crystals through steam curing, and that calcium silicate-based hydraulic substances include Portland cement or a mixture of crushed silica and quicklime. When using water, this substance initially has the effect of solidifying into a molded product conforming to the molding form due to its water-curing properties, but this also solidifies through subsequent steam curing. It can become tobermorite crystal. Therefore, the lightweight cellular concrete thus obtained is similar in appearance to that produced by conventional methods.

本発明の方法によらない通常の方法は、あらか
じめゲル状のけい酸カルシウム水和物をつくらず
に、けい石、生石灰およびポルトランドセメント
に起泡剤を加えた水性スラリーを成形型枠に流し
込んで、水硬化反応を経て、そのまま蒸気養生工
程に入るのであるが、トバモライト系結晶を十分
に成長させて、所定の圧縮強度を出すには、一般
に180℃では4〜5時間を要する。前述のような
3時間では、トバモライト結晶の成長は不十分
で、圧縮強度も低く、炭酸ガスの吸収による強度
劣化も著しく、建築材料に使用できる軽量気泡コ
ンクリートにはならない。
In a conventional method that does not involve the method of the present invention, a gel-like calcium silicate hydrate is not prepared in advance, but an aqueous slurry of silica stone, quicklime, and Portland cement with a foaming agent added is poured into a mold. After undergoing a water curing reaction, the material directly enters the steam curing process, but it generally takes 4 to 5 hours at 180°C to sufficiently grow tobermorite crystals and achieve a specified compressive strength. If the above-mentioned 3 hours are used, the tobermorite crystals will not grow sufficiently, the compressive strength will be low, and the strength will deteriorate significantly due to the absorption of carbon dioxide gas, so that lightweight cellular concrete that can be used as a building material cannot be obtained.

また、本発明の方法によれば、不純物としてア
ルカリ金属を、酸化物換算で2%以上含むけい石
を用いても、ゲル状のけい酸カルシウム水和物が
できた時点で、その水性スラリーから水を除け
ば、アルカリ金属をイオンの状態で簡単に系外に
拝除することができ、いわゆる低品位のけい石を
工業的に利用することができる。さらに、通常の
方法では、SiO2成分として非晶質シリカ、たと
えばシラス等を使用すると、結晶質のけい石を使
用した場合と比較して、結晶質トバモライトが著
しく生成しにくいが、本発明の方法を用いれば、
非晶質シリカからでもゲル状のけい酸カルシウム
水和物を容易につくることができるので、SiO2
成分としての出発原料は結晶質のけい石に限定さ
れることなく、非晶質のシリカでもよく、上述の
不純物除去と合わせると、SiO2成分の選択範囲
は極めて広範囲になる。同様にCaO成分の方も、
通常の方法ならば、生石灰の焼成の程度が軽量気
泡コンクリートの物性に微妙に影響してくるので
あるのに対し、本発明の方法によれば、その焼成
条件によらず、また生石灰でなくて消石灰であつ
ても、CaOとSiO2のモル比さえ一定にしておけ
ば、実質的に同等のゲル状のけい酸カルシウム水
和物をつくることができるので、原料の選択範囲
は著しく拡がる。
Further, according to the method of the present invention, even if silica stone containing 2% or more of alkali metal as an impurity in terms of oxide is used, once gel-like calcium silicate hydrate is formed, the aqueous slurry can be extracted from the aqueous slurry. If water is removed, the alkali metal can be easily removed from the system in the form of ions, and so-called low-grade silica stone can be used industrially. Furthermore, in conventional methods, when amorphous silica, such as Shirasu, is used as the SiO 2 component, crystalline tobermorite is significantly less likely to be produced than when crystalline silica is used. If you use the method,
Since gel-like calcium silicate hydrate can be easily produced even from amorphous silica, SiO 2
The starting material as a component is not limited to crystalline silica, but may also be amorphous silica, and when combined with the above-mentioned removal of impurities, the selection range of the SiO 2 component becomes extremely wide. Similarly, for the CaO component,
In the conventional method, the degree of calcination of quicklime has a subtle influence on the physical properties of lightweight cellular concrete, but according to the method of the present invention, the degree of calcination of quicklime has a subtle effect on the physical properties of lightweight cellular concrete, but according to the method of the present invention, the degree of calcination of quicklime does not depend on the calcination conditions, and it is possible to Even with slaked lime, as long as the molar ratio of CaO and SiO 2 is kept constant, it is possible to create a gel-like calcium silicate hydrate that is essentially the same, which greatly expands the range of raw materials to choose from.

以上の説明で明かなように、通常の方法におけ
る3つの欠点は、本発明の方法により大幅に改善
されたのである。
As is clear from the above description, the three drawbacks of conventional methods have been significantly improved by the method of the present invention.

さらに、本発明の方法によつて得られた軽量気
泡コンクリートの物性は、驚くべきことに、圧縮
強度、炭酸化抵抗および耐凍害性が通常の方法で
は到底得られない水準のものになり得ることが分
かつたのである。すなわち、ゲル状のけい酸カル
シウム水和物の水性スラリーを一度脱水し、新鮮
な水を加えて新たに水性スラリーをつくつたもの
を原料として製造した軽量気泡コンクリートは、
圧縮強度、炭酸化抵抗および耐凍害性が通常の方
法で製造されたものと比較して、20%以上向上し
たのである。
Furthermore, the physical properties of the lightweight cellular concrete obtained by the method of the present invention surprisingly can be such that the compressive strength, carbonation resistance, and frost damage resistance are at a level that cannot be obtained by conventional methods. I found out. In other words, lightweight cellular concrete is manufactured using an aqueous slurry of gel-like calcium silicate hydrate, which is dehydrated and fresh water is added to create a new aqueous slurry.
Compressive strength, carbonation resistance, and frost damage resistance were improved by more than 20% compared to those produced using conventional methods.

実施例 1 宇久須けい石をボールミルで粉砕しブレーン法
による比表面積が3000cm2/gの微粉末けい石
(SiO2分98%)1000gと、1200℃で焼成した生石
灰(CaO分99.8%)764gの混合物に10の水を
加えて水性スラリーをつくつた。このスラリーを
90℃で2昼夜、かき混ぜながら処理した。こうし
て得たゲル状物を水洗過したのち自然乾燥した
白色微粉末は、化学分析したところ、CaOと
SiO2のモル比は0.82で、示差熱分析により、約
800℃で発熱する物質、すなわち、トバモライト
系のゲル状のけい酸カルシウム水和物であること
が分かつた。このゲル状のけい酸カルシウム水和
物の乾燥粉末1000gにポルトランドセメント100
g、上で用いたものと同様の生石灰15g、同じく
けい石100gおよび平均径約20μの板状アルミニ
ウム粉末をよく混合し、これに50℃の水1を注
入して水性スラリーをつくつた。これを20cm平行
の底面を有する直方体の厚紙製型枠に流し込み、
そのまま3時間放置した。その後、中の成形体を
型枠から取り出し、直径0.5mmの鋼線で縦方向に
2ブロツクに切り分けた。この2つのブロツクを
2つのオートクレーブに別々に入れ、一方は180
℃で3時間、他方は180℃で6時間処理した。こ
の処理後のサンプルは、ともに絶乾比重が0.48の
軽量気泡体で、圧縮強度は前者が49Kg/cm2、後者
が48Kg/cm2で、実質的には、オートクレーブ処理
時間が3時間でも、6時間の場合と同等の強度を
示した。そして、回転式ダイヤモンドカツターで
5cm立方に切断したサンプルを、上面が水面下3
cmになるように水中に沈め、吸水量を測定したと
ころ、6、12および24時間で、前者はそれぞれ
5、10および19容積%、後者はそれぞれ6、9お
よび20容積%で、実質的には両者で有意差がなか
つた。これに対し、通常の軽量気泡コンクリート
の例として旭化成工業株式会社製のヘーベル(商
標)を測定した結果、それぞれ15、21および29容
積%で、上記サンプルの方が著しく吸水速度が低
かつた。
Example 1 1000 g of finely powdered silica stone (SiO 2 min 98%) with a specific surface area of 3000 cm 2 /g determined by the Blaine method by crushing Ukusu silica stone with a ball mill, and 764 g of quicklime (CaO content 99.8%) calcined at 1200°C. 10 parts of water was added to the mixture to create an aqueous slurry. This slurry
The mixture was treated at 90°C for two days and nights with stirring. Chemical analysis of the white fine powder obtained by washing the gel-like substance obtained in this way with water and drying it naturally revealed that it was CaO.
The molar ratio of SiO 2 is 0.82, and differential thermal analysis shows that it is approximately
It turned out to be a substance that generates heat at 800°C, namely tobermorite-based gel-like calcium silicate hydrate. 100g of dry powder of this gel-like calcium silicate hydrate and 100g of Portland cement.
g, 15 g of quicklime similar to that used above, 100 g of silica stone, and plate-shaped aluminum powder with an average diameter of about 20 μm were mixed well, and 1 liter of water at 50° C. was poured into the mixture to make an aqueous slurry. Pour this into a rectangular cardboard mold with a 20 cm parallel bottom.
It was left as it was for 3 hours. Thereafter, the molded body inside was taken out from the mold and cut vertically into two blocks using a steel wire with a diameter of 0.5 mm. Place these two blocks separately in two autoclaves, one at 180 °C.
℃ for 3 hours, and the other at 180℃ for 6 hours. Both samples after this treatment are lightweight foams with an absolute dry specific gravity of 0.48, and the compressive strength of the former is 49Kg/cm 2 and the latter is 48Kg/cm 2 .Substantially, even though the autoclave treatment time is 3 hours, The strength was equivalent to that after 6 hours. Then, cut the sample into 5cm cubes using a rotary diamond cutter, and cut the sample into 5cm cubes with the top surface below the water surface.
When the water absorption amount was measured after 6, 12 and 24 hours, the former was 5, 10 and 19% by volume, respectively, and the latter was 6, 9 and 20% by volume, respectively. There was no significant difference between the two. On the other hand, as an example of ordinary lightweight cellular concrete, Hebel (trademark) manufactured by Asahi Kasei Industries, Ltd. was measured, and the water absorption rate was 15, 21, and 29% by volume, respectively, and the water absorption rate of the above sample was significantly lower.

なお、トバモライト系ゲルのCaOとSiO2のモ
ル比を0.45および2.2になるように微粉末けい石
と生石灰を混合したが、いずれもオートクレーブ
処理6時間後の圧縮強度が30Kg/cm2以下、密度
0.52g/cm3の強度面で不満足な軽量気泡コンクリ
ートしか得られなかつた。
In addition, finely powdered silica and quicklime were mixed so that the molar ratio of CaO and SiO 2 in the tobermorite gel was 0.45 and 2.2, but both had a compressive strength of 30 Kg/cm 2 or less and a density after 6 hours of autoclaving.
Only lightweight aerated concrete with an unsatisfactory strength of 0.52 g/cm 3 was obtained.

実施例 2 実施例1において宇久須けい石の代りに別府白
土を用いて、同様に実験した結果、実施例1と同
等の性質をもつ軽量気泡体が得られた。この5cm
立方のサンプルを、気中凍結・水中融解式の凍結
融解試験法、すなわち−20℃の気中で4時間凍結
させ+20℃の水中で4時間処理させてこれを繰返
す試験法にかけた結果、80および120回で、その
サンプルの体積残存率がそれぞれ98および90%で
あつた。これに対し、ヘーベルの場合は、50、70
および90回でそれぞれ80、50および20%であり、
明かに、上記サンプルの方は著しく耐凍害性が向
上していた。
Example 2 As a result of a similar experiment using Beppu white clay instead of Ukusu silica in Example 1, a lightweight foam having properties similar to those of Example 1 was obtained. This 5cm
A cubic sample was subjected to a freeze-thaw test method that involves freezing in air and thawing in water, that is, freezing it in air at -20°C for 4 hours, treating it in water at +20°C for 4 hours, and repeating this process. and 120 times, the volumetric survival rates of the samples were 98 and 90%, respectively. In contrast, Hebel's case is 50, 70
and 80, 50 and 20% at 90 times, respectively;
Clearly, the freeze damage resistance of the above sample was significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 CaOとSiO2のモル比が0.5から2.0の間にある
ゲル状のけい酸カルシウム水和物にけい酸カルシ
ウム系水硬性物質と起泡剤を加えて水性スラリー
をつくり、これを成形型枠に注形して凝固させ、
さらに蒸気養生することを特徴とする軽量気泡コ
ンクリートの製造方法。
1 Add a calcium silicate-based hydraulic substance and a foaming agent to a gel-like calcium silicate hydrate with a molar ratio of CaO to SiO 2 between 0.5 and 2.0 to create an aqueous slurry, and use this as a molding mold. and solidify it.
A method for producing lightweight aerated concrete characterized by further steam curing.
JP6519981A 1981-05-01 1981-05-01 Manufacture of lightweight foamed concrete Granted JPS57183344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6519981A JPS57183344A (en) 1981-05-01 1981-05-01 Manufacture of lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6519981A JPS57183344A (en) 1981-05-01 1981-05-01 Manufacture of lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS57183344A JPS57183344A (en) 1982-11-11
JPH0151468B2 true JPH0151468B2 (en) 1989-11-02

Family

ID=13280000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6519981A Granted JPS57183344A (en) 1981-05-01 1981-05-01 Manufacture of lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS57183344A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO612097A0 (en) * 1997-04-10 1997-05-08 James Hardie Research Pty Limited Building products
JP2002179476A (en) * 2000-12-08 2002-06-26 Nippon Sheet Glass Co Ltd Frost-damage-resistant, lightweight heat-insulating building material
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
CA2648966C (en) 2006-04-12 2015-01-06 James Hardie International Finance B.V. A surface sealed reinforced building element
DE102008018802A1 (en) * 2008-04-15 2009-10-22 Construction Research & Technology Gmbh Volume tile adhesive
EA037008B1 (en) * 2013-08-21 2021-01-26 Солидия Текнолоджиз, Инк. Aerated composite materials, methods of production and uses thereof
JP6210546B2 (en) * 2013-10-31 2017-10-11 学校法人日本大学 Method for producing calcium silicate hydrate
CN112279667A (en) * 2020-11-11 2021-01-29 姜毅 Foamed concrete block and production method thereof

Also Published As

Publication number Publication date
JPS57183344A (en) 1982-11-11

Similar Documents

Publication Publication Date Title
US5032549A (en) Highly porous ceramic material for absorption and adsorption purposes, particularly for animal litter/bedding
US5015606A (en) Lightweight ceramic material for building purposes
JPS5888155A (en) Lightweight construction material and manufacture
CN104774031B (en) A2.0 B04 grade autoclaved aerated concrete block prepared from quartz eroded sand and preparation method thereof
JP3221908B2 (en) Method for producing recycled aggregate and recycled aggregate
CN105948639B (en) A kind of high-strength low-shrinkage anti-crack road surface base material
CN102964095A (en) Aerated concrete building block and manufacturing method thereof
JPH08133862A (en) Insulation material and its preparation
RU2403230C1 (en) Method of obtaining granular heat insulating material
KR100306866B1 (en) Thermally insulating building material
CN108503285A (en) A kind of preparation method of light-high-strength concrete
RU2300506C1 (en) Building material and the method of its production
JPH0151468B2 (en)
EP0069095A1 (en) A method in the manufacture of steam-cured inorganic insulating material of extremely low volumetric weight and having good heat-insulating properties
JPH06144944A (en) Method for carbonating porous calcium silicate hydrate
JP4827045B2 (en) Water purification material and method for producing water purification material
US3144346A (en) Calcium silicate hydrate products
CN107129205A (en) A kind of materials for wall and preparation method thereof
US2081802A (en) Manufacture of light concrete
CN110372270A (en) A kind of production technology of the steam-pressing aero-concrete containing carbide slag
US2209752A (en) Magnesium carbonate composition and process for the preparation thereof
JPS5926957A (en) Manufacture of calcium silicate hydrate hardened body
JP4628584B2 (en) Lightweight cellular concrete
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
US2209754A (en) Self-set magnesium carbonate composition and method of effecting setting thereof