JPH0827586A - Electrochemical element and its manufacture - Google Patents

Electrochemical element and its manufacture

Info

Publication number
JPH0827586A
JPH0827586A JP6162024A JP16202494A JPH0827586A JP H0827586 A JPH0827586 A JP H0827586A JP 6162024 A JP6162024 A JP 6162024A JP 16202494 A JP16202494 A JP 16202494A JP H0827586 A JPH0827586 A JP H0827586A
Authority
JP
Japan
Prior art keywords
electrolyte
oxide
negative electrode
positive electrode
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6162024A
Other languages
Japanese (ja)
Other versions
JP3166492B2 (en
Inventor
Akio Fukuda
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16202494A priority Critical patent/JP3166492B2/en
Publication of JPH0827586A publication Critical patent/JPH0827586A/en
Application granted granted Critical
Publication of JP3166492B2 publication Critical patent/JP3166492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an electrochemical element with which nitrogen oxides are efficiently decomposed at a low temp. through using a low current density by arranging a negative electrode contg. a multiple metal oxide and a positive electrode made of a noble metal opposite to each other through interposing an oxygen ion conductive electrolyte between them to form the element. CONSTITUTION:This element comprises a negative electrode 1 consisting of a multiple oxide (Fe2O3.Mn2O3.CuO) and Pt, an oxygen ion conductive electrolyte 2 consisting of ZrO2 stabilized with Y2O3 and a positive electrode 3 consisting of Pt. The element is manufactured by printing a pattern of a negative or positive conductive paste on either surface of the electrolyte 2, drying the resulting surface, thereafter, printing a pattern of another conductive paste having the reverse polarity to that of the former paste on the other surface of the electrolyte 2, drying the resulting latter surface, thereafter, firing the dried pastes at about 820 deg.C in the atmosphere to form a positive electrode 1 and a negative electrode 3 on the surfaces of the electrolyte 2 and further, bonding Pt lead wires to the ends of the electrodes 1 and 3. At this time, the firing temp. is not particularly limited to 820 deg.C and any temp. at which the sintering of the dried pastes occurs can be used as the firing temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素酸化物ガスを含む
雰囲気において、電気化学的に窒素酸化物を窒素と酸素
に分解する素子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for electrochemically decomposing nitrogen oxide into nitrogen and oxygen in an atmosphere containing nitrogen oxide gas and a method for manufacturing the element.

【0002】[0002]

【従来の技術】従来の電気化学的方法による窒素酸化物
分解の方法は、例えば特開昭61−78421号公報に
よれば、分解装置として図5に示すように固体電解質1
1を介した正電極12、負電極13の両空間を区画し
(電極材料には白金を使用)、負極側に被処理ガスを、
正極側に被処理ガス以外の大気あるいは減圧ガスに接触
させる構成がとられている。
2. Description of the Related Art A conventional method for decomposing nitrogen oxides by an electrochemical method is disclosed in, for example, Japanese Unexamined Patent Publication No. 61-78421, in which a solid electrolyte 1 is used as a decomposition device as shown in FIG.
Both spaces of the positive electrode 12 and the negative electrode 13 through 1 are divided (platinum is used as the electrode material), and the gas to be treated is placed on the negative electrode side.
The positive electrode is configured to be brought into contact with the atmosphere other than the gas to be treated or a depressurized gas.

【0003】そして上記分解装置は、負極上で窒素酸化
物を窒素と酸素に解離させ、酸素を解離イオンの形で電
気的に固体電解質を透過して正極側に移動し大気あるい
は減圧ガス中に放出させる。一方、窒素は負極側に残り
被処理ガス中に放出される。このようにして窒素酸化物
が分解される。
The above-mentioned decomposition apparatus dissociates nitrogen oxides into nitrogen and oxygen on the negative electrode, electrically disperses oxygen in the form of dissociated ions through the solid electrolyte, moves to the positive electrode side, and moves it into the atmosphere or reduced pressure gas. To release. On the other hand, nitrogen remains on the negative electrode side and is released into the gas to be treated. In this way, nitrogen oxides are decomposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、例えば、前記特開昭61−78421号公
報によれば、窒素酸化物の分解能力はそれほど高くな
い。動作温度700℃、NO濃度850ppm、ガス流
量600cc/min、電流密度20mA/cm2で、
NO分解量が電極単位面積当り、0.18μmol/c
2/minであった。
However, according to the above-mentioned conventional structure, for example, according to Japanese Patent Laid-Open No. 61-78421, the decomposition ability of nitrogen oxides is not so high. At an operating temperature of 700 ° C., NO concentration of 850 ppm, gas flow rate of 600 cc / min, current density of 20 mA / cm 2 ,
NO decomposition amount per electrode unit area is 0.18 μmol / c
It was m 2 / min.

【0005】分解率を高めるために、正負両極空間を区
画するなどの制約もあった。本発明は上記課題を解決す
るもので、貴金属膜負電極を用いた従来技術に比べ、低
温、低電流密度で効率よく窒素酸化物を分解する素子あ
るいは装置を提供することを目的としたものである。
In order to increase the decomposition rate, there are restrictions such as partitioning the positive and negative polar spaces. The present invention is to solve the above problems, and an object of the present invention is to provide an element or device that decomposes nitrogen oxides efficiently at low temperature and low current density, as compared with the prior art using a noble metal film negative electrode. is there.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、下記構成とした。
In order to achieve the above object, the present invention has the following constitution.

【0007】すなわち、電気化学素子は酸化鉄と酸化マ
ンガンと酸化銅からなる複合酸化物を含有する負電極
と、酸素イオン伝導性の電解質と、前記電解質を介して
前記負電極に対向して配置された正電極とを有する構成
とした。
That is, the electrochemical device is arranged such that a negative electrode containing a composite oxide of iron oxide, manganese oxide and copper oxide, an oxygen ion conductive electrolyte, and the negative electrode via the electrolyte. And a positive electrode that has been formed.

【0008】また、負電極を、少なくとも貴金属と前記
複合酸化物とからなる構成とした。また、正電極を、貴
金属からなる構成とした。
The negative electrode is composed of at least a noble metal and the composite oxide. Further, the positive electrode is made of a noble metal.

【0009】また、電解質を、安定化ZrO2である構
成とした。さらに、酸素イオン伝導性の電解質の一方の
表面に、負電極として酸化鉄と酸化マンガンと酸化銅か
らなる複合酸化物を含む導電ペースト、または、正電極
として貴金属を含む導電ペーストのいずれかを印刷乾燥
後、さらに前記電解質の他方の表面に、既に印刷された
電極と反対の極性となる前記正または負のいずれかの導
電ペーストを印刷後、乾燥し、その後焼成する製造方法
とした。
Further, the electrolyte is made of stabilized ZrO 2 . Further, on one surface of the oxygen ion conductive electrolyte, a conductive paste containing a complex oxide of iron oxide, manganese oxide and copper oxide as a negative electrode or a conductive paste containing a noble metal as a positive electrode is printed. After the drying, the positive or negative conductive paste having a polarity opposite to that of the already printed electrode was printed on the other surface of the electrolyte, dried, and then baked.

【0010】また、導電ペーストを印刷乾燥後酸化性雰
囲気で焼成する製造方法とした。さらに、酸化鉄と酸化
マンガンと酸化銅からなる複合酸化物を含有する負電極
と、酸素イオン伝導性の電解質と、前記電解質を介して
前記負電極に対向して配置された正電極とで構成された
電気化学素子と、電流を電圧として検出するための抵抗
と、前記窒素分解素子に電圧を印加するための直流可変
電源とを直列接続した回路手段と、前記抵抗の両端電圧
の検出手段と、前記検出手段出力と設定値の比較手段
と、前記窒素酸化物を動作温度に加熱する加熱手段とか
らなり、前記直流可変電源が前記比較手段出力により電
圧を可変する窒素酸化物分解装置とした。
Further, the manufacturing method is such that the conductive paste is printed and dried, and then fired in an oxidizing atmosphere. Furthermore, a negative electrode containing a composite oxide composed of iron oxide, manganese oxide, and copper oxide, an oxygen ion conductive electrolyte, and a positive electrode arranged facing the negative electrode via the electrolyte. Electrochemical device, a resistor for detecting a current as a voltage, a circuit means in which a DC variable power source for applying a voltage to the nitrogen decomposing element is connected in series, and a means for detecting the voltage across the resistor. A detector for comparing the output of the detecting means with a set value, and a heating means for heating the nitrogen oxide to an operating temperature, wherein the variable DC power supply is a nitrogen oxide decomposing device for varying the voltage by the output of the comparing means. .

【0011】また、電気化学素子に接触する窒素酸化物
を含む雰囲気が、前記素子に接触するよりも前に、前記
雰囲気の水あるいは粒子状粉塵あるいは窒素酸化物分解
の阻害物質を除去する前記処理手段を設けた構成の窒素
酸化物分解装置とした。
Further, the treatment for removing water, particulate dust, or a substance inhibiting nitrogen oxide decomposition in the atmosphere before the atmosphere containing nitrogen oxides contacting the electrochemical element is brought into contact with the element. The nitrogen oxide decomposing apparatus is provided with means.

【0012】[0012]

【作用】本発明は上記構成によって、負電極に含まれる
複合酸化物により、貴金属から成る負電極に比べ、窒素
酸化物に対する負電極の反応性が高まり、低温(500
℃以下)、低電流密度(数mA/cm2程度)でも、従
来よりも高効率で窒素酸化物を窒素と酸素に分解するこ
とができる。
According to the present invention, the composite oxide contained in the negative electrode enhances the reactivity of the negative electrode with respect to nitrogen oxides as compared with the negative electrode made of a noble metal, and has a low temperature (500).
It is possible to decompose nitrogen oxides into nitrogen and oxygen with higher efficiency than before even at low temperatures (° C. or less) and low current densities (about several mA / cm 2 ).

【0013】窒素酸化物の分解反応は、窒素酸化物吸着
性化合物が負電極上に窒素酸化物を固定することから開
始する。電気化学素子の負電極側で、複合酸化物と貴金
属(例えば白金)と酸素イオン伝導性電解質との接触界
面近傍で、窒素酸化物の窒素−酸素結合が弱められ、酸
素は酸素イオンとして前記電解質を透過して、負電極側
から正電極側へ移動し酸素分子としてガス中に排出され
る。一方、負電極側では窒素分子が生成されガス中に脱
離していく。
The decomposition reaction of nitrogen oxides starts when the nitrogen oxide adsorbing compound fixes the nitrogen oxides on the negative electrode. On the negative electrode side of the electrochemical device, the nitrogen-oxygen bond of the nitrogen oxide is weakened in the vicinity of the contact interface between the complex oxide, the noble metal (for example, platinum), and the oxygen ion conductive electrolyte, and oxygen acts as oxygen ion in the electrolyte. Permeate through the negative electrode, move from the negative electrode side to the positive electrode side, and are discharged into the gas as oxygen molecules. On the other hand, nitrogen molecules are generated on the negative electrode side and are desorbed into the gas.

【0014】[0014]

【実施例】以下、本発明の実施例を図1を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0015】図1は、電気化学素子(以下、素子Aとい
う)の概略構成図である。1は複合酸化物(Fe23
Mn23・CuO)と白金からなる負電極、2はY23
により安定化したZrO2からなる酸素イオン伝導性の
電解質、3は白金からなる正電極である。
FIG. 1 is a schematic configuration diagram of an electrochemical device (hereinafter referred to as device A). 1 is a complex oxide (Fe 2 O 3
Mn 2 O 3 · CuO) and platinum negative electrode, 2 is Y 2 O 3
Oxygen ion conductive electrolyte 3 made of ZrO 2 stabilized by means of 3 is a positive electrode made of platinum.

【0016】上記素子Aは、以下のようにして作成し
た。電解質2いずれか一方の表面に正負いずれかの電極
用導電ペーストを印刷乾燥した後、電解質2の他の表面
に前に印刷したのと反対の導電性ペーストを印刷乾燥し
た後大気中約820℃で焼成して、電解質2上に正負の
電極3、1を形成した。さらに、各電極(1、3)の端
部にリード線となる白金線を接着して作成した。使用し
た負電極用導電ペーストの組成は白金対Fe23・Mn
23・CuOの比が重量比で、約1:1であるが、組成
は必ずしもこの限りではない。また、上記焼成温度も8
20℃に限るものではなく、焼結が起る温度であればよ
い。
The above element A was prepared as follows. Electrolyte 2 Either positive or negative electrode conductive paste is printed and dried on one surface, and the opposite conductive paste is printed and dried on the other surface of Electrolyte 2 and then dried in air. And the positive and negative electrodes 3 and 1 were formed on the electrolyte 2. Further, a platinum wire serving as a lead wire was adhered to the end portion of each electrode (1, 3). The composition of the negative electrode conductive paste used was platinum vs. Fe 2 O 3 · Mn.
The weight ratio of 2 O 3 .CuO is about 1: 1 but the composition is not necessarily limited to this. Also, the firing temperature is 8
The temperature is not limited to 20 ° C., but may be any temperature at which sintering occurs.

【0017】電解質2は、Y238mol%−ZrO2
で、長さ25mm、幅12.5mm、厚さ0.5mmと
し、電極1、3の厚さは約20〜40μm、面積約2.
25cm2とした。これらの条件は、一実施例のもので
あって、これに制約されるものではない。
The electrolyte 2 is Y 2 O 3 8 mol% -ZrO 2
The length is 25 mm, the width is 12.5 mm, and the thickness is 0.5 mm. The electrodes 1 and 3 have a thickness of about 20 to 40 μm and an area of about 2.
It was set to 25 cm 2 . These conditions are only one example, and are not limited thereto.

【0018】また、比較のために正負両電極共に白金か
らなる素子(以下、素子Bという)も作成した。白金素
子に使用した電解質は1cmx1cm、厚さ0.5mm
であるが、他は素子Aと同一条件である。
For comparison, an element having both positive and negative electrodes made of platinum (hereinafter referred to as element B) was also prepared. The electrolyte used for the platinum element is 1 cm x 1 cm, thickness 0.5 mm
However, the other conditions are the same as those of the element A.

【0019】Fe23・Mn23・CuOと、正極用の
白金導電ペーストは市販品を使用した。負電極用の導電
ペーストは白金導電ペーストとFe23・Mn23・C
uOを混合して作成した。
Commercially available Fe 2 O 3 .Mn 2 O 3 .CuO and platinum conductive paste for the positive electrode were used. The conductive paste for the negative electrode is platinum conductive paste and Fe 2 O 3 · Mn 2 O 3 · C.
It was made by mixing uO.

【0020】次に、素子Aと素子BのNOx分解挙動を
ガス流通系で測定した。ガス流量は、200cc/mi
nで一定とした。ガス組成は、NOxとしてのNOとバ
ランスガスとしてのHeとで混合調整し、組成分析に
は、化学発光式のNOx計とガスクロマトグラフを使用
した。副生成物として考えられるN2Oのピークは、ガ
スクロマトグラフでは検出限界レベル以上で認められな
かった。上記のガスは、濃度調整されたガスボンベか
ら、それぞれ供給した。
Next, the NOx decomposition behavior of element A and element B was measured in a gas flow system. Gas flow rate is 200cc / mi
It was fixed at n. The gas composition was mixed and adjusted with NO as NOx and He as a balance gas, and a chemiluminescence type NOx meter and a gas chromatograph were used for composition analysis. The peak of N 2 O considered as a by-product was not observed above the detection limit level in the gas chromatograph. The above gases were each supplied from a gas cylinder whose concentration was adjusted.

【0021】ガスクロマトグラフの濃度分解能は、測定
データの再現性、機器の安定性等を考慮すると、±10
ppm程度である。
The concentration resolution of the gas chromatograph is ± 10 considering the reproducibility of measurement data and the stability of equipment.
It is about ppm.

【0022】図2に、素子AによるNO分解時の、ガス
組成と素子電流値の代表的関係を概略のパターンで示
す。
FIG. 2 shows a typical relationship between the gas composition and the element current value when NO is decomposed by the element A in a schematic pattern.

【0023】図2から、素子Aに電流が流れると、NO
濃度が低下するのにあわせて、窒素及び酸素濃度が増加
するのがわかる。
From FIG. 2, when a current flows through the element A, NO
It can be seen that the nitrogen and oxygen concentrations increase as the concentration decreases.

【0024】素子A及び素子BによるNO分解の具体的
な数値を、(表1)に示す。
Specific values of NO decomposition by the elements A and B are shown in (Table 1).

【0025】[0025]

【表1】 [Table 1]

【0026】(表1)で、ΔNOは(出口濃度)−(供
給濃度)から求めたNO濃度差、ΔN2も同じく(出口
濃度)−(供給濃度)から求めた窒素濃度差である。符
号のマイナスは濃度の減少を示す。(〜は概略の意味) (表1)から、素子AはNOを分解するのが、明かであ
り、素子Bと比較して、約2倍、である。
In Table 1, ΔNO is the NO concentration difference obtained from (outlet concentration)-(supply concentration), and ΔN 2 is also the nitrogen concentration difference obtained from (outlet concentration)-(supply concentration). A minus sign indicates a decrease in density. From (Table 1), it is clear that element A decomposes NO, which is about twice that of element B.

【0027】さらに、NO減少量と生成された窒素量の
比が、およそ2:1であり、式−1の分解反応を考えた
ときの量論比に等しい。
Further, the ratio of the NO reduction amount and the produced nitrogen amount is about 2: 1, which is equal to the stoichiometric ratio when considering the decomposition reaction of the formula-1.

【0028】 2NO → N2 +O2 (1) 副生物として考えられるN2Oが、ガスクロでは検出さ
れなかったことと、NOx減少量と生成窒素量の比が、
2:1であることから、素子A及Bびでは(1)式以外
の副反応が殆どおきていないと考えられる。このこと
は、NOx分解において大きなメリットである。
2NO → N 2 + O 2 (1) N 2 O, which is considered as a by-product, was not detected by gas chromatography, and the ratio of the NOx reduction amount to the produced nitrogen amount was
Since it is 2: 1, it is considered that there is almost no side reaction other than the formula (1) in the elements A and B. This is a great advantage in NOx decomposition.

【0029】図3に、素子A、BによるNO分解量−電
流曲線を示した。テスト条件は(表1)と同じである。
明らかに、素子Aが優れている。
FIG. 3 shows the NO decomposition amount-current curve of the elements A and B. The test conditions are the same as in (Table 1).
Obviously, element A is excellent.

【0030】素子Aでは、正負の電極組成が異なってい
るが、正電極を負電極材料と同一組成にしてもよい。負
電極にも白金が含まれており、正電極として十分に機能
するからである。
In element A, the positive and negative electrode compositions are different, but the positive electrode may have the same composition as the negative electrode material. This is because the negative electrode also contains platinum and sufficiently functions as a positive electrode.

【0031】既に説明してきた各素子の製造方法は、図
1の説明で述べたように、印刷法である。各素子におけ
る電極の形成は、NO分解に影響する重要な過程であ
る。その方法としては、印刷法以外に、スパッタ法、蒸
着法、CVD、PVD等が考えられるが、コストや簡便
性等を考慮すると、印刷法が望ましい。また、焼成雰囲
気は、使用環境や得られる電極の構造的安定性を考慮す
れば、酸化性雰囲気であることが好ましい。
The manufacturing method of each element described above is the printing method as described in the description of FIG. The formation of electrodes in each device is an important process affecting NO decomposition. As the method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, and the like can be considered in addition to the printing method, but the printing method is preferable in consideration of cost and simplicity. The firing atmosphere is preferably an oxidizing atmosphere in consideration of the use environment and the structural stability of the obtained electrode.

【0032】次に、窒素酸化物分解装置の一実施例の概
略構成について、図4を用いて説明する。図4におい
て、4が電気化学素子(以下、素子という)、5が素子
電流を電圧として検出するための抵抗、6が素子に電圧
を印加するための直流可変電源、7が前記素子4と抵抗
5と直流可変電源6を電気的に直列に接続する回路手
段、8が前記抵抗5の両端電圧の検出手段、9が前記検
出手段8の出力値と設定値との比較手段、10が前記素
子を動作温度に加熱する加熱手段である。
Next, a schematic structure of an embodiment of the nitrogen oxide decomposing apparatus will be described with reference to FIG. In FIG. 4, 4 is an electrochemical element (hereinafter referred to as an element), 5 is a resistor for detecting an element current as a voltage, 6 is a DC variable power source for applying a voltage to the element, and 7 is the element 4 and a resistor. 5 is a circuit means for electrically connecting the DC variable power supply 6 in series, 8 is a detection means for detecting the voltage across the resistor 5, 9 is a means for comparing the output value of the detection means 8 with a set value, and 10 is the element. Is a heating means for heating to the operating temperature.

【0033】上記窒素酸化物分解装置において、素子4
を、NOを含むガス中に暴露し、加熱手段10にて約4
50℃に保持する。直流可変電源6により、素子4に電
圧を印加すると、NO分解が起こり、発生した酸素イオ
ンによりイオン電流が流れる。
In the above nitrogen oxide decomposing apparatus, the element 4
Is exposed to a gas containing NO, and the heating means 10 causes about 4
Hold at 50 ° C. When a voltage is applied to the element 4 by the DC variable power source 6, NO decomposition occurs, and an ionic current flows due to the generated oxygen ions.

【0034】このイオン電流を、素子電流として抵抗5
の両端電圧から検出手段8によって検出する。もし、素
子4の電極が劣化したとか、他の何等かの影響で、素子
電流が異常に変動した場合、比較手段9が予め設定され
た設定値と検出手段8の検出値とを比較しているので、
この比較により素子電流の異常を検知できる。直流可変
電源6は、比較手段9による異常検知に基づいて素子の
両端電圧を、異常を低減させる方向にコントロールす
る。
This ionic current is used as a device current for the resistor 5
The detection means 8 detects the voltage across the voltage. If the element current is abnormally changed due to deterioration of the electrode of the element 4 or some other influence, the comparison means 9 compares the preset value with the detection value of the detection means 8. Because
By this comparison, the abnormality of the element current can be detected. The DC variable power supply 6 controls the voltage across the element based on the detection of abnormality by the comparison unit 9 so as to reduce the abnormality.

【0035】このようにして、図4の窒素酸化物分解装
置は、ガス中に含まれるNOの安定した分解動作を示
し、窒素と酸素をガス中に排出する。
In this way, the nitrogen oxide decomposing apparatus of FIG. 4 shows a stable decomposing operation of NO contained in the gas, and discharges nitrogen and oxygen into the gas.

【0036】前記回路手段7は、導線であるが、素子が
450℃であり、及びNOを含むガスが高温の時もある
ので、そのような高温部では白金線のような貴金属線が
好ましい。
The circuit means 7 is a conducting wire, but since the element is at 450 ° C. and the gas containing NO may be high in temperature, a noble metal wire such as a platinum wire is preferable in such a high temperature portion.

【0037】また、NOxを含むガスが、粉塵等を含む
場合、NOx分解の阻害物質として分解素子に副反応を
誘発したり、あるいは電極表面を被毒や汚染することが
考えられる。従って、ガスが素子に至る前に、このよう
なNOx分解阻害物質を、予め除去することが好まし
い。この問題を解決するために、フィルターや除湿器等
の前処理部を設けてもよい。
When the NOx-containing gas contains dust or the like, it is considered that it may induce a side reaction in the decomposition element as an inhibitor of NOx decomposition, or may poison or contaminate the electrode surface. Therefore, it is preferable to remove such NOx decomposition inhibiting substances in advance before the gas reaches the device. In order to solve this problem, a pretreatment unit such as a filter or a dehumidifier may be provided.

【0038】以上の実施例の構成によれば、従来よりも
すぐれたNOx分解率を示す電気化学素子及びその安価
な製造方法が得られる。また、前記電気化学素子を使っ
て、安定したNOx分解動作を示す窒素酸化物分解装置
が得られる。
According to the constitution of the above-mentioned embodiment, it is possible to obtain an electrochemical device exhibiting a NOx decomposition rate superior to the conventional one and an inexpensive manufacturing method thereof. Further, a nitrogen oxide decomposing apparatus showing a stable NOx decomposing operation can be obtained by using the electrochemical element.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、従
来よりも低温かつ低電流密度で、すぐれたNOx分解率
を示す電気化学素子と、その安価な製造方法が得られ
る。また、本発明の電気化学素子を使えば、安定したN
Ox分解動作を有する窒素酸化物分解装置が得られる。
よって、NOxによる自然環境の破壊、人体への悪影響
を、低減する効果がある。
As described above, according to the present invention, it is possible to obtain an electrochemical device exhibiting an excellent NOx decomposition rate at a lower temperature and a lower current density than ever before, and an inexpensive manufacturing method thereof. In addition, when the electrochemical device of the present invention is used, stable N
A nitrogen oxide decomposing device having an Ox decomposing operation is obtained.
Therefore, there is an effect of reducing the destruction of the natural environment and the adverse effects on the human body due to NOx.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電気化学素子の概略
構成図
FIG. 1 is a schematic configuration diagram of an electrochemical device according to an embodiment of the present invention.

【図2】同NOx分解時のガス組成と素子電流の概略変
化を示す図
FIG. 2 is a diagram showing a schematic change in gas composition and device current during NOx decomposition.

【図3】同NO分解量−電流特性を示す図FIG. 3 is a diagram showing the same NO decomposition amount-current characteristic.

【図4】同窒素酸化物分解装置の概略構成図FIG. 4 is a schematic configuration diagram of the nitrogen oxide decomposing apparatus.

【図5】従来のNOx分解装置の構成図FIG. 5 is a block diagram of a conventional NOx decomposing device.

【符号の説明】[Explanation of symbols]

1 負電極 2 電解質 3 正電極 4 電気化学素子(素子) 5 抵抗 6 直流可変電源 7 回路手段 8 検出手段 9 比較手段 10 加熱手段 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Electrolyte 3 Positive electrode 4 Electrochemical element (element) 5 Resistance 6 DC variable power source 7 Circuit means 8 Detection means 9 Comparison means 10 Heating means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25B 1/00 Z F01N 3/08 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C25B 1/00 Z F01N 3/08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】酸化鉄と酸化マンガンと酸化銅からなる複
合酸化物を含有する負電極と、酸素イオン伝導性の電解
質と、前記電解質を介して前記負電極に対向して配置さ
れた正電極とで構成された電気化学素子。
1. A negative electrode containing a composite oxide composed of iron oxide, manganese oxide and copper oxide, an oxygen ion conductive electrolyte, and a positive electrode arranged to face the negative electrode via the electrolyte. An electrochemical device composed of and.
【請求項2】負電極が、少なくとも貴金属と複合酸化物
とからなる請求項1記載の電気化学素子。
2. The electrochemical device according to claim 1, wherein the negative electrode comprises at least a noble metal and a composite oxide.
【請求項3】正電極が、貴金属からなる請求項1記載の
電気化学素子。
3. The electrochemical device according to claim 1, wherein the positive electrode is made of a noble metal.
【請求項4】電解質が安定化ZrO2である請求項1記
載の電気化学素子。
4. The electrochemical device according to claim 1, wherein the electrolyte is stabilized ZrO 2 .
【請求項5】酸素イオン伝導性の電解質の一方の表面
に、負電極として酸化鉄と酸化マンガンと酸化銅からな
る複合酸化物を含む導電ペースト、または、正電極とし
て貴金属を含む導電ペーストのいずれかを印刷乾燥後、
さらに前記電解質の他方の表面に既に印刷された電極と
反対の極性となる前記正または負のいずれかの導電ペー
ストを印刷後、乾燥し、その後酸化性雰囲気中で焼成す
る電気化学素子の製造方法。
5. A conductive paste containing a composite oxide of iron oxide, manganese oxide and copper oxide as a negative electrode or a conductive paste containing a noble metal as a positive electrode on one surface of an oxygen ion conductive electrolyte. After printing or drying,
Further, a method for producing an electrochemical element, in which after printing the positive or negative conductive paste having a polarity opposite to that of the electrode already printed on the other surface of the electrolyte, drying and then firing in an oxidizing atmosphere .
【請求項6】導電ペーストを印刷乾燥後の焼成雰囲気が
酸化性雰囲気である請求項5記載の電気化学素子の製造
方法。
6. The method for producing an electrochemical element according to claim 5, wherein the firing atmosphere after printing and drying the conductive paste is an oxidizing atmosphere.
【請求項7】酸化鉄と酸化マンガンと酸化銅からなる複
合酸化物を含有する負電極と、酸素イオン伝導性の電解
質と、前記電解質を介して前記負電極に対向して配置さ
れた正電極とで構成し電気化学素子と、電流を電圧とし
て検出するための抵抗と、前記窒素分解素子に電圧を印
加するための直流可変電源とを直列接続した回路手段
と、前記抵抗の両端電圧の検出手段と、前記検出手段出
力と設定値の比較手段と、前記窒素酸化物を動作温度に
加熱する加熱手段とからなり、前記直流可変電源が前記
比較手段出力により電圧を可変する構成の窒素酸化物分
解装置。
7. A negative electrode containing a composite oxide composed of iron oxide, manganese oxide and copper oxide, an oxygen ion conductive electrolyte, and a positive electrode arranged to face the negative electrode via the electrolyte. And an electrochemical element, a resistor for detecting a current as a voltage, a circuit means in which a DC variable power source for applying a voltage to the nitrogen decomposing element is connected in series, and a voltage across the resistor is detected. Means, a means for comparing the output of the detecting means with the set value, and a heating means for heating the nitrogen oxide to an operating temperature, and the direct current variable power source changes the voltage by the output of the comparing means. Decomposing device.
【請求項8】電気化学素子に接触する窒素酸化物を含む
雰囲気が、前記素子に接触するよりも前に、前記雰囲気
の水あるいは粒子状粉塵あるいは窒素酸化物分解の阻害
物質を除去する前処理手段を設けた構成の請求項7記載
の窒素酸化物分解装置。
8. A pretreatment for removing water, particulate dust, or a substance inhibiting nitrogen oxide decomposition in the atmosphere, before the atmosphere containing nitrogen oxides in contact with the electrochemical device is in contact with the device. The nitrogen oxide decomposing apparatus according to claim 7, which is provided with means.
JP16202494A 1994-07-14 1994-07-14 Electrochemical element and method of manufacturing the same Expired - Fee Related JP3166492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16202494A JP3166492B2 (en) 1994-07-14 1994-07-14 Electrochemical element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16202494A JP3166492B2 (en) 1994-07-14 1994-07-14 Electrochemical element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0827586A true JPH0827586A (en) 1996-01-30
JP3166492B2 JP3166492B2 (en) 2001-05-14

Family

ID=15746626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16202494A Expired - Fee Related JP3166492B2 (en) 1994-07-14 1994-07-14 Electrochemical element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3166492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525461A (en) * 2002-02-01 2005-08-25 エー.ティー.エス.エレクトロ‐ルーブ、ホールディングス、リミテッド Electrolytic generation of nitrogen using azole derivatives
CN114032557A (en) * 2021-11-08 2022-02-11 郑州大学 Solid electrolyte battery for removing nitrogen oxides and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525461A (en) * 2002-02-01 2005-08-25 エー.ティー.エス.エレクトロ‐ルーブ、ホールディングス、リミテッド Electrolytic generation of nitrogen using azole derivatives
CN114032557A (en) * 2021-11-08 2022-02-11 郑州大学 Solid electrolyte battery for removing nitrogen oxides and preparation method thereof

Also Published As

Publication number Publication date
JP3166492B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
EP0851225B1 (en) Exhaust gas sensor system
US5397442A (en) Sensor and method for accurately measuring concentrations of oxide compounds in gas mixtures
US6051123A (en) Multi-functional and NOx sensor for combustion systems
CN1166943C (en) Nitrogen oxide detector
EP1635171B1 (en) Hydrocarbon sensor
JP3067532B2 (en) Electrochemical element and nitrogen oxide concentration measuring device
JP2008203265A (en) Combined oxygen and nox sensor
JP4241993B2 (en) Hydrocarbon sensor
JP3166492B2 (en) Electrochemical element and method of manufacturing the same
JP2935963B2 (en) NOx concentration detecting device and NOx sensor used therefor
JP2000097903A (en) Apparatus and method for measuring gas concentration
JPH07185261A (en) Electrochemical element and manufacturing method thereof
JP3943262B2 (en) NOx gas concentration measuring apparatus and NOx gas concentration measuring method
JP3124472B2 (en) Electrochemical element, electrochemical device and processing device using the same
JPH08332342A (en) Method and apparatus for removing nitrogen oxide
US20060016687A1 (en) Methods of making a ceramic device and a sensor element
JP3154276B2 (en) Electrochemical element
JP3093647B2 (en) Nitrogen oxide decomposition equipment
JP3095664B2 (en) Electrochemical element and manufacturing method thereof
JPH11108887A (en) Measuring apparatus for concentration of nitrogen oxide and control method for measuring apparatus for concentration of nitrogen oxide
JP2970290B2 (en) Electrochemical element
JPH07140099A (en) Electrochemical apparatus
JPH1144671A (en) Gas sensor
JP3093612B2 (en) Electrochemical element
JPS60256045A (en) Electrode for oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees