JPH11108887A - Measuring apparatus for concentration of nitrogen oxide and control method for measuring apparatus for concentration of nitrogen oxide - Google Patents

Measuring apparatus for concentration of nitrogen oxide and control method for measuring apparatus for concentration of nitrogen oxide

Info

Publication number
JPH11108887A
JPH11108887A JP10223211A JP22321198A JPH11108887A JP H11108887 A JPH11108887 A JP H11108887A JP 10223211 A JP10223211 A JP 10223211A JP 22321198 A JP22321198 A JP 22321198A JP H11108887 A JPH11108887 A JP H11108887A
Authority
JP
Japan
Prior art keywords
oxygen
ion pump
partial pressure
oxygen ion
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10223211A
Other languages
Japanese (ja)
Other versions
JP3501956B2 (en
Inventor
Yoshikuni Sato
美邦 佐藤
Tatsuo Okumura
竜雄 奥村
Noboru Ishida
昇 石田
Takafumi Oshima
崇文 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP22321198A priority Critical patent/JP3501956B2/en
Publication of JPH11108887A publication Critical patent/JPH11108887A/en
Application granted granted Critical
Publication of JP3501956B2 publication Critical patent/JP3501956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Abstract

PROBLEM TO BE SOLVED: To provide a measuring apparatus by which the concentration of nitrogen oxides can be measured precisely even when an oxygen partial pressure in a gas, to be measured, is changed by a method wherein a means which finds the concentration of the nitrogen oxides is provided with a means by which the detection output of the concentration of the nitrogen oxides is corrected on the basis of the output of an oxygen-partial-pressure detecting cell. SOLUTION: The output of an oxygen-partial-pressure detecting cell 7 is input to a Vs constant control part 41, a voltage which is applied to a first oxygen ion pump cell 6 is controlled, and the electromotive force of the oxygen-partial-pressure detecting cell 7 is made constant. A first oxygen ion pump current and a second oxygen ion pump current are input to a controller 40, an oxygen concentration is found by an oxygen-concentration computing part 40a on the basis of the first oxygen ion pump current so as to be output, and an oxygen- concentration correction signal is output. Then, the oxygen concentration in the detection output of the concentration of nitrogen oxides is corrected by an NOx concentration computing part 40b on the basis of the second oxygen ion pump current and on the basis of the change amount of the detection output of the oxygen concentration. As a result, the influence of a change in the oxygen concentration is excluded, and the concentration of the nitrogen oxides can be detected precisely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】燃焼器や、自動車、船舶、飛
行機等の移動用、産業用の内燃機関の排ガス成分、ボイ
ラ等の燃焼ガス成分を検出するために使用される窒素酸
化物濃度測定装置及び窒素酸化物濃度測定器の制御方法
に関し、特に、被測定ガス中の酸素濃度が急変する雰囲
気において窒素酸化物濃度を測定する窒素酸化物濃度測
定器の制御方法及びその装置に関する。
The present invention relates to a nitrogen oxide concentration measuring apparatus used for detecting exhaust gas components of a combustor, an automobile, a ship, an airplane, or other moving or industrial internal combustion engines, and a combustion gas component of a boiler or the like. More particularly, the present invention relates to a control method of a nitrogen oxide concentration measuring instrument for measuring a nitrogen oxide concentration in an atmosphere in which the oxygen concentration in a gas to be measured changes suddenly, and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、排ガス規制の強化に伴い、エンジ
ン等の排ガス中のNOxを直接測定し、エンジンの制御
や触媒のコントロールを行う研究が行われている。例え
ば、第1測定室に導入された被測定ガス中の酸素を、Z
rO等の酸素イオン導電体からなる第1酸素イオンポ
ンプセルによって、NOxが分解しない程度に汲み出
し、酸素濃度が低くされたガスを第2測定室に導入し、
ZrO等の酸素イオン導電体からなる第2酸素イオン
ポンプセルによって、第2測定室に導入されたガスから
さらに酸素を汲み出すことでNOxを分解し、NOx濃
度を第2酸素イオンポンプセルに流れる電流として検出
するNOxガスセンサ(窒素酸化物濃度測定器)は、H
C、CO等の妨害ガスの影響を比較的受けずにNOxガ
ス濃度が測定できることから、近年広く研究が行われて
いる。一般的に、このような窒素酸化物センサでは、Z
rO等の酸素イオン導電体の両面に一対の電極が配置
され、それぞれ一方の電極が前記第1測定室の雰囲気、
他方の電極が基準となる酸素雰囲気に曝され、該第1測
定室内の酸素濃度を測定する酸素分圧検知セルの出力を
基に、前記第1酸素イオンポンプセルへ印加する電圧を
変化させて、該第1測定室内の酸素濃度が一定となるよ
うに制御している。
2. Description of the Related Art In recent years, with the tightening of exhaust gas regulations, studies have been made to directly measure NOx in exhaust gas from engines and the like to control engines and catalysts. For example, oxygen in the gas to be measured introduced into the first measurement chamber is converted into Z
A first oxygen ion pump cell made of an oxygen ion conductor such as rO 2 pumps out NOx so as not to decompose and introduces a gas having a reduced oxygen concentration into the second measurement chamber.
With a second oxygen ion pump cell made of an oxygen ion conductor such as ZrO 2 , NOx is decomposed by further pumping oxygen from the gas introduced into the second measurement chamber, and the NOx concentration is converted to the second oxygen ion pump cell. The NOx gas sensor (nitrogen oxide concentration measuring device) that detects the flowing current
Since the NOx gas concentration can be measured relatively without being affected by interfering gases such as C and CO, researches have been widely conducted in recent years. Generally, in such nitrogen oxide sensors, Z
A pair of electrodes are arranged on both surfaces of an oxygen ion conductor such as rO 2 , and one of the electrodes is an atmosphere of the first measurement chamber,
The other electrode is exposed to a reference oxygen atmosphere, and the voltage applied to the first oxygen ion pump cell is changed based on the output of the oxygen partial pressure detection cell for measuring the oxygen concentration in the first measurement chamber. , The oxygen concentration in the first measurement chamber is controlled to be constant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、本発明
者らの知見によれば、被測定ガス中の酸素濃度が大きく
変化する場合、前述の第1酸素イオンポンプセルに対す
る電圧制御に遅れが生じ、上記窒素酸化物センサにより
正確な窒素酸化物濃度測定を測定することが困難である
ことが分かった。特に、近年増加してきたガソリンのリ
ーンバーンエンジンや、ディーゼルエンジンでは排ガス
中の酸素濃度が運転条件により大きく変化するため、酸
素分圧検知セル電位を基にP.I.D制御などを用いて
も、第1酸素イオンポンプセルのポンプ能力を変化制御
させる方法だけでは排ガス中のNOx濃度を正確に測定
することは困難であることが分かった。
However, according to the findings of the present inventors, when the oxygen concentration in the gas to be measured greatly changes, a delay occurs in the voltage control for the first oxygen ion pump cell described above. It has been found that it is difficult to measure an accurate nitrogen oxide concentration measurement using the nitrogen oxide sensor. In particular, in gasoline lean-burn engines and diesel engines, which have been increasing in recent years, the oxygen concentration in exhaust gas greatly changes depending on operating conditions. I. It has been found that it is difficult to accurately measure the NOx concentration in the exhaust gas using only the method of changing and controlling the pumping capacity of the first oxygen ion pump cell even when using D control or the like.

【0004】以上の事情に鑑み、本発明の課題は、被測
定ガス中の酸素分圧が変化した際でも、正確な窒素酸化
物濃度測定を可能とする窒素酸化物濃度測定装置及び窒
素酸化物濃度測定器の制御方法を提供することである。
In view of the above circumstances, an object of the present invention is to provide a nitrogen oxide concentration measuring apparatus and a nitrogen oxide concentration measuring apparatus capable of accurately measuring a nitrogen oxide concentration even when the oxygen partial pressure in a gas to be measured changes. An object of the present invention is to provide a method for controlling a concentration measuring instrument.

【0005】[0005]

【課題を解決するための手段】本発明は、第1の視点に
おいて、第1拡散抵抗を介して被測定ガスが導入される
第1測定室と、前記第1測定室外又は内へ酸素を十分に
汲み出す又は汲み込む第1酸素イオンポンプセルと、前
記第1測定室から第2拡散抵抗を介してガスが導入され
る第2測定室と、前記第2測定室の内部と外部に設けら
れた一対の電極を備え、該一対の電極に電圧が印加され
て該第2測定室中の窒素酸化物を分解し、解離した酸素
を汲み出すことにより窒素酸化物濃度に応じた電流(以
下「第2酸素イオンポンプ電流」という)が流れる第2
酸素イオンポンプセルと、被測定ガス中の酸素分圧が変
化した際に、該変化に応じて前記第2酸素イオンポンプ
電流に基づき窒素酸化物濃度を求める手段と、を有す
る。
According to a first aspect of the present invention, there is provided a first measuring chamber into which a gas to be measured is introduced via a first diffusion resistor, and sufficient oxygen supplied to outside or inside the first measuring chamber. A first oxygen ion pump cell that pumps or pumps gas into the first measuring chamber, a second measuring chamber into which gas is introduced from the first measuring chamber via a second diffusion resistor, and an inside and an outside of the second measuring chamber. A voltage is applied to the pair of electrodes to decompose the nitrogen oxides in the second measurement chamber and pump out the dissociated oxygen. Second oxygen ion pump current ”)
An oxygen ion pump cell; and means for obtaining a nitrogen oxide concentration based on the second oxygen ion pump current when the oxygen partial pressure in the gas to be measured changes.

【0006】第2の視点において、前記第1測定室の酸
素分圧を検出するための酸素分圧検知電極を備えた酸素
分圧検知セルを有し、前記窒素酸化物濃度を求める手段
は、前記酸素分圧検知セルの出力に基づいて窒素酸化物
濃度検出出力を補正する手段を備える。第3の視点にお
いて、前記補正手段は、前記第1酸素イオンポンプセル
への印加電圧が前記酸素分圧検知セルの出力に基づいて
制御され、該第1酸素イオンポンプセルに流れる電流
(以下「第1酸素イオンポンプ電流」という)の変化量
に基づいて、前記窒素酸化物濃度検出出力を補正する。
In a second aspect, there is provided an oxygen partial pressure detecting cell provided with an oxygen partial pressure detecting electrode for detecting the oxygen partial pressure in the first measuring chamber, and the means for obtaining the nitrogen oxide concentration comprises: Means for correcting the nitrogen oxide concentration detection output based on the output of the oxygen partial pressure detection cell. In a third aspect, the correction means controls the voltage applied to the first oxygen ion pump cell based on the output of the oxygen partial pressure detection cell, and adjusts the current flowing through the first oxygen ion pump cell (hereinafter, referred to as “ The nitrogen oxide concentration detection output is corrected based on the amount of change in the first oxygen ion pump current.

【0007】第4の視点において、被測定ガス中の酸素
分圧の変化に応じて、前記第2酸素イオンポンプセルに
印可する電圧を制御する手段を有する。第5の視点にお
いて、前記制御手段は、前記酸素分圧が低い場合は、前
記第2酸素イオンポンプセルに印加される電圧を低下さ
せ、高い場合には該電圧を上昇させる。
In a fourth aspect, there is provided means for controlling a voltage applied to the second oxygen ion pump cell in accordance with a change in the oxygen partial pressure in the gas to be measured. In a fifth aspect, the control means decreases the voltage applied to the second oxygen ion pump cell when the oxygen partial pressure is low, and increases the voltage when the oxygen partial pressure is high.

【0008】第6の視点において、前記第1測定室ない
し前記第2測定室内の酸素分圧を検出する酸素分圧検知
セルを備えた窒素酸化物濃度測定器と、前記酸素分圧検
知セルの出力及び前記第2酸素イオンポンプセルの出力
を入力とし、該酸素分圧検知セルの出力が変化した際
に、前記第2酸素イオンポンプセルの出力に基づき前記
窒素酸化物濃度測定器の窒素酸化物濃度検出出力を補正
する窒素酸化物濃度演算部と、を有する。
In a sixth aspect, a nitrogen oxide concentration measuring instrument having an oxygen partial pressure detecting cell for detecting an oxygen partial pressure in the first measuring chamber or the second measuring chamber; An output and an output of the second oxygen ion pump cell are input, and when the output of the oxygen partial pressure detection cell changes, the nitrogen oxidation of the nitrogen oxide concentration measuring device is performed based on the output of the second oxygen ion pump cell. A nitrogen oxide concentration calculating unit for correcting the substance concentration detection output.

【0009】第7の視点において、さらに、前記酸素分
圧検知セルの出力が一定となるように、前記第1酸素イ
オンポンプセルを制御する酸素分圧一定制御部と、前記
酸素分圧検知セルの出力の変化量と前記第2酸素イオン
ポンプ電流のオフセットの関係を予め記憶した記憶部
と、を有し、前記窒素酸化物濃度演算部は、前記酸素分
圧検知セルの出力の変化量に応じて、前記記憶部から所
定のデータを読み出し、該データに基づいて前記第2酸
素イオンポンプ電流のオフセットの値を可変して、前記
窒素酸化物濃度検出出力を補正する。
In a seventh aspect, the oxygen partial pressure sensing cell further controls the first oxygen ion pump cell so that the output of the oxygen partial pressure sensing cell is constant, and the oxygen partial pressure sensing cell And a storage unit in which the relationship between the amount of change in the output of the second oxygen ion pump current and the offset of the second oxygen ion pump current is stored in advance. In response, predetermined data is read from the storage unit, and the offset value of the second oxygen ion pump current is varied based on the data to correct the nitrogen oxide concentration detection output.

【0010】本発明は、第8の視点において、前記第1
測定室から該測定室外へ被測定ガス中の酸素を窒素酸化
物のすべてが分解しない程度に十分に汲み出す第1酸素
イオンポンプセルを有する。第8の視点に基づく第9〜
10の視点は、第2〜3の視点の内容と同様である。
[0010] The present invention provides, in an eighth aspect, the first aspect.
There is a first oxygen ion pump cell that pumps oxygen in the gas to be measured from the measurement chamber to the outside of the measurement chamber sufficiently so that all of the nitrogen oxides are not decomposed. 9th to 8th perspectives
The ten viewpoints are the same as the contents of the second and third viewpoints.

【0011】なお、第2測定室に酸素濃度が十分に低下
したガスを拡散するためには、第1測定室において窒素
酸化物(特にNO)が一部(例えば、0.5%以上、好ま
しくは1〜50%程度)分解する程度に第1酸素イオン
ポンプセルの動作を制御することが好ましく、その場合
は、第1酸素イオンポンプセルに流れる電流に基づき第
1測定室における窒素酸化物の分解量を補償することも
可能である。
In order to diffuse the gas having a sufficiently low oxygen concentration into the second measurement chamber, a part (for example, 0.5% or more, preferably 1% or more) of nitrogen oxide (particularly NO) is used in the first measurement chamber. It is preferable to control the operation of the first oxygen ion pump cell to such an extent that the first oxygen ion pump cell is decomposed. In this case, the amount of nitrogen oxide decomposition in the first measurement chamber based on the current flowing through the first oxygen ion pump cell Can be compensated for.

【0012】図1〜図3を参照して、本発明の原理及び
基礎となる発明を説明する。図1(a)は、本発明の制
御方法が好適に適用される窒素酸化物濃度測定器の概略
構成を説明するための断面図であり、その断面は図1
(b)に斜線で示す断面に相当する。図1(a)に示し
た測定器は、それぞれ2組の拡散抵抗部、酸素イオンポ
ンプセル、及び測定室を有し、第1の固体電解質層を挟
んで設けられた一対の電極6a,6bを備えた第1酸素
イオンポンプセル6、第2の固体電解質層を挟んで設け
られた一対の酸素分圧検知電極7a,7bを備えた酸素
分圧検知セル7、第3の固体電解質層を挟んで設けられ
た一対の電極8a,8bを備えた第2酸素イオンポンプ
セル8の順に積層され、各固体電解質層の層間には絶縁
層がそれぞれ形成されている。そして、第1酸素イオン
ポンプセル6と酸素分圧検知セル7の層間には、絶縁層
及び固体電解質層によって第1測定室2が画成され、同
様に絶縁層及び固体電解質層により第2酸素イオンポン
プセル8の上部に第2測定室4が画成されている。さら
に、第1測定室2を囲む壁面には拡散抵抗を有する第1
拡散孔1が複数設けられ、第1測定室2の断面中央部に
は第2拡散孔3の開口が第1拡散孔1と離間して設けら
れている。第2拡散孔3は、酸素分圧検知セル7及び固
体電解質層を貫通して第1、第2測定室2,4を拡散抵
抗をもって連通する。
The principle of the present invention and the underlying invention will be described with reference to FIGS. FIG. 1A is a cross-sectional view for explaining a schematic configuration of a nitrogen oxide concentration measuring instrument to which the control method of the present invention is suitably applied.
(B) corresponds to a cross section indicated by oblique lines. The measuring device shown in FIG. 1A has two sets of diffusion resistance parts, an oxygen ion pump cell, and a measurement chamber, respectively, and a pair of electrodes 6a and 6b provided with a first solid electrolyte layer interposed therebetween. The first oxygen ion pump cell 6 provided with the above, the oxygen partial pressure detection cell 7 provided with a pair of oxygen partial pressure detection electrodes 7a and 7b provided with the second solid electrolyte layer interposed therebetween, and the third solid electrolyte layer The second oxygen ion pump cell 8 having a pair of electrodes 8a and 8b provided therebetween is stacked in this order, and an insulating layer is formed between each solid electrolyte layer. A first measuring chamber 2 is defined between the first oxygen ion pump cell 6 and the oxygen partial pressure detecting cell 7 by an insulating layer and a solid electrolyte layer, and similarly, the second oxygen chamber is defined by the insulating layer and the solid electrolyte layer. The second measurement chamber 4 is defined above the ion pump cell 8. Further, a first wall having a diffusion resistance is provided on a wall surface surrounding the first measurement chamber 2.
A plurality of diffusion holes 1 are provided, and an opening of a second diffusion hole 3 is provided at the center of the cross section of the first measurement chamber 2 so as to be separated from the first diffusion hole 1. The second diffusion hole 3 penetrates through the oxygen partial pressure detection cell 7 and the solid electrolyte layer and communicates the first and second measurement chambers 2 and 4 with diffusion resistance.

【0013】次に、図1に示したようなセンサにおける
窒素酸化物濃度検出原理を説明する。図2に示す通り、
ステップ201〜205により第2酸素イオンポンプセ
ルに流れる第2酸素イオンポンプ電流Ip2が窒素酸化
物の分解により生じた酸素量に比例することを利用し
て、窒素酸化物濃度を求めることができる。なお、第
1、第2拡散抵抗は、図1においては、第1拡散孔1、
第2拡散孔3が有するガス拡散抵抗にそれぞれ相当す
る。
Next, the principle of detecting the concentration of nitrogen oxide in the sensor as shown in FIG. 1 will be described. As shown in FIG.
The nitrogen oxide concentration can be obtained by utilizing the fact that the second oxygen ion pump current Ip2 flowing through the second oxygen ion pump cell is proportional to the amount of oxygen generated by the decomposition of nitrogen oxide in steps 201 to 205. In FIG. 1, the first and second diffusion resistances are the first diffusion holes 1,
It corresponds to the gas diffusion resistance of the second diffusion hole 3 respectively.

【0014】ところで、実際には、所定以下の低酸素濃
度雰囲気では、窒素酸化物の(過剰な)分解が起きるな
どの制約のため、第1測定室において酸素を完全に汲み
出すことができない。従って、第2酸素イオンポンプセ
ルによって第2測定室から汲み出される酸素は、第2測
定室において窒素酸化物の分解により生じる酸素と、第
1測定室で汲みきれず第2測定室に拡散した酸素の両方
である。すなわち、第2酸素イオンポンプセルに流れる
電流は、第2測定室の残存酸素濃度と窒素酸化物濃度の
両方に影響されるものとなるから、正確な窒素酸化物濃
度の測定を行うためには、残存酸素の影響を排除する必
要がある。
Actually, in an atmosphere having a low oxygen concentration lower than a predetermined level, oxygen cannot be completely pumped out in the first measurement chamber due to restrictions such as (excessive) decomposition of nitrogen oxides. Therefore, the oxygen pumped out of the second measurement chamber by the second oxygen ion pump cell and the oxygen generated by the decomposition of the nitrogen oxides in the second measurement chamber and the oxygen pumped out of the first measurement chamber and diffused into the second measurement chamber. Both oxygen. That is, since the current flowing through the second oxygen ion pump cell is affected by both the remaining oxygen concentration and the nitrogen oxide concentration in the second measurement chamber, accurate measurement of the nitrogen oxide concentration is required. It is necessary to eliminate the influence of residual oxygen.

【0015】そこで、本発明の基礎となる発明によれば
次のように酸素の影響を排除する。すなわち、予め、
窒素酸化物濃度をゼロとし、酸素濃度を変えた被測定
ガス(種々の酸素濃度のガス)を測定器に投入して、第
2酸素イオンポンプセルに流れる電流量(以下この電流
量を「オフセット」という)を測定する。 標準窒素
酸化物濃度の被測定ガスを測定器に投入して、第2酸素
イオンポンプセルに流れる電流量を測定する。 これ
らの測定値より、第2酸素イオンポンプ電流の変化量の
“ゲイン”を定める。ゲインは下式で表される。
Therefore, according to the invention on which the present invention is based, the influence of oxygen is eliminated as follows. That is,
The gas to be measured (gases of various oxygen concentrations) with the nitrogen oxide concentration set to zero and the oxygen concentration changed is introduced into the measuring instrument, and the amount of current flowing through the second oxygen ion pump cell (hereinafter, this current amount is referred to as "offset"). "). A gas to be measured having a standard nitrogen oxide concentration is charged into the measuring instrument, and the amount of current flowing through the second oxygen ion pump cell is measured. From these measured values, the “gain” of the amount of change of the second oxygen ion pump current is determined. The gain is represented by the following equation.

【0016】“ゲイン”=(標準窒素酸化物濃度)/
(発生電流量−オフセット)
"Gain" = (standard nitrogen oxide concentration) /
(Generated current-offset)

【0017】このように算出されたオフセットの値とゲ
インの値をメモリ等の記憶手段に記憶しておき、測定
時、これらオフセット及びゲインと、第2酸素ポンプセ
ルに流れる電流量がマイクロコンピュータなどに入力さ
れて、窒素酸化物濃度が算出される。
The offset value and the gain value calculated in this way are stored in a storage means such as a memory, and at the time of measurement, these offset and gain and the amount of current flowing through the second oxygen pump cell are stored in a microcomputer or the like. The input is used to calculate the nitrogen oxide concentration.

【0018】しかし、被測定ガス中の酸素濃度が変化し
た際には、P.I.D等の制御方法を用いて、第1酸素
イオンポンプセルにより第1測定室内が一定酸素濃度に
なる様に酸素を汲み出そうとしても、制御の遅れなどが
発生し、第1測定室内が一定酸素濃度とならないため、
第1測定室内の酸素濃度が下がり過ぎて第1測定室内で
NOが分解し、第2測定室でNOを測定する際に出力が
減少したり、あるいは酸素濃度が高くなった場合には、
第1測定室で本来汲み出されるべき余剰酸素分も測定す
るため、出力が高くでてNO量が正確に測定できないと
いう問題があることが分かった。
However, when the oxygen concentration in the gas to be measured changes, the P.O. I. Even if the first oxygen ion pump cell is used to pump oxygen so as to have a constant oxygen concentration in the first measurement chamber using a control method such as D, control delay occurs, and the first measurement chamber remains constant. Because it does not become oxygen concentration,
If the oxygen concentration in the first measurement chamber is too low and NO is decomposed in the first measurement chamber and the output decreases or the oxygen concentration increases when measuring NO in the second measurement chamber,
Since the excess oxygen that should be pumped out in the first measurement chamber is also measured, it was found that there was a problem that the output was high and the NO amount could not be measured accurately.

【0019】そこで、本発明者らは、上記問題を解決す
るために鋭意研究を行い本発明を完成するに至った。以
下、本発明に基づく装置と比較例(本発明の基礎となる
発明)に係る装置を対比して説明する。まず、図3及び
図4を参照して、比較例に係る装置を説明する。図3に
示した素子部分の構成は図1に示したものと同様であ
る。図3において、差動アンプ30の一方の入力端子に
は、酸素分圧検知セル7の基準電極7bが電気的に接続
して酸素分圧検知セル7の出力電圧が入力し、他方の入
力端子には参照電源が接続する。差動アンプ30の出力
端子は制御器31の入力端子に電気的に接続する。制御
器31は、酸素分圧検知セル7の起電力と参照電源の電
圧の偏差に基づき比例、積分及び微分制御などを行って
酸素分圧検知セル7の起電力が参照電源の電圧と等しく
なるように、第1酸素イオンポンプセル6の一対の電極
6a,6b間に印加する電圧を制御する。
The present inventors have conducted intensive research to solve the above-mentioned problems, and have completed the present invention. Hereinafter, the device according to the present invention and the device according to a comparative example (the invention on which the present invention is based) will be described in comparison. First, an apparatus according to a comparative example will be described with reference to FIGS. The configuration of the element portion shown in FIG. 3 is the same as that shown in FIG. In FIG. 3, a reference electrode 7b of the oxygen partial pressure detection cell 7 is electrically connected to one input terminal of the differential amplifier 30, and an output voltage of the oxygen partial pressure detection cell 7 is input thereto. Is connected to a reference power supply. An output terminal of the differential amplifier 30 is electrically connected to an input terminal of the controller 31. The controller 31 performs proportional, integral, and derivative control based on the difference between the electromotive force of the oxygen partial pressure detection cell 7 and the voltage of the reference power supply, so that the electromotive force of the oxygen partial pressure detection cell 7 becomes equal to the voltage of the reference power supply. Thus, the voltage applied between the pair of electrodes 6a and 6b of the first oxygen ion pump cell 6 is controlled.

【0020】図4に示した比較例に係る装置は、図3に
示した差動アンプ30及び制御器31に相当するVs一
定制御部41を備え、さらに、第1、第2酸素イオンポ
ンプ電流をそれぞれ入力とし、酸素濃度値及びNOx濃
度値を出力とするコントローラ40を備えている。Vs
一定制御部41は、酸素分圧検知セル7の出力を入力と
し、第1酸素イオンポンプセル6に印加する電圧を制御
して、酸素分圧検知セル7の起電力を一定とする。コン
トローラ40は、その結果第1酸素イオンポンプセル6
に流れる第1酸素イオンポンプ電流、及び第2酸素イオ
ンポンプセル8に流れる第2酸素イオンポンプ電流を入
力とし、その酸素濃度演算部40aは第1酸素イオンポ
ンプ電流に基づいて酸素濃度を求め出力すると共に、酸
素濃度補正信号を出力する。また、コントローラ40の
NOx濃度演算部40bは、この酸素濃度補正信号及び
第2酸素イオンポンプ電流を入力とし、これらに基づい
て酸素濃度補正された窒素酸化物濃度値を出力する。す
なわち、図4に示したシステムは、酸素分圧(濃度)一
定の定常状態を仮定し、第1酸素イオンポンプ電流に基
づき、窒素酸化物濃度検出の酸素濃度補正(補正量が一
定)が行われている。
The device according to the comparative example shown in FIG. 4 includes a Vs constant control unit 41 corresponding to the differential amplifier 30 and the controller 31 shown in FIG. 3, and further includes a first and a second oxygen ion pump current. , Respectively, and a controller 40 that outputs an oxygen concentration value and a NOx concentration value. Vs
The constant control unit 41 receives the output of the oxygen partial pressure detection cell 7 as input, controls the voltage applied to the first oxygen ion pump cell 6, and makes the electromotive force of the oxygen partial pressure detection cell 7 constant. The controller 40 then controls the first oxygen ion pump cell 6
The first oxygen ion pump current flowing through the second oxygen ion pump cell 8 and the second oxygen ion pump current flowing through the second oxygen ion pump cell 8 are input, and the oxygen concentration calculator 40a calculates and outputs the oxygen concentration based on the first oxygen ion pump current. At the same time, an oxygen concentration correction signal is output. The NOx concentration calculating section 40b of the controller 40 receives the oxygen concentration correction signal and the second oxygen ion pump current as inputs, and outputs a nitrogen oxide concentration value whose oxygen concentration has been corrected based on these. That is, the system shown in FIG. 4 assumes a steady state in which the oxygen partial pressure (concentration) is constant, and performs the oxygen concentration correction (the correction amount is constant) in the nitrogen oxide concentration detection based on the first oxygen ion pump current. Have been done.

【0021】これに対し、図5に示す、本発明に基づく
窒素酸化物濃度測定装置によれば、図4に示した制御構
成に加えて、Vs一定制御部41の酸素濃度検出出力
(酸素濃度検出電圧)がNOx濃度演算部40bに直接
入力する。そして、NOx濃度演算部40bは、上述の
酸素濃度補正信号及び第2酸素イオンポンプ電流に加え
て、さらに酸素濃度検出出力(酸素濃度検出電圧)の変
化率(変化量)に基づき窒素酸化物濃度検出の酸素濃度
補正を行う。この制御装置によれば、被測定ガス中の酸
素濃度が大きく変動した場合であっても(酸素分圧の非
定常状態)、酸素濃度変化率(変化量)に応じて窒素酸
化物濃度検出出力が補正することができ、酸素濃度の変
動の影響が排除されて正確な窒素酸化物濃度検出が行わ
れる。
On the other hand, according to the nitrogen oxide concentration measuring apparatus shown in FIG. 5 according to the present invention, in addition to the control configuration shown in FIG. The detected voltage is directly input to the NOx concentration calculating unit 40b. Then, the NOx concentration calculating unit 40b further calculates the nitrogen oxide concentration based on the change rate (change amount) of the oxygen concentration detection output (oxygen concentration detection voltage) in addition to the oxygen concentration correction signal and the second oxygen ion pump current. The detection oxygen concentration is corrected. According to this control device, even when the oxygen concentration in the gas to be measured fluctuates greatly (in an unsteady state of the oxygen partial pressure), the nitrogen oxide concentration detection output can be changed according to the oxygen concentration change rate (change amount). Can be corrected, and the influence of the fluctuation of the oxygen concentration is eliminated, and the accurate detection of the nitrogen oxide concentration is performed.

【0022】[0022]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明する。第1測定室内の酸素分圧検知電極に生ず
る起電力が一定となる様に図3で示す回路構成でP.
I.D制御を行い第1測定室内の酸素濃度を一定に制御
する。この際に酸素分圧検知セルの制御の目標電圧(酸
素分圧検知セルに発生する起電力の設定)を変更すると
第2酸素イオンポンプ電流が変化するため、予め酸素分
圧検知セルの設定電圧に対する第2酸素イオンポンプ電
流のオフセットを測定してコントローラ等のメモリにマ
ップとして入力しておき、被測定ガス中の酸素濃度急変
時、酸素分圧検知セルに生ずる起電力が変化する場合に
は、この起電力に相当するオフセット量を前記マップか
ら読み出し、第2酸素イオンポンプ電流からこのオフセ
ット量分を増減することにより、NOx濃度がより正確
に検知できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described. In the circuit configuration shown in FIG. 3, P.I.
I. D control is performed to control the oxygen concentration in the first measurement chamber to be constant. At this time, if the target voltage for controlling the oxygen partial pressure detection cell (setting of the electromotive force generated in the oxygen partial pressure detection cell) is changed, the second oxygen ion pump current changes. The offset of the second oxygen ion pump current is measured and input to a memory such as a controller as a map, and when the electromotive force generated in the oxygen partial pressure detection cell changes when the oxygen concentration in the gas to be measured changes suddenly, By reading the offset amount corresponding to the electromotive force from the map and increasing or decreasing the offset amount from the second oxygen ion pump current, the NOx concentration can be detected more accurately.

【0023】なお、第2測定室の酸素分圧を検知し、第
2酸素イオンポンプ電流を補正することが好ましいが改
めて電極を設ける必要があり、既に存在する第1測定室
の酸素濃度を制御する為の酸素分圧検知セルを用いて補
正しても良い。また、好ましくは、酸素分圧検知セルの
基準電極を基準酸素室内に配して、微少電流を流すこと
により、該基準電極周囲の雰囲気が一定酸素濃度となっ
て、測定室内の酸素濃度が正確に検出できる。
It is preferable to detect the oxygen partial pressure in the second measurement chamber and correct the second oxygen ion pump current. However, it is necessary to provide an electrode again, and the oxygen concentration in the already existing first measurement chamber is controlled. The correction may be performed using an oxygen partial pressure detection cell for performing the correction. Also, preferably, the reference electrode of the oxygen partial pressure detection cell is disposed in the reference oxygen chamber, and a small amount of current is caused to flow, so that the atmosphere around the reference electrode has a constant oxygen concentration, and the oxygen concentration in the measurement chamber is accurately measured. Can be detected.

【0024】[0024]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。本発明の一実施例に係る窒素酸化物濃度測定装
置は、図5に示した制御構成において、図1に示した構
成の測定器(センサ素子)を用いたものである。この窒
素酸化物濃度測定器は、ZrO2セラミックのシートを
積層して製作し、各シート間には絶縁層が積層され、第
1層と第2層の間に第1測定室を有し、この測定室と排
ガス(測定雰囲気)の間にはAl23の多孔質セラミッ
クからなる律速層が配されている。又第1層の両面に白
金を含む多孔質電極を有する第1酸素イオンポンプセル
が設けられ、第2層も同様に酸素分圧検知電極を有す
る。又第3層と第4層の間に第2測定室を有し、第2酸
素イオンポンプセルは第4層目に存在する。図12にこ
の窒素酸化物センサのレイアウトを示す。以下、図12
を参照して、この窒素酸化物センサの製造例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings. The nitrogen oxide concentration measuring apparatus according to one embodiment of the present invention uses a measuring device (sensor element) having the configuration shown in FIG. 1 in the control configuration shown in FIG. This nitrogen oxide concentration measuring instrument is manufactured by stacking sheets of ZrO 2 ceramic, an insulating layer is stacked between each sheet, and a first measuring chamber is provided between the first layer and the second layer. Between the measurement chamber and the exhaust gas (measurement atmosphere), a rate controlling layer made of a porous ceramic of Al 2 O 3 is provided. Further, a first oxygen ion pump cell having a porous electrode containing platinum is provided on both surfaces of the first layer, and the second layer similarly has an oxygen partial pressure detection electrode. In addition, a second measurement chamber is provided between the third layer and the fourth layer, and the second oxygen ion pump cell exists in the fourth layer. FIG. 12 shows the layout of this nitrogen oxide sensor. Hereinafter, FIG.
A production example of this nitrogen oxide sensor will be described with reference to FIG.

【0025】[製造例]図12に示すように、図中左上
から左下、そして右上から右下の順にZrO2グリーン
シート及び電極用ペーストなどが積層されて、一体の測
定器(センサ)が作製される。絶縁コート、電極などペ
ースト材料は、所定のZrO2グリーンシートにスクリ
ーン印刷されることにより、積層形成される。次ぎに、
ZrO2グリーンシートなど各構成部品の製造例を説明
する。
[Manufacturing Example] As shown in FIG. 12, a ZrO 2 green sheet and an electrode paste are laminated in the order from the upper left to the lower left and from the upper right to the lower right to form an integrated measuring device (sensor). Is done. A paste material such as an insulating coat and an electrode is laminated and formed by screen printing on a predetermined ZrO 2 green sheet. Next,
A production example of each component such as a ZrO 2 green sheet will be described.

【0026】[ZrO2グリーンシート成形]ZrO2
末を600℃×2時間、大気炉にて仮焼した。仮焼した
ZrO2粉末30kg、分散剤150g、有機溶剤10
kgを球石60kgとともにトロンメルに入れ、約50
時間混合し、分散させ、これに有機バインダー4kgを
有機溶剤10kgに溶解させたものを添加し、20時間
混合して10Pa・s程度の粘度を有するスラリーを得る。
このスラリーからドクターブレード法により、厚さ0.4
mm程度のZrO2グリーンシートを作製し、100℃
×1時間乾燥する。
[ZrO 2 green sheet molding] ZrO 2 powder was calcined in an atmospheric furnace at 600 ° C. for 2 hours. 30 kg of calcined ZrO 2 powder, 150 g of dispersant, 10 organic solvents
kg together with 60 kg of cobblestone into trommel, about 50
The mixture is dispersed for a period of time, and a solution obtained by dissolving 4 kg of an organic binder in 10 kg of an organic solvent is added thereto and mixed for 20 hours to obtain a slurry having a viscosity of about 10 Pa · s.
From this slurry, the thickness of 0.4
mm ZrO 2 green sheet is prepared at 100 ° C.
× Dry for 1 hour.

【0027】[印刷用ペースト] (1)第1酸素イオンポンプ電極6a、酸素分圧検知電極
(酸素基準電極)7b、第2酸素イオンポンプ電極8
a、8b用: 白金粉末20g、ZrO2粉末2.8g、適
量の有機溶剤を、らいかい機(或いはポットミル)に入
れ、4時間混合し、分散させ、これに有機バインダー2
gを有機溶剤20gに溶解させたものを添加し、さらに
粘度調整剤5gを添加し、4時間混合して粘度150Pa
・s程度のペーストを作製する。
[Printing Paste] (1) First oxygen ion pump electrode 6a, oxygen partial pressure detection electrode (oxygen reference electrode) 7b, second oxygen ion pump electrode 8
For a and 8b: 20 g of platinum powder, 2.8 g of ZrO 2 powder, and an appropriate amount of an organic solvent are put in a grinder (or pot mill), mixed for 4 hours, dispersed, and then mixed with an organic binder 2.
g, dissolved in 20 g of an organic solvent, and 5 g of a viscosity modifier were further added.
・ Make about s paste.

【0028】(2)第1酸素イオンポンプ電極6b、酸素
分圧検知電極(酸素濃度測定電極)7a用: 白金粉末
19.8g、ZrO2粉末2.8g、金粉末0.2g、適量の有機
溶剤を、らいかい機(或いはポットミル)に入れ、4時
間混合し、分散させ、これに有機バインダー2gを有機
溶剤20gに溶解させたものを添加し、さらに粘度調整
剤5gを添加し、4時間混合して粘度150Pa・s程度の
ペーストを作製する。
(2) For the first oxygen ion pump electrode 6b and the oxygen partial pressure detecting electrode (oxygen concentration measuring electrode) 7a: platinum powder
19.8 g, ZrO 2 powder 2.8 g, gold powder 0.2 g, and an appropriate amount of an organic solvent were put into a grinder (or pot mill), mixed and dispersed for 4 hours, and 2 g of an organic binder was dissolved in 20 g of an organic solvent. Then, 5 g of a viscosity modifier is further added and mixed for 4 hours to prepare a paste having a viscosity of about 150 Pa · s.

【0029】(3)絶縁コート、保護コート用: アルミ
ナ粉末50gと適量の有機溶剤を、らいかい機(或いは
ポットミル)に入れ、12時間混合し、溶解させ、さら
に粘度調整剤20gを添加し、3時間混合して粘度10
0Pa・s程度のペーストを作製する。
(3) For insulating coat and protective coat: 50 g of alumina powder and an appropriate amount of an organic solvent are put into a grinder (or pot mill), mixed for 12 hours, dissolved, and 20 g of a viscosity modifier is added. Mix for 3 hours and viscosity 10
A paste of about 0 Pa · s is prepared.

【0030】(4)Pt入り多孔質用(リード線用): ア
ルミナ粉末10g、白金粉末1.5g、有機バインダ2.5
g、有機溶剤20gを、らいかい機(或いはポットミ
ル)に入れ、4時間混合し、さらに粘度調整剤10gを
添加し、4時間混合して粘度100Pa・s程度のペースト
を作製する。
(4) Pt-containing porous material (for lead wire): alumina powder 10 g, platinum powder 1.5 g, organic binder 2.5
g and an organic solvent (20 g) are placed in a grinder (or pot mill), mixed for 4 hours, further added with a viscosity modifier (10 g), and mixed for 4 hours to prepare a paste having a viscosity of about 100 Pa · s.

【0031】(5)第1拡散孔1用: 平均粒径2μm程
度のアルミナ粉末10g、有機バインダ2g、有機溶剤
20gを、らいかい機(或いはポットミル)に入れ、混
合し、分散させ、さらに粘度調整剤10gを添加し、4
時間混合して粘度400Pa・s程度のペーストを作製す
る。
(5) For the first diffusion hole 1: 10 g of alumina powder having an average particle diameter of about 2 μm, 2 g of an organic binder, and 20 g of an organic solvent are put into a grinder (or pot mill), mixed, dispersed, and further dispersed in viscosity. Add 10g of modifier and add 4g
Mix for a time to produce a paste with a viscosity of about 400 Pa · s.

【0032】(6)カーボンコート用: カーボン粉末4
g、有機バインダ2g、有機溶剤40gを、らいかい機
(或いはポットミル)に入れ、混合し、分散させ、さら
に粘度調整剤5gを添加し、4時間混合してペーストを
作製する。なお、カーボンコートを印刷形成することに
より、一例を挙げれば、電極間の電気的接触が防止され
る。また、カーボンコートは第1測定室及び第2測定室
を形成するために用いられる。カーボンは焼成途中で焼
失するので、カーボンコート層は焼成体には存在しな
い。
(6) For carbon coating: carbon powder 4
g, 2 g of an organic binder, and 40 g of an organic solvent are put into a grinder (or pot mill), mixed and dispersed, and 5 g of a viscosity modifier is added, followed by mixing for 4 hours to prepare a paste. Note that by forming a carbon coat by printing, for example, electrical contact between the electrodes is prevented. The carbon coat is used to form a first measurement chamber and a second measurement chamber. Since carbon is burned off during firing, the carbon coat layer does not exist in the fired body.

【0033】第2拡散孔3用: 平均粒径2μm程度の
アルミナ粉末20g、有機バインダ8g、有機溶剤20
gを、らいかい機(或いはポットミル)に入れ、1時間
混合し、造粒し、金型プレスにて約2t/cm2圧を加
え直径1.3mm、厚さ0.8mmの円柱状のプレス成
形体(グリーン状態)を作製する。このグリーン状態の
プレス成形体を、2、3層目のZrO2グリーンシート
の所定箇所に挿入され、圧着して一体化した後、焼成す
ることにより、ガスセンサ中に第2拡散孔を形成する。
For the second diffusion hole 3: 20 g of alumina powder having an average particle size of about 2 μm, 8 g of organic binder, 20 organic solvents
g in a grinder (or pot mill), mix for 1 hour, granulate, apply pressure of about 2t / cm 2 with a die press, and press in a cylindrical shape of 1.3mm in diameter and 0.8mm in thickness. A molded body (green state) is produced. The green pressed body is inserted into predetermined portions of the second and third layers of ZrO 2 green sheets, pressed and integrated, and then fired to form second diffusion holes in the gas sensor.

【0034】[ZrO2積層方法] 2、3層目圧着
後、第2拡散孔が貫通する部分(直径1.3mm)を打
ち抜く。打ち抜き後、第2拡散孔となるグリーン円柱状
成形体を埋め込み、1〜4層のZrO2グリーンシート
を加圧力:5kg/cm2、加圧時間:1分で圧着する。
[ZrO 2 Laminating Method] After the second and third layers are pressed, a portion (diameter: 1.3 mm) through which the second diffusion hole penetrates is punched. After the punching, a green cylindrical shaped body serving as the second diffusion hole is embedded, and 1 to 4 layers of ZrO 2 green sheets are pressed under a pressure of 5 kg / cm 2 and a pressing time of 1 minute.

【0035】[脱バインダー及び焼成] 圧着した成形
体を、400℃×2時間脱バインダーし、1500℃×
1時間焼成する。
[Binder Removal and Firing] The compacted body was debindered at 400 ° C. × 2 hours,
Bake for 1 hour.

【0036】上記製造例に従って下記の寸法の窒素酸化
物センサ(測定器)を作成し、NOxガス濃度測定試験
を行った。測定に使用した窒素酸化物センサは、長手方
向の長さが50mm、幅(短手方向)が4mm、厚さ
(積層方向)が1.3mmである。第1酸素イオンポン
プセルの厚さは0.3mm、電極6a,6bの長手方向
の長さは7mm、短手方向の長さは2mm、第1測定室
の長手方向の長さは7mm、短手方向の長さは2mm、
高さ50μm、第2測定室の長手方向長さが7mm、短
手方向の長さは2mm、高さ50μm、第1拡散孔の長
手方向の長さは2mm、短手方向の長さ1mm、厚さ5
0μm、第2拡散孔の大きさは直径1mmである。
A nitrogen oxide sensor (measuring device) having the following dimensions was prepared according to the above production example, and a NOx gas concentration measurement test was performed. The nitrogen oxide sensor used for measurement has a length in the longitudinal direction of 50 mm, a width (transverse direction) of 4 mm, and a thickness (laminating direction) of 1.3 mm. The thickness of the first oxygen ion pump cell is 0.3 mm, the length of the electrodes 6a and 6b in the longitudinal direction is 7 mm, the length in the transverse direction is 2 mm, and the length of the first measurement chamber in the longitudinal direction is 7 mm. The length in the hand direction is 2mm,
Height 50 μm, length of the second measurement chamber in the longitudinal direction is 7 mm, length in the transverse direction is 2 mm, height is 50 μm, length of the first diffusion hole in the longitudinal direction is 2 mm, length in the transverse direction is 1 mm, Thickness 5
0 μm, and the size of the second diffusion hole is 1 mm in diameter.

【0037】(測定例1)まず、この制御システムにお
いて、第2酸素イオンポンプセル電位を一定として、1
500ppmのNO、酸素7%を含む被測定ガスを投入
し、酸素分圧検知セルの設定電圧を変化したときの、第
2酸素イオンポンプ電流のゲイン及びオフセットを測定
した。この結果を図6に示す。また、酸素分圧検知セル
の設定電圧を一定とし、1500ppmのNOを含み、
酸素7%を含む被測定ガスを投入し、第2酸素イオンポ
ンプセル電位を変化させたときの第2酸素イオンポンプ
電流のゲイン及びオフセットを測定した。この結果を図
7に示す。
(Measurement Example 1) First, in this control system, the potential of the second oxygen ion
A gas to be measured containing 500 ppm of NO and 7% of oxygen was charged, and the gain and offset of the second oxygen ion pump current when the set voltage of the oxygen partial pressure detection cell was changed were measured. The result is shown in FIG. Further, the set voltage of the oxygen partial pressure detection cell is kept constant, and contains 1500 ppm of NO,
A gas to be measured containing 7% of oxygen was supplied, and the gain and offset of the second oxygen ion pump current when the potential of the second oxygen ion pump cell was changed were measured. The result is shown in FIG.

【0038】図6より、酸素分圧検知セルの設定電圧を
低くした際には、第2測定室に拡散するガス中に残留す
る酸素が多くなり、第2酸素イオンポンプ電流が増加
し、該設定電圧を高くした際には、該電流が減少するこ
とが分かる。一方、図7より、酸素分圧検知セルの設定
電圧を一定とし、第1測定室内の酸素濃度が一定となる
ようにした場合、第2酸素イオンポンプセル電圧を低く
した際には、第2酸素イオンポンプ電流は減少し、該電
圧を高くした際には、該電流が増加することが分かる。
As shown in FIG. 6, when the set voltage of the oxygen partial pressure detection cell is lowered, the amount of oxygen remaining in the gas diffused into the second measurement chamber increases, and the second oxygen ion pump current increases. It can be seen that when the set voltage is increased, the current decreases. On the other hand, from FIG. 7, when the set voltage of the oxygen partial pressure detection cell is kept constant and the oxygen concentration in the first measurement chamber is kept constant, when the second oxygen ion pump cell voltage is lowered, the second It can be seen that the oxygen ion pump current decreases and increases when the voltage is increased.

【0039】従って、図6及び図7に示された特性を利
用して、酸素分圧検知セルに発生する起電力が高い場合
には第2酸素イオンポンプセル電圧を低くし、該起電力
が低い場合には該電圧を高くすることにより、被測定ガ
ス中の酸素及び酸素濃度変化の影響が相殺され、被測定
ガス中のNOx濃度が精度良く測定できるようになるこ
とが分かる。
Therefore, by utilizing the characteristics shown in FIGS. 6 and 7, when the electromotive force generated in the oxygen partial pressure detection cell is high, the voltage of the second oxygen ion pump cell is lowered, and the electromotive force is reduced. When the voltage is low, increasing the voltage cancels out the effects of oxygen and the change in oxygen concentration in the gas to be measured, so that the NOx concentration in the gas to be measured can be accurately measured.

【0040】図8に、酸素分圧検知セルの電極7b(図
3参照)の測定電位と基準電位(450mv)間の電位
差と、第2酸素イオンポンプ電流の関係をプロットした
結果を示す。図8より、両者にほぼ直線的な関係がある
ことが分かる。そこで、この関係をコントローラ40が
備える記憶部に予め記憶させておき(マップ作成)、被
測定ガス中の酸素濃度が急変して、酸素分圧検知セルに
発生する起電力が変化する場合に、該起電力変化に対応
する所定のオフセット量を読み出して、測定した第2酸
素イオンポンプ電流値を読み出したオフセット量に基づ
いて増減することにより、補正された第2酸素イオンポ
ンプセル出力に基づき、正確な窒素酸化物濃度が求めら
れることが分かる。
FIG. 8 shows the result of plotting the relationship between the potential difference between the measured potential of the electrode 7b (see FIG. 3) of the oxygen partial pressure detection cell and the reference potential (450 mv) and the second oxygen ion pump current. FIG. 8 shows that there is a substantially linear relationship between the two. Therefore, this relationship is stored in advance in a storage unit included in the controller 40 (map creation), and when the oxygen concentration in the measured gas changes suddenly and the electromotive force generated in the oxygen partial pressure detection cell changes, By reading a predetermined offset amount corresponding to the electromotive force change, and increasing or decreasing the measured second oxygen ion pump current value based on the read offset amount, based on the corrected second oxygen ion pump cell output, It can be seen that an accurate nitrogen oxide concentration is required.

【0041】(測定例2)次に、1.5Lのリーンバー
ンエンジンガソリン車に、以上説明した制御構成を有す
る本発明の一実施例に係る測定装置(図5参照)を適用
し、排ガス中の窒素酸化物濃度測定を行った。また、比
較例として酸素分圧検知セルの出力による補正を行わな
い制御装置(図4参照)を用いて、同様に測定を行っ
た。なお、酸素分圧検知セルの設定電圧は450mVと
した。同時に、FTIR法に基づく分析計によって真値
を測定した(分析計の出力は図中FTIRで示す)。
図9に比較例、図10に実施例の測定結果をそれぞれ示
す。図9及び図10より、実車走行においては酸素濃度
が刻々と変化して、酸素分圧検知セル電位を一定にする
制御に制御遅れが発生していることが分かる。そして、
図9では、酸素分圧検知セル電位が急変した際に、NO
xセンサ(第2酸素イオンポンプ電流に基づく)が異常
値を出力し、NOxセンサ出力()は分析計出力
()と大きく異なり、正確なNOx濃度測定が行われ
なかったことを示している。
(Measurement Example 2) Next, a measuring apparatus (see FIG. 5) according to an embodiment of the present invention having the above-described control configuration is applied to a 1.5-liter lean-burn engine gasoline-powered gasoline vehicle. Was measured for nitrogen oxide concentration. Further, as a comparative example, measurement was similarly performed using a control device (see FIG. 4) that did not perform correction based on the output of the oxygen partial pressure detection cell. The set voltage of the oxygen partial pressure detection cell was 450 mV. At the same time, the true value was measured by an analyzer based on the FTIR method (the output of the analyzer is indicated by FTIR in the figure).
FIG. 9 shows the measurement results of the comparative example, and FIG. 10 shows the measurement results of the example. From FIGS. 9 and 10, it can be seen that in the actual vehicle running, the oxygen concentration changes every moment, and a control delay occurs in the control for keeping the potential of the oxygen partial pressure detection cell constant. And
In FIG. 9, when the potential of the oxygen partial pressure detection cell suddenly changes, NO
The x sensor (based on the second oxygen ion pump current) outputs an abnormal value, and the NOx sensor output () is significantly different from the analyzer output (), indicating that accurate NOx concentration measurement was not performed.

【0042】一方、図10によれば、酸素分圧検知セル
の電極7b(図3参照)の測定電位と基準電位(450
mv)との電位差(起電力変化)に対応する所定のオフ
セット量を読み出して、読み出したオフセット量に基づ
いて測定した第2酸素イオンポンプ電流値を増減する補
正を行うことにより、酸素分圧検知セル電位が急変した
際に、NOxセンサ出力のピークは、図9に比べて半分
以下の高さになり、NOxセンサ出力()は分析計出
力()とほとんど変わらず、正確なNOx濃度測定が
行われたことを示している。
On the other hand, according to FIG. 10, the measured potential of the electrode 7b (see FIG. 3) of the oxygen partial pressure detecting cell and the reference potential (450
mv), a predetermined offset amount corresponding to a potential difference (electromotive force change) is read, and correction is performed to increase or decrease the second oxygen ion pump current value measured based on the read offset amount, thereby detecting oxygen partial pressure. When the cell potential changes suddenly, the peak of the NOx sensor output becomes less than half the height of FIG. 9, and the NOx sensor output () is almost the same as the analyzer output (). Indicates that this has been done.

【0043】以上説明した実施例では、図5に示したコ
ントローラ40内部で補正を行っているが、図3に示し
たシステムに、所定の回路を追加することにより(上記
実施例で用いた素子に所定の回路を接続する)、本発明
に係る別の制御構成が実現できる。図11は、本発明の
他の実施例に係る窒素酸化物濃度測定装置を説明するた
めの図である。図11に示した装置が、図3に示した装
置と異なる点は、酸素分圧検知セル7の基準電極7bと
第2酸素イオンポンプセルの外側電極8b間に増幅器3
2を配した点である。図11のシステムは、酸素分圧検
知セルの電位(酸素分圧検知セルの電極7b(図3参
照)に発生する電位と基準電位との電位差(起電力変
化))に応じて第2酸素イオンポンプセルへの印加電圧
を可変することにより、上述のコントローラによるソフ
トウェア的な補正をハードウェアで行うものである。す
なわち、酸素分圧検知セルの電圧が高い場合にはポンプ
電圧を高く、低い場合にはポンプ電圧を低くする様に第
2酸素イオンポンプセルへの印加ポンプ電圧を制御して
いる。上記実施例と同様の測定試験を行ったところ、図
11に示したシステムによっても、第2酸素イオンポン
プセルへの印加電圧を一定に制御した場合に比べて、上
記実施例と同様に正確な窒素酸化物濃度測定ができるこ
とが確認された。
In the embodiment described above, the correction is performed inside the controller 40 shown in FIG. 5, but by adding a predetermined circuit to the system shown in FIG. A predetermined circuit is connected to the control circuit), another control configuration according to the present invention can be realized. FIG. 11 is a view for explaining a nitrogen oxide concentration measuring apparatus according to another embodiment of the present invention. The device shown in FIG. 11 is different from the device shown in FIG. 3 in that an amplifier 3 is provided between a reference electrode 7b of the oxygen partial pressure detecting cell 7 and an outer electrode 8b of the second oxygen ion pump cell.
This is the point where 2 is arranged. The system of FIG. 11 uses the second oxygen ion according to the potential of the oxygen partial pressure detection cell (the potential difference (electromotive force change) between the potential generated at the electrode 7b of the oxygen partial pressure detection cell (see FIG. 3) and the reference potential). By varying the applied voltage to the pump cell, the above-described software-based correction by the controller is performed by hardware. That is, the pump voltage applied to the second oxygen ion pump cell is controlled so that the pump voltage is high when the voltage of the oxygen partial pressure detection cell is high, and is low when the voltage of the oxygen partial pressure detection cell is low. When a measurement test similar to that of the above-described embodiment was performed, the system shown in FIG. 11 showed that the system shown in FIG. It was confirmed that the nitrogen oxide concentration could be measured.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
被測定ガス中の酸素濃度が急変した場合であっても、窒
素酸化物濃度をより正確に求めることができる。すなわ
ち、酸素濃度が大きく変動する雰囲気においても、制御
遅れがなく、リアルタイムで正確な窒素酸化物濃度を得
ることができ、本発明の制御方法を内燃機関の窒素酸化
物検出システムに適用することにより、酸素濃度及び窒
素酸化物濃度の変化に応じた、即応性の高い燃焼制御シ
ステムを構築することが可能とされる。また、本発明の
測定装置はソフトウェア的にもハードウェア的にも構成
することができる。
As described above, according to the present invention,
Even when the oxygen concentration in the gas to be measured changes suddenly, the nitrogen oxide concentration can be obtained more accurately. That is, even in an atmosphere in which the oxygen concentration fluctuates greatly, there is no delay in control, and an accurate nitrogen oxide concentration can be obtained in real time. By applying the control method of the present invention to a nitrogen oxide detection system of an internal combustion engine, It is possible to construct a highly responsive combustion control system according to changes in oxygen concentration and nitrogen oxide concentration. Further, the measuring device of the present invention can be configured as software or hardware.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態において好適に使用される
窒素酸化物濃度測定器を説明するための図であって、
(a)は測定器(素子)の構造を説明するための断面
図、(b)は(a)に示した断面の測定器全体に対する
位置を説明するための図、(c)は測定器出力特性を説
明するための図である。
FIG. 1 is a view for explaining a nitrogen oxide concentration measuring instrument suitably used in one embodiment of the present invention,
(A) is a cross-sectional view for explaining the structure of the measuring device (element), (b) is a diagram for explaining the position of the cross section shown in (a) with respect to the entire measuring device, and (c) is the output of the measuring device. It is a figure for explaining a characteristic.

【図2】図1に示した窒素酸化物濃度測定器を用いた窒
素酸化物濃度検出過程を説明するためのフローチャート
である。
FIG. 2 is a flowchart for explaining a nitrogen oxide concentration detecting process using the nitrogen oxide concentration measuring device shown in FIG.

【図3】比較例に係る窒素酸化物濃度測定装置を説明す
るための図である。
FIG. 3 is a diagram for explaining a nitrogen oxide concentration measuring device according to a comparative example.

【図4】比較例に係る測定装置を説明するためのブロッ
ク図である。
FIG. 4 is a block diagram for explaining a measuring device according to a comparative example.

【図5】本発明の一実施の形態に係る測定装置を説明す
るためのブロック図である。
FIG. 5 is a block diagram for explaining a measuring device according to one embodiment of the present invention.

【図6】本発明の一実施例に係る測定装置を用いて、第
2酸素イオンポンプセル電位を一定として、1500p
pmのNO、酸素7%を含む被測定ガスを投入し、酸素
分圧検知セルの設定電圧を変化したときの、第2酸素イ
オンポンプ電流のゲイン及びオフセットを示す図であ
る。
FIG. 6 shows a case where the potential of the second oxygen ion pump cell is kept constant by using the measuring apparatus according to one embodiment of the present invention.
It is a figure which shows the gain and offset of the 2nd oxygen ion pump current when the gas to be measured containing pm of NO and 7% of oxygen is supplied and the set voltage of the oxygen partial pressure detection cell is changed.

【図7】本発明の一実施例に係る測定装置を用いて、酸
素分圧検知セルの設定電圧を一定として、1500pp
mのNO、酸素7%を含む被測定ガスを投入し、第2酸
素イオンポンプセル電位を変化したときの第2酸素イオ
ンポンプ電流のゲイン及びオフセットを示す図である。
FIG. 7 is a diagram illustrating a measurement apparatus according to an embodiment of the present invention, in which the set voltage of the oxygen partial pressure detection cell is kept constant at 1500 pp.
FIG. 9 is a diagram showing the gain and offset of the second oxygen ion pump current when the gas to be measured containing m NO and 7% oxygen is supplied and the potential of the second oxygen ion pump cell is changed.

【図8】本発明の一実施例に係る測定装置を用いて、酸
素分圧検知セルの第1測定室側電極7b(図3参照)と
基準電位の電位差と、第2酸素イオンポンプ電流の関係
を示す図である。
FIG. 8 shows a potential difference between the first measurement chamber side electrode 7b (see FIG. 3) of the oxygen partial pressure detection cell and a reference potential and a second oxygen ion pump current using the measuring device according to one embodiment of the present invention. It is a figure showing a relation.

【図9】比較例に係る測定装置を用いて、1.5Lのリ
ーンバーンエンジンガソリン車の排ガス濃度測定を行っ
た結果を示す図である。
FIG. 9 is a diagram showing the results of measuring the exhaust gas concentration of a 1.5-liter lean-burn engine gasoline-powered vehicle using the measuring device according to the comparative example.

【図10】本発明の一実施例に係る窒素酸化物濃度測定
装置を用いて、1.5Lのリーンバーンエンジンガソリ
ン車の排ガス濃度測定を行った結果を示す図である。
FIG. 10 is a diagram showing the results of measuring the exhaust gas concentration of a 1.5-liter lean-burn engine gasoline vehicle using the nitrogen oxide concentration measuring device according to one embodiment of the present invention.

【図11】本発明の他の実施例に係る窒素酸化物濃度測
定装置を説明するための図である。
FIG. 11 is a view for explaining a nitrogen oxide concentration measuring apparatus according to another embodiment of the present invention.

【図12】窒素酸化物濃度測定器(センサ素子)のレイ
アウトを説明するための図である。
FIG. 12 is a diagram for explaining a layout of a nitrogen oxide concentration measuring device (sensor element).

【符号の説明】[Explanation of symbols]

1 第1拡散孔 2 第1測定室 3 第2拡散孔 4 第2測定室 6 第1酸素イオンポンプセル 6a,6b 電極 7 酸素分圧検知セル 7a,7b 電極 8 第2酸素イオンポンプセル 8a,8b 電極 30 差動増幅器 31 制御器(P.I.D制御器) 32 増幅器 40 コントローラ 40a 酸素濃度演算部 40b NOx濃度演算部 41 Vs(酸素分圧検知セル電位)一定制御部 DESCRIPTION OF SYMBOLS 1 1st diffusion hole 2 1st measurement room 3 2nd diffusion hole 4 2nd measurement room 6 1st oxygen ion pump cell 6a, 6b electrode 7 Oxygen partial pressure detection cell 7a, 7b electrode 8 2nd oxygen ion pump cell 8a, 8b Electrode 30 Differential amplifier 31 Controller (PID controller) 32 Amplifier 40 Controller 40a Oxygen concentration calculation unit 40b NOx concentration calculation unit 41 Vs (oxygen partial pressure detection cell potential) constant control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 崇文 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takafumi Oshima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Japan Special Ceramics Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】第1拡散抵抗を介して被測定ガスが導入さ
れる第1測定室と、前記第1測定室外又は内へ酸素を十
分に汲み出す又は汲み込む第1酸素イオンポンプセル
と、前記第1測定室から第2拡散抵抗を介してガスが導
入される第2測定室と、前記第2測定室の内部と外部に
設けられた一対の電極を備え、該一対の電極に電圧が印
加されて該第2測定室中の窒素酸化物を分解し、解離し
た酸素を汲み出すことにより窒素酸化物濃度に応じた電
流(以下「第2酸素イオンポンプ電流」という)が流れ
る第2酸素イオンポンプセルと、 被測定ガス中の酸素分圧が変化した際に、該変化に応じ
て前記第2酸素イオンポンプ電流に基づき窒素酸化物濃
度を求める手段と、 を有することを特徴とする窒素酸化物濃度測定装置。
A first measurement chamber into which a gas to be measured is introduced via a first diffusion resistor; a first oxygen ion pump cell for sufficiently pumping or pumping oxygen outside or inside the first measurement chamber; A second measurement chamber into which gas is introduced from the first measurement chamber via a second diffusion resistor; and a pair of electrodes provided inside and outside the second measurement chamber, and a voltage is applied to the pair of electrodes. The second oxygen that is applied to decompose the nitrogen oxides in the second measurement chamber and pump out the dissociated oxygen causes a current (hereinafter referred to as “second oxygen ion pump current”) to flow according to the nitrogen oxide concentration. An ion pump cell; and means for obtaining a nitrogen oxide concentration based on the second oxygen ion pump current in response to a change when the oxygen partial pressure in the gas to be measured changes. Oxide concentration measurement device.
【請求項2】前記第1測定室の酸素分圧を検出するため
の酸素分圧検知電極を備えた酸素分圧検知セルを有し、 前記窒素酸化物濃度を求める手段は、前記酸素分圧検知
セルの出力に基づいて前記第2酸素イオンポンプ電流に
基づく窒素酸化物濃度検出出力を補正する補正手段を備
えることを特徴とする請求項1記載の窒素酸化物濃度測
定装置。
2. An oxygen partial pressure detecting cell having an oxygen partial pressure detecting electrode for detecting an oxygen partial pressure in the first measuring chamber, wherein the means for obtaining the nitrogen oxide concentration comprises: 2. The nitrogen oxide concentration measurement device according to claim 1, further comprising a correction unit that corrects a nitrogen oxide concentration detection output based on the second oxygen ion pump current based on an output of the detection cell.
【請求項3】前記補正手段は、前記第1酸素イオンポン
プセルへの印加電圧が前記酸素分圧検知セルの出力に基
づいて制御されることにより該第1酸素イオンポンプセ
ルに流れる電流(以下「第1酸素イオンポンプ電流」と
いう)の変化量に基づいて、前記窒素酸化物濃度検出出
力を補正することを特徴とする請求項2記載の窒素酸化
物濃度測定器測定装置。
3. The electric current flowing through the first oxygen ion pump cell (hereinafter referred to as “the current value”) is controlled by controlling the voltage applied to the first oxygen ion pump cell based on the output of the oxygen partial pressure detection cell. The nitrogen oxide concentration measuring device measuring device according to claim 2, wherein the nitrogen oxide concentration detection output is corrected based on a change amount of "first oxygen ion pump current".
【請求項4】第1拡散抵抗を介して被測定ガスが導入さ
れる第1測定室と、前記第1測定室から該測定室外又は
内へ被測定ガス中の酸素を十分に汲み出す又は汲み込む
第1酸素イオンポンプセルと、前記第1測定室から第2
拡散抵抗を介してガスが導入される第2測定室と、前記
第2測定室の内部と外部に設けられた一対の電極を備
え、該一対の電極に電圧が印加されて該第2測定室中の
窒素酸化物を分解し、解離した酸素を汲み出すことによ
り窒素酸化物濃度に応じた電流(以下「第2酸素イオン
ポンプ電流」という)が流れる第2酸素イオンポンプセ
ルと、を備えた窒素酸化物濃度測定器と、 被測定ガス中の酸素分圧の変化に応じて、前記第2酸素
イオンポンプセルに印可する電圧を制御する手段と、を
有することを特徴とする窒素酸化物濃度測定装置。
4. A first measuring chamber into which a gas to be measured is introduced via a first diffusion resistor, and sufficiently pumping or pumping oxygen in the gas to be measured from the first measuring chamber to outside or inside the measuring chamber. A first oxygen ion pump cell, and a second oxygen ion pump cell from the first measurement chamber.
A second measurement chamber into which a gas is introduced via a diffusion resistance; and a pair of electrodes provided inside and outside the second measurement chamber, and when a voltage is applied to the pair of electrodes, the second measurement chamber A second oxygen ion pump cell in which a current (hereinafter referred to as “second oxygen ion pump current”) according to the nitrogen oxide concentration flows by decomposing nitrogen oxides therein and pumping out dissociated oxygen. A nitrogen oxide concentration measuring device; and means for controlling a voltage applied to the second oxygen ion pump cell in accordance with a change in oxygen partial pressure in the gas to be measured. measuring device.
【請求項5】前記制御手段は、前記酸素分圧が低い場合
は、前記第2酸素イオンポンプセルに印加される電圧を
低下させ、高い場合には該電圧を上昇させることを特徴
とする請求項4記載の窒素酸化物濃度測定装置。
5. The apparatus according to claim 1, wherein said control means decreases the voltage applied to said second oxygen ion pump cell when said oxygen partial pressure is low, and increases said voltage when said oxygen partial pressure is high. Item 6. The nitrogen oxide concentration measuring device according to Item 4.
【請求項6】第1拡散抵抗を介して被測定ガスが導入さ
れる第1測定室と、前記第1測定室から該測定室外又は
内へ被測定ガス中の酸素を十分に汲み出す又は汲み込む
第1酸素イオンポンプセルと、前記第1測定室から第2
拡散抵抗を介してガスが導入される第2測定室と、前記
第2測定室の内部と外部に設けられた一対の電極を備
え、該一対の電極に電圧が印加されて該第2測定室中の
窒素酸化物を分解し、解離した酸素を汲み出すことによ
り窒素酸化物濃度に応じた電流(以下「第2酸素イオン
ポンプ電流」という)が流れる第2酸素イオンポンプセ
ルと、前記第1測定室ないし前記第2測定室内の酸素分
圧を検出する酸素分圧検知セルと、を備えた窒素酸化物
濃度測定器と、 前記酸素分圧検知セルの出力及び前記第2酸素イオンポ
ンプセルの出力を入力とし、該酸素分圧検知セルの出力
が変化した際に、前記第2酸素イオンポンプ電流に基づ
く前記窒素酸化物濃度測定器の窒素酸化物濃度検出出力
を補正する窒素酸化物濃度演算部と、 を有することを特徴とする窒素酸化物濃度測定装置。
6. A first measuring chamber into which a gas to be measured is introduced via a first diffusion resistor, and sufficient pumping or pumping of oxygen in the gas to be measured from the first measuring chamber to outside or inside the measuring chamber. A first oxygen ion pump cell, and a second
A second measurement chamber into which a gas is introduced via a diffusion resistance; and a pair of electrodes provided inside and outside the second measurement chamber, and when a voltage is applied to the pair of electrodes, the second measurement chamber A second oxygen ion pump cell in which a current corresponding to the nitrogen oxide concentration (hereinafter referred to as a “second oxygen ion pump current”) flows by decomposing nitrogen oxides therein and pumping out dissociated oxygen; A nitrogen oxide concentration measuring device comprising: a measuring chamber or an oxygen partial pressure detecting cell for detecting an oxygen partial pressure in the second measuring chamber; and an output of the oxygen partial pressure detecting cell and the second oxygen ion pump cell. A nitrogen oxide concentration calculation for correcting the output of the nitrogen oxide concentration measurement device based on the second oxygen ion pump current when the output of the oxygen partial pressure detection cell changes with the output as an input. And a part having Nitrogen oxide concentration measurement device for.
【請求項7】さらに、前記酸素分圧検知セルの出力が一
定となるように、前記第1酸素イオンポンプセルを制御
する酸素分圧一定制御部と、 前記酸素分圧検知セルの出力の変化量と前記第2酸素イ
オンポンプ電流のオフセットの関係を予め記憶した記憶
部と、を有し、 前記窒素酸化物濃度演算部は、前記酸素分圧検知セルの
出力の変化量に応じて、前記記憶部から所定のデータを
読み出し、該データに基づいて前記第2酸素イオンポン
プ電流のオフセットの値を可変して、前記窒素酸化物濃
度検出出力を補正することを特徴とする請求項6記載の
窒素酸化物濃度測定装置。
7. An oxygen partial pressure constant control unit for controlling the first oxygen ion pump cell so that the output of the oxygen partial pressure detection cell is constant, and a change in output of the oxygen partial pressure detection cell. A storage unit in which the relationship between the amount and the offset of the second oxygen ion pump current is stored in advance, wherein the nitrogen oxide concentration calculation unit is configured to change the output of the oxygen partial pressure detection cell according to the change amount. 7. The nitrogen oxide concentration detection output according to claim 6, wherein predetermined data is read from a storage unit, and the nitrogen oxide concentration detection output is corrected by changing a value of an offset of the second oxygen ion pump current based on the data. Nitrogen oxide concentration measurement device.
【請求項8】第1拡散抵抗を介して被測定ガスが導入さ
れる第1測定室と、前記第1測定室から該測定室外へ被
測定ガス中の酸素を窒素酸化物のすべてが分解しない程
度に十分に汲み出す第1酸素イオンポンプセルと、前記
第1測定室から第2拡散抵抗を介してガスが導入される
第2測定室と、前記第2測定室の内部と外部に設けられ
た一対の電極を備え、該一対の電極に電圧が印加されて
該第2測定室中に残留する窒素酸化物を分解し、解離し
た酸素を汲み出すことにより窒素酸化物濃度に応じた電
流(以下「第2酸素イオンポンプ電流」という)が流れ
る第2酸素イオンポンプセルと、を備えた窒素酸化物濃
度測定器において、 被測定ガス中の酸素分圧が変化した際に、該変化に応じ
て前記第2酸素イオンポンプ電流に基づく前記窒素酸化
物濃度測定器の窒素酸化物濃度検出出力を補正すること
を特徴とする窒素酸化物濃度測定器の制御方法。
8. A first measuring chamber into which a gas to be measured is introduced via a first diffusion resistance, and all of the nitrogen oxides do not decompose oxygen in the gas to be measured from the first measuring chamber to the outside of the measuring chamber. A first oxygen ion pump cell for sufficiently pumping, a second measurement chamber into which gas is introduced from the first measurement chamber via a second diffusion resistor, and an inside and an outside of the second measurement chamber. A voltage corresponding to the concentration of nitrogen oxides is obtained by applying a voltage to the pair of electrodes, decomposing nitrogen oxides remaining in the second measurement chamber, and pumping out dissociated oxygen. A second oxygen ion pump cell through which a "second oxygen ion pump current" flows. When the oxygen partial pressure in the gas to be measured changes, The nitric acid based on the second oxygen ion pump current A method for controlling a nitrogen oxide concentration measuring device, comprising: correcting a nitrogen oxide concentration detecting output of the compound concentration measuring device.
【請求項9】前記第1測定室の酸素分圧を検出するため
の酸素分圧検知電極を備えた酸素分圧検知セルを有し、 前記酸素分圧検知セルの出力に基づいて前記窒素酸化物
濃度検出出力を補正することを特徴とする請求項8記載
の窒素酸化物濃度測定器の制御方法。
9. An oxygen partial pressure detecting cell having an oxygen partial pressure detecting electrode for detecting an oxygen partial pressure in the first measuring chamber, wherein the nitrogen oxidation is performed based on an output of the oxygen partial pressure detecting cell. 9. The control method for a nitrogen oxide concentration measuring instrument according to claim 8, wherein the substance concentration detection output is corrected.
【請求項10】前記第1酸素イオンポンプセルへの印加
電圧が前記酸素分圧検知セルの出力に基づいて制御され
ることにより該第1酸素イオンポンプセルに流れる電流
(以下「第1酸素イオンポンプ電流」という)の変化量
に基づいて、前記窒素酸化物濃度検出出力を補正するこ
とを特徴とする請求項9記載の窒素酸化物濃度測定器の
制御方法。
10. A current flowing through the first oxygen ion pump cell (hereinafter referred to as a "first oxygen ion pump cell") by controlling an applied voltage to the first oxygen ion pump cell based on an output of the oxygen partial pressure detection cell. 10. The control method for a nitrogen oxide concentration measuring device according to claim 9, wherein the nitrogen oxide concentration detection output is corrected based on a change amount of a pump current.
【請求項11】第1拡散抵抗を介して被測定ガスが導入
される第1測定室と、前記第1測定室から該測定室外へ
被測定ガス中の酸素を窒素酸化物のすべてが分解しない
程度に十分に汲み出す第1酸素イオンポンプセルと、前
記第1測定室から第2拡散抵抗を介してガスが導入され
る第2測定室と、前記第2測定室の内部と外部に設けら
れた一対の電極を備え、該一対の電極に電圧が印加され
て該第2測定室中に残留する窒素酸化物を分解し、解離
した酸素を汲み出すことにより窒素酸化物濃度に応じた
電流(以下「第2酸素イオンポンプ電流」という)が流
れる第2酸素イオンポンプセルと、を備えた窒素酸化物
濃度測定器において、 被測定ガス中の酸素分圧の変化に応じて、前記第2酸素
イオンポンプセルに印加される電圧を制御することを特
徴とする窒素酸化物濃度測定器の制御方法。
11. A first measurement chamber into which a gas to be measured is introduced via a first diffusion resistor, and all of the nitrogen oxides do not decompose oxygen in the gas to be measured from the first measurement chamber to the outside of the measurement chamber. A first oxygen ion pump cell for sufficiently pumping, a second measurement chamber into which gas is introduced from the first measurement chamber via a second diffusion resistor, and an inside and an outside of the second measurement chamber. A voltage corresponding to the concentration of nitrogen oxides is obtained by applying a voltage to the pair of electrodes, decomposing nitrogen oxides remaining in the second measurement chamber, and pumping out dissociated oxygen. A second oxygen ion pump cell through which a “second oxygen ion pump current” flows, wherein the second oxygen ion pump cell is connected to the second oxygen ion pump cell according to a change in the oxygen partial pressure in the gas to be measured. Controlling the voltage applied to the ion pump cell A method for controlling a nitrogen oxide concentration measuring device, comprising:
【請求項12】前記酸素分圧が低い場合は、前記第2酸
素イオンポンプセルに印加される電圧を低下させ、高い
場合には該電圧を上昇させることを特徴とする請求項1
1記載の窒素酸化物濃度測定器の制御方法。
12. The method according to claim 1, wherein the voltage applied to the second oxygen ion pump cell is decreased when the oxygen partial pressure is low, and the voltage is increased when the oxygen partial pressure is high.
2. A control method of the nitrogen oxide concentration measuring device according to 1.
【請求項13】第1拡散抵抗を介して被測定ガスが導入
される第1測定室と、前記第1測定室から該測定室外へ
被測定ガス中の酸素を窒素酸化物のすべてが分解しない
程度に十分に汲み出す第1酸素イオンポンプセルと、前
記第1測定室から第2拡散抵抗を介してガスが導入され
る第2測定室と、前記第2測定室の内部と外部に設けら
れた一対の電極を備え、該一対の電極に電圧が印加され
て該第2測定室中に残留する窒素酸化物を分解し、解離
した酸素を汲み出すことにより窒素酸化物濃度に応じた
電流(以下「第2酸素イオンポンプ電流」という)が流
れる第2酸素イオンポンプセルと、を備えた窒素酸化物
濃度測定器において、 さらに、前記第1測定室ないし前記第2測定室内の酸素
分圧を検出する酸素分圧検知セルと、 前記酸素分圧検知セルの出力及び前記第2酸素イオンポ
ンプセルの出力を入力とし、該酸素分圧検知セルの出力
が変化した際に、前記第2酸素イオンポンプ電流に基づ
く前記窒素酸化物濃度測定器の窒素酸化物濃度検出出力
を補正する窒素酸化物濃度演算部と、を有することを特
徴とする窒素酸化物濃度測定器の制御装置。
13. A first measuring chamber into which a gas to be measured is introduced via a first diffusion resistor, and all of the nitrogen oxides do not decompose oxygen in the gas to be measured from the first measuring chamber to the outside of the measuring chamber. A first oxygen ion pump cell for sufficiently pumping, a second measurement chamber into which gas is introduced from the first measurement chamber via a second diffusion resistor, and an inside and an outside of the second measurement chamber. A voltage corresponding to the concentration of nitrogen oxides is obtained by applying a voltage to the pair of electrodes, decomposing nitrogen oxides remaining in the second measurement chamber, and pumping out dissociated oxygen. And a second oxygen ion pump cell through which a “second oxygen ion pump current” flows. Further, the oxygen partial pressure in the first measurement chamber or the second measurement chamber is determined by An oxygen partial pressure detection cell to be detected, and the oxygen content The output of the detection cell and the output of the second oxygen ion pump cell are input, and when the output of the oxygen partial pressure detection cell changes, the nitrogen of the nitrogen oxide concentration measuring device based on the second oxygen ion pump current is changed. A control device for a nitrogen oxide concentration measuring device, comprising: a nitrogen oxide concentration calculating unit that corrects an oxide concentration detection output.
【請求項14】前記酸素分圧検知セルの出力が一定とな
るように、前記第1酸素イオンポンプセルを制御する酸
素分圧一定制御部と、 前記酸素分圧検知セルの出力の変化量と前記第2酸素イ
オンポンプ電流のオフセットの関係を予め記憶した記憶
部と、を有し、 前記酸素分圧検知セルの出力の変化量に応じて、前記記
憶部から所定のデータを読み出し、該データに基づいて
前記第2酸素イオンポンプ電流のオフセットの値を可変
することにより前記窒素酸化物濃度検出出力を補正する
ことを特徴とする請求項13記載の窒素酸化物濃度測定
器の制御装置。
14. An oxygen partial pressure constant control section for controlling said first oxygen ion pump cell so that an output of said oxygen partial pressure detection cell is constant, and a change amount of an output of said oxygen partial pressure detection cell. A storage unit in which the offset relationship of the second oxygen ion pump current is stored in advance, and reads out predetermined data from the storage unit in accordance with an amount of change in the output of the oxygen partial pressure detection cell, 14. The control device for a nitrogen oxide concentration measurement device according to claim 13, wherein the nitrogen oxide concentration detection output is corrected by varying an offset value of the second oxygen ion pump current based on the following.
JP22321198A 1997-08-06 1998-08-06 Nitrogen oxide concentration measuring device and control method of nitrogen oxide concentration measuring device Expired - Fee Related JP3501956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22321198A JP3501956B2 (en) 1997-08-06 1998-08-06 Nitrogen oxide concentration measuring device and control method of nitrogen oxide concentration measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22422597 1997-08-06
JP9-224225 1997-08-06
JP22321198A JP3501956B2 (en) 1997-08-06 1998-08-06 Nitrogen oxide concentration measuring device and control method of nitrogen oxide concentration measuring device

Publications (2)

Publication Number Publication Date
JPH11108887A true JPH11108887A (en) 1999-04-23
JP3501956B2 JP3501956B2 (en) 2004-03-02

Family

ID=26525337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22321198A Expired - Fee Related JP3501956B2 (en) 1997-08-06 1998-08-06 Nitrogen oxide concentration measuring device and control method of nitrogen oxide concentration measuring device

Country Status (1)

Country Link
JP (1) JP3501956B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281211A (en) * 2000-03-29 2001-10-10 Ngk Spark Plug Co Ltd Gas sensor control method and internal combustion engine control method
JP2002539448A (en) * 1999-03-16 2002-11-19 フオルクスワーゲン・アクチエンゲゼルシヤフト Calibration of NOx sensor
US6623617B2 (en) 1998-08-10 2003-09-23 Ngk Spark Plug Co., Ltd. Method and apparatus for measuring concentration of a component in a gas
JP2007225616A (en) * 2007-03-26 2007-09-06 Ngk Spark Plug Co Ltd Manufacturing method of gas sensor
JP2011038958A (en) * 2009-08-17 2011-02-24 Ngk Insulators Ltd Gas sensor
CN102667462A (en) * 2009-12-23 2012-09-12 依维柯发动机研究公司 Improved control method and device for oxygen pump cells of sensors in internal combustion engines or exhaust gas after treatment systems of such engines

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623617B2 (en) 1998-08-10 2003-09-23 Ngk Spark Plug Co., Ltd. Method and apparatus for measuring concentration of a component in a gas
JP2002539448A (en) * 1999-03-16 2002-11-19 フオルクスワーゲン・アクチエンゲゼルシヤフト Calibration of NOx sensor
JP2001281211A (en) * 2000-03-29 2001-10-10 Ngk Spark Plug Co Ltd Gas sensor control method and internal combustion engine control method
JP2007225616A (en) * 2007-03-26 2007-09-06 Ngk Spark Plug Co Ltd Manufacturing method of gas sensor
JP2011038958A (en) * 2009-08-17 2011-02-24 Ngk Insulators Ltd Gas sensor
US8398836B2 (en) 2009-08-17 2013-03-19 Ngk Insulators, Ltd. Gas sensor
CN102667462A (en) * 2009-12-23 2012-09-12 依维柯发动机研究公司 Improved control method and device for oxygen pump cells of sensors in internal combustion engines or exhaust gas after treatment systems of such engines
JP2013515894A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Improved control method and apparatus for an oxygen pump cell of a sensor in an internal combustion engine or an exhaust gas aftertreatment system of the engine
US9341593B2 (en) 2009-12-23 2016-05-17 Fpt Motorenforschung Ag Control method and device for oxygen pump cells of sensors in internal combustion engines or exhaust gas after treatment systems of such engines

Also Published As

Publication number Publication date
JP3501956B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
EP1074834B1 (en) Method and apparatus for measuring NOx gas concentration
US20010039825A1 (en) Gas concentration measuring apparatus compensating for error component of output signal
US6695964B1 (en) Method and apparatus for measuring NOx gas concentration
EP0816836B1 (en) Gas sensor, method for controlling gas sensor, gas concentration controller and method for controlling gas concentration
JP3372186B2 (en) Gas sensor correction method and gas concentration measurement system
JP3621827B2 (en) Method and apparatus for measuring nitrogen oxide concentration
JP3501956B2 (en) Nitrogen oxide concentration measuring device and control method of nitrogen oxide concentration measuring device
JP3589872B2 (en) Method and apparatus for detecting exhaust gas concentration
US7455761B2 (en) Nitrogen oxide sensor with attenuated oxygen dependence of the NOx signal
JP4516168B2 (en) Gas concentration measurement method
JP2000097903A (en) Apparatus and method for measuring gas concentration
JP7230211B2 (en) A method of operating a sensor system for detecting at least a portion of a measurement gas component having bound oxygen in the measurement gas
JP4153238B2 (en) Electrochemical oxygen pump cell and nitrogen oxide detector using the same
JP3519228B2 (en) NOx gas concentration detector
JP3635191B2 (en) Gas sensor
JP4272970B2 (en) Exhaust gas concentration detector
JP3328565B2 (en) NOx gas concentration detector
JP2002236107A (en) Gas detecting element and gas detector using the same
JP2000121604A (en) Gas sensor
JP3499421B2 (en) NOx gas concentration measuring method and NOx gas concentration detector
JP3314782B2 (en) Composite gas sensor
JP2004245680A (en) Gas sensor element manufacturing method and gas sensor element
US20230168222A1 (en) Sensor element and gas sensor
JP2002071641A (en) Complex gas detector
JP3643689B2 (en) NOx gas concentration detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees