JPH08332342A - Method and apparatus for removing nitrogen oxide - Google Patents

Method and apparatus for removing nitrogen oxide

Info

Publication number
JPH08332342A
JPH08332342A JP7168017A JP16801795A JPH08332342A JP H08332342 A JPH08332342 A JP H08332342A JP 7168017 A JP7168017 A JP 7168017A JP 16801795 A JP16801795 A JP 16801795A JP H08332342 A JPH08332342 A JP H08332342A
Authority
JP
Japan
Prior art keywords
electrode
nitrogen oxides
electrode layer
conductivity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7168017A
Other languages
Japanese (ja)
Inventor
Akinori Ishii
昭典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokushin Industries Corp
Hokushin Industry Co Ltd
Original Assignee
Hokushin Industries Corp
Hokushin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Industries Corp, Hokushin Industry Co Ltd filed Critical Hokushin Industries Corp
Priority to JP7168017A priority Critical patent/JPH08332342A/en
Publication of JPH08332342A publication Critical patent/JPH08332342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To remove nitrogen oxides efficiently with a simple apparatus by arranging an oxygen ion conductive solid electrolyte ceramic between perovskite type oxide ceramic electrodes, and applying voltage between the electrodes. CONSTITUTION: A treatment member 10 has tubular three-layer structure, and a first electrode 11 and a second electrode 12, which are made from LaFeO3 , are set on the inside and outside of a moving layer 13 made from stabilized zirconia. The central part of the treatment member 10 having the electrodes is covered with a cylindrical ceramic heater 14 with a temperature controller. When exhaust gas 16A containing nitrogen oxides is passed through the treatment member 10, the gas is discharged as exhaust gas 16B with nitrogen oxides removed. Nitrogen oxides such as NO and NO2 are decomposed on the first electrode 11 into N2 gas, and oxygen is taken into the moving layer 13 as oxygen ion. The oxygen ion taken into the moving layer 13 reaches the second electrode 12 and releases electrons to be discharged outside as oxygen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関燃
焼排気ガス、ゴミ焼却器の排気ガス等から有害物質であ
る窒素酸化物を除去する窒素酸化物の除去装置及び除去
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide removing apparatus and method for removing nitrogen oxides, which are harmful substances, from combustion engine exhaust gas from automobiles, waste incinerator exhaust gas and the like.

【0002】[0002]

【従来の技術】従来より、自動車、ゴミ焼却器、各種工
場の排ガスから窒素酸化物(N0x)を処理する方法が
種々検討されている。
2. Description of the Related Art Conventionally, various methods for treating nitrogen oxides (NOx) from exhaust gas from automobiles, garbage incinerators and various factories have been studied.

【0003】例えば、自動車の排気ガスについは、Rh
−Pt−Pdの三元触媒による接触分解による方法が知
られている。しかし、かかる三元触媒による接触分解で
は、例えば、併存する酸素濃度によりNOxを効率よく
処理する条件の設定範囲が異なってしまう等処理条件の
設定範囲が狭いので、完全な効果が期待できない。
For example, regarding exhaust gas of automobiles, Rh
A method of catalytic decomposition of -Pt-Pd using a three-way catalyst is known. However, in the catalytic decomposition with such a three-way catalyst, the setting range of the processing condition is narrow, for example, the setting range of the condition for efficiently processing NO x is different depending on the coexisting oxygen concentration, so that a complete effect cannot be expected.

【0004】そこで、NOxを効率よく除去する方法と
して、電気化学的反応を利用して電極上で窒素酸化物等
の物質を電解還元処理する方法が知られている(特開昭
53−51173号公報等参照)。
Therefore, as a method for efficiently removing NO x , a method is known in which a substance such as nitrogen oxide is electrolytically reduced on an electrode by utilizing an electrochemical reaction (Japanese Patent Laid-Open No. 53-51173). No.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た電気化学的反応を利用した処理は、電極間に保持され
た電解液の電気分解で生じる水素により窒素酸化物等を
処理するものである。従って、電極間に電解液を保持し
なければならないなど、装置構成が複雑になる等の問題
を有する。
However, the above-mentioned treatment utilizing the electrochemical reaction is to treat nitrogen oxides and the like with hydrogen generated by the electrolysis of the electrolytic solution held between the electrodes. Therefore, there is a problem that the device configuration becomes complicated, such as having to hold the electrolytic solution between the electrodes.

【0006】本発明はこのような事情に鑑み、簡単な装
置で効率よく窒素酸化物を除去することができる窒素酸
化物の除去装置及び除去方法を提供することを目的とす
る。
In view of such circumstances, an object of the present invention is to provide a nitrogen oxide removing apparatus and a nitrogen oxide removing method capable of efficiently removing nitrogen oxides with a simple apparatus.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明の第1の態様は、窒素酸化物を含有する被処理ガスの
流れと接触するよう配置され且つ電子伝導性及びイオン
伝導性を有するペロブスカイト型セラミックスからなる
第1の電極層と、この第1の電極に接触した状態で設け
られ且つ酸素イオン伝導性を有する固体電解質セラミッ
クスからなるイオン移動層と、このイオン移動層の前記
第1の電極とは反対側に接触した状態で設けられ且つ電
子伝導性及びイオン伝導性を有するペロブスカイト型セ
ラミックスからなる第2の電極層とからなる管状部材
と;この管状部材を所定の温度に保持する加熱手段と;
前記管状部材の前記第1の電極層及び前記第2の電極層
がそれぞれ陰極及び陽極となるよう電圧を印加する電源
と;を具備することを特徴とする窒素酸化物の除去装置
にある。
The first aspect of the present invention for achieving the above object is to have an electron conductivity and an ionic conductivity, which is arranged so as to be in contact with a flow of a gas to be treated containing nitrogen oxides. A first electrode layer made of perovskite-type ceramics, an ion transfer layer made of solid electrolyte ceramics provided in contact with the first electrode and having oxygen ion conductivity, and the first transfer layer of the ion transfer layer. A tubular member comprising a second electrode layer made of perovskite ceramics having electronic conductivity and ionic conductivity, which is provided in contact with the side opposite to the electrode; heating for maintaining the tubular member at a predetermined temperature Means;
And a power source for applying a voltage so that the first electrode layer and the second electrode layer of the tubular member serve as a cathode and an anode, respectively.

【0008】本発明の第2の態様は、第1の態様におい
て、前記処理部材が、前記第1の電極を内側とする管状
部材であることを特徴とする窒素酸化物の除去装置にあ
る。
A second aspect of the present invention is the nitrogen oxide removing apparatus according to the first aspect, characterized in that the treatment member is a tubular member having the first electrode inside.

【0009】本発明の第3の態様は、第4又は5の態様
において、前記固体電解質セラミックスが、前安定化ジ
ルコニアであることを特徴とする窒素酸化物の除去装置
にある。
A third aspect of the present invention is the nitrogen oxide removing apparatus according to the fourth or fifth aspect, characterized in that the solid electrolyte ceramic is pre-stabilized zirconia.

【0010】本発明の第4の態様は、電子伝導性及びイ
オン伝導性を有するペロブスカイト型セラミックスから
なる第1の電極層と、この第1の電極に接触した状態で
設けられ且つ酸素イオン伝導性を有する固体電解質セラ
ミックスからなるイオン移動層と、このイオン移動層の
前記第1の電極とは反対側に接触した状態で設けられ且
つ電子伝導性及びイオン伝導性を有するペロブスカイト
型セラミックスからなる第2の電極層とからなる処理部
材を所定の温度に保持するとともに前記第1の電極層及
び前記第2の電極層がそれぞれ陰極及び陽極となるよう
電圧を印加し、前記処理部材の前記第1の電極層に接触
するように窒素酸化物を含有する被処理ガスを流す、こ
とを特徴とする窒素酸化物の除去方法にある。
A fourth aspect of the present invention is to provide a first electrode layer made of a perovskite type ceramic having electron conductivity and ionic conductivity, and a layer provided in contact with the first electrode and having oxygen ion conductivity. And an ion transfer layer made of a solid electrolyte ceramics, which is provided on the opposite side of the ion transfer layer from the first electrode, and made of a perovskite type ceramics having electron conductivity and ion conductivity. While maintaining a temperature of the processing member including the electrode layer of (1) to a predetermined temperature, and applying a voltage so that the first electrode layer and the second electrode layer serve as a cathode and an anode, respectively. A method for removing nitrogen oxide is characterized in that a gas to be treated containing nitrogen oxide is flowed so as to come into contact with the electrode layer.

【0011】本発明の第5の態様は、第4の態様におい
て、前記処置部材を400℃〜1000℃に加熱するこ
とを特徴とする窒素酸化物の除去方法にある。本発明の
第6の態様は、第4又は5の態様において、前記固体電
解質セラミックスが、前安定化ジルコニアであることを
特徴とする窒素酸化物の除去方法にある。
A fifth aspect of the present invention is the method for removing nitrogen oxides according to the fourth aspect, characterized in that the treatment member is heated to 400 ° C to 1000 ° C. A sixth aspect of the present invention is the method for removing nitrogen oxides according to the fourth or fifth aspect, characterized in that the solid electrolyte ceramic is pre-stabilized zirconia.

【0012】ここで、本発明の第1及び第2の電極層に
用いる電子伝導性及びイオン伝導性を有するペロブスカ
イト型セラミックスは、一般式ABO3(A:希土類元
素、B:金属元素、O:酸素)で示される構造を有する
セラミックスであり、組成により種々の物質に対する分
解触媒活性を示すものである。本発明では、窒素酸化物
に対して選択的に触媒活性が高い化学組成を有するもの
を用いるのが好ましく、具体的には、LaMO3(M=
Mn,Fe,Ni,Rh)、La1-xxMnO3(A=
Ca,Sr,Ba,Hf)、La1-xxMn1 -yRuy
3(A=K,Pb)、La2Cu1-yZry4)などを用
いるのが好ましい。
Here, the perovskite type ceramics having electron conductivity and ionic conductivity used for the first and second electrode layers of the present invention is represented by the general formula ABO 3 (A: rare earth element, B: metal element, O: It is a ceramic having a structure represented by (oxygen) and exhibits decomposition catalytic activity for various substances depending on its composition. In the present invention, it is preferable to use one having a chemical composition that selectively has a high catalytic activity with respect to nitrogen oxides, and specifically, LaMO 3 (M =
Mn, Fe, Ni, Rh), La 1-x A x MnO 3 (A =
Ca, Sr, Ba, Hf), La 1-x A x Mn 1 -y Ru y O
It is preferable to use 3 (A = K, Pb), La 2 Cu 1-y Zr y O 4 ) or the like.

【0013】また、本発明で用いる酸素イオン伝導性を
有する固体電解質セラミックスとしては、イットリア
(Y23)、カルシア(Ca23)、Sc23、Yb2
3、Gd23などを7〜20重量%含有する、ジルコ
ニア(ZrO2)、セリア(CeO2)及びトリア(Th
2)などを挙げることができる。代表的には、イット
リアを含有するジルコニアである安定化ジルコニアが有
り、好適にはこの安定化ジルコニアを用いることができ
る。
The solid electrolyte ceramics having oxygen ion conductivity used in the present invention include yttria (Y 2 O 3 ), calcia (Ca 2 O 3 ), Sc 2 O 3 and Yb 2
Zirconia (ZrO 2 ), ceria (CeO 2 ), and thoria (Th) containing 7 to 20% by weight of O 3 , Gd 2 O 3 and the like.
O 2 ) and the like can be mentioned. Typically, there is stabilized zirconia which is yttria-containing zirconia, and this stabilized zirconia can be preferably used.

【0014】本発明において、窒素酸化物の除去速度
は、窒素酸化物の分解によって生じる酸素イオン
(O2-)の固体電解質中の移動速度に大きく左右され、
ほぼ一致する。ここで、下記に示される導電体を流れる
電流の式を用い、電子の電荷を1.6×10-19、アボ
ガドロ数を6.02×1023として、イオンの移動速度
(n×vの値)を求めた結果を下記表1に示す。
In the present invention, the removal rate of nitrogen oxides is greatly affected by the migration rate of oxygen ions (O 2− ) generated by the decomposition of nitrogen oxides in the solid electrolyte,
Almost match. Here, using the formula of the current flowing through the conductor shown below, the electron charge is 1.6 × 10 −19 , the Avogadro's number is 6.02 × 10 23 , and the moving speed of the ion (value of n × v) ) Is shown in Table 1 below.

【0015】[0015]

【数1】I=nvze I:電流 [A]又は[C/cm2] n:電荷の密度 [cm-3] v:電荷の速度 [cm/sec] z:荷電粒子の原子価 e:電子の電荷 [C]## EQU1 ## I = nvze I: current [A] or [C / cm 2 ] n: density of charge [cm −3 ] v: velocity of charge [cm / sec] z: valence of charged particles e: electron Charge [C]

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示される数値から明らかなように、
固体電解質中の酸素イオンの移動速度(n×v)は、電
流に比例することがわかる。一方、一般に、排気ガス中
の窒素酸化物の濃度は天然ガス燃焼で1600ppm、
自動車排気ガスで1200ppmであることから、50
mA以上の電流を固体電解質を挟む電極間に流す必要が
ある。
As is clear from the numerical values shown in Table 1,
It can be seen that the moving speed (n × v) of oxygen ions in the solid electrolyte is proportional to the current. On the other hand, in general, the concentration of nitrogen oxides in exhaust gas is 1600 ppm in natural gas combustion,
Since it is 1200ppm in automobile exhaust gas, 50
It is necessary to pass a current of mA or more between the electrodes sandwiching the solid electrolyte.

【0018】また、例えば、安定化ジルコニアセラミッ
クスの電気抵抗値は図2に示すようにその温度に大きく
依存する。電流、電圧及び抵抗は、オームの法則V=I
Rに従うから、200℃以下の温度では、約50mAの
電流を得るのに約1000Vの電圧が必要となり現実的
ではない。従って、装置全体の構成を考慮すると、固体
電解質は400℃〜1000℃に加熱するのが望まし
い。
Further, for example, the electric resistance value of the stabilized zirconia ceramics greatly depends on its temperature as shown in FIG. Current, voltage and resistance are Ohm's law V = I
According to R, at a temperature of 200 ° C. or lower, a voltage of about 1000 V is required to obtain a current of about 50 mA, which is not realistic. Therefore, it is desirable to heat the solid electrolyte to 400 ° C. to 1000 ° C. in consideration of the configuration of the entire device.

【0019】また、本発明で電源とは直流電源をいい、
固体電解質に、10〜100mA、好ましくは30〜6
0mA程度の電流を流す定電流電源、あるいは1〜10
0V、好ましくは3〜60Vの電圧を印加する定電圧電
源を用いればよい。
In the present invention, the power source means a DC power source,
10 to 100 mA, preferably 30 to 6 for the solid electrolyte
A constant current power source that supplies a current of about 0 mA, or 1 to 10
A constant voltage power source for applying a voltage of 0 V, preferably 3 to 60 V may be used.

【0020】[0020]

【作用】ペロブスカイト型セラミックス電極は、窒素酸
化物分解触媒活性を有し、NO、NO2などの窒素酸化
物を窒素と酸素とに分解する。かかる分解のメカニズム
は、(1) NOの吸着、(2) NOの解離、(3) N2、O2
脱離であると考えられる。また、本発明では、ペロブス
カイト型酸化物セラミックス電極の間に酸素イオン伝導
性固体電解質セラミックスを配置して電極間に電圧を印
加することで、ペロブスカイト型酸化物セラミックス電
極の触媒活性に加えて電子の酸素還元作用が加わるの
で、電極表面での窒素酸化物の分解がさらに促進され
る。
The perovskite type ceramic electrode has a catalytic activity for decomposing nitrogen oxides and decomposes nitrogen oxides such as NO and NO 2 into nitrogen and oxygen. The mechanism of such decomposition is considered to be (1) adsorption of NO, (2) dissociation of NO, and (3) desorption of N 2 and O 2 . Further, in the present invention, oxygen ion conductive solid electrolyte ceramics are arranged between the perovskite oxide ceramics electrodes and a voltage is applied between the electrodes, so that in addition to the catalytic activity of the perovskite oxide ceramics electrode Since the oxygen reduction action is added, the decomposition of nitrogen oxides on the electrode surface is further promoted.

【0021】本発明では、排気ガス中のNO、まず、ペ
ロブスカイト型酸化物との親和力により第1の電極(陰
極)表面に吸着される。次に、NO分子は、電極から供
給される電子により強制的に窒素ラジカル(N・)と酸
素イオン(O2-)とに解離される。窒素ラジカルの安定
性は非常に小さく、近傍の同種のラジカルと直ちに反応
してN2となり、電極から脱離する。一方、酸素イオン
は電極間の電位勾配に従って固体電解質中を第2の電極
(陽極)まで移動する。陽極に到達した酸素イオンは陽
極と電解質との界面で再び電子を放出してO2ガスとな
って電極外に放出される。第1の電極での窒素酸化物の
分解で生じた酸素イオンが固体電解質を介して第2の電
極側に引っ張られるので、さらに窒素酸化物の分解が促
進される。
In the present invention, NO in the exhaust gas, first, is adsorbed on the surface of the first electrode (cathode) by its affinity with the perovskite type oxide. Next, the NO molecules are forcibly dissociated into nitrogen radicals (N.) and oxygen ions (O 2- ) by the electrons supplied from the electrodes. The stability of the nitrogen radical is very small, and it immediately reacts with the same type of radical in the vicinity to become N 2 and is desorbed from the electrode. On the other hand, oxygen ions move to the second electrode (anode) in the solid electrolyte according to the potential gradient between the electrodes. The oxygen ions reaching the anode again release electrons at the interface between the anode and the electrolyte to become O 2 gas, which is released outside the electrode. Oxygen ions generated by the decomposition of nitrogen oxides at the first electrode are pulled to the second electrode side through the solid electrolyte, so that the decomposition of nitrogen oxides is further promoted.

【0022】このように、管状部材の一端から第1の電
極側に窒素酸化物を有する排気ガスを流すと、当該排気
ガス中の窒素酸化物は電気化学的に分解されて窒素ガス
となって他端から排出される。
As described above, when the exhaust gas containing nitrogen oxides is caused to flow from one end of the tubular member to the first electrode side, the nitrogen oxides in the exhaust gas are electrochemically decomposed into nitrogen gas. It is discharged from the other end.

【0023】[0023]

【実施例】以下に、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0024】図1には、一実施例に係る排気ガス処理装
置の概略を示す。図1に示すように、処理部材10は三
層構造の管状をなし、安定化ジルコニアからなる移動層
13の内外両面に、LaFeO3からなる第1電極11
及び第2電極12を設けたものである。具体的には、か
かる処理部材10は、内径7mm、外径10mm、長さ
300mmの安定化ジルコニアチューブ(ZrO2−1
0%Y23)の中央部分100mmの内外両面にLaF
eO3の電極層を焼成法により形成したものである。
FIG. 1 shows an outline of an exhaust gas treatment apparatus according to one embodiment. As shown in FIG. 1, the treatment member 10 has a three-layered tubular shape, and a first electrode 11 made of LaFeO 3 is formed on both inner and outer surfaces of a moving layer 13 made of stabilized zirconia.
And the second electrode 12 is provided. Specifically, the processing member 10 is a stabilized zirconia tube (ZrO 2 -1) having an inner diameter of 7 mm, an outer diameter of 10 mm, and a length of 300 mm.
0% Y 2 O 3 ) LaF on both inner and outer sides of the central part 100 mm
The electrode layer of eO 3 is formed by a firing method.

【0025】かかる処理部材10の電極を有する中央部
分は、温度コントローラ付きの円筒型セラミックヒータ
(内径15mm)14により覆われている。かかるヒー
タ14は、処置部材10を例えば400℃以上に加熱で
きる公知の加熱手段であれば特にその方式は限定され
ず、通常の電気ヒータ等を用いることもできる。
The central portion of the processing member 10 having the electrodes is covered with a cylindrical ceramic heater (inner diameter 15 mm) 14 with a temperature controller. The heater 14 is not particularly limited in its method as long as it is a known heating means capable of heating the treatment member 10 to, for example, 400 ° C. or higher, and an ordinary electric heater or the like may be used.

【0026】また、第1電極11及び第2の電極12に
は、定電流電源(ケスレー社製、モデル237)からな
る直流電源15が、第1電極11が陰極、第2電極12
が陽極となるように、プラチナ線を介して接続されてい
る。
A DC power source 15 composed of a constant current power source (model 237 manufactured by Kessley Co., Ltd.), a first electrode 11 is a cathode, and a second electrode 12 is a first electrode 11 and a second electrode 12.
Is connected through a platinum wire so that it becomes the anode.

【0027】処理部材10内に窒素酸化物を含有する排
気ガス16Aを流すと、窒素酸化物が除去された排気ガ
ス16Bとして排出される。排気ガス16A内のNO、
NO2などの窒素酸化物は、第1電極11上で分解さ
れ、N2ガスとなり、酸素は酸素イオンとして移動層1
3内に取り込まれる。同様に、排気ガス16A内に含ま
れる酸素ガスも還元され、酸素イオンとして移動層13
内に取り込まれる。そして、このように移動層13内に
取り込まれた酸素イオンは第2電極12に到達し、電子
を放出して酸素ガスとして外部へ排出される。
When the exhaust gas 16A containing nitrogen oxides is flown into the processing member 10, it is discharged as exhaust gas 16B from which nitrogen oxides have been removed. NO in the exhaust gas 16A,
Nitrogen oxides such as NO 2 are decomposed on the first electrode 11 to become N 2 gas, and oxygen is used as oxygen ions to form the moving layer 1.
Taken in 3. Similarly, the oxygen gas contained in the exhaust gas 16A is also reduced and converted into oxygen ions in the moving layer 13A.
Taken in. Then, the oxygen ions thus taken into the moving layer 13 reach the second electrode 12, release electrons, and are discharged to the outside as oxygen gas.

【0028】かかる排気ガス処理装置の処理部材10の
両端に、図示しないパイレックスガラス管を瞬間接着剤
(商品名:アロンセラミック)で接続し、出口端に図示
しないNO濃度計(ベスト測器製)を接続した。そし
て、ヒータ14を500℃に加熱し、入口端からN2
スをバランスガスとしてNOを500〜1200ppm
の濃度とした模擬排気ガスを、100ml/minで流
し、電極11及び12間に下記に示す電流を流して出口
端のNO濃度を測定したところ、下記表2に示す結果が
得られた。
Pyrex glass tubes (not shown) are connected to both ends of the processing member 10 of the exhaust gas treatment device with an instant adhesive (trade name: Aron Ceramic), and an NO concentration meter (made by Best Sokki Co., Ltd.) not shown is provided at the outlet end. Connected. Then, the heater 14 is heated to 500 ° C., and N 2 gas is used as a balance gas from the inlet end and NO is 500 to 1200 ppm.
The simulated exhaust gas having the concentration of 100 ml / min was passed, and the current shown below was passed between the electrodes 11 and 12 to measure the NO concentration at the outlet end, and the results shown in Table 2 below were obtained.

【0029】[0029]

【表2】 [Table 2]

【0030】以上説明した処理装置は、窒素酸化物を有
効に且つ連続的に除去し得るものであり、特に、自動車
の排気ガス処理、ゴミ焼却器の排気ガス処理等に用いて
好適なものである。また、例えば、自動車の排気ガス処
理に用いる場合には、特に二酸化炭素及び硫黄酸化物を
有効に処理するように三元触媒を用いた処理装置等と併
用することもできる。
The treatment apparatus described above is capable of effectively and continuously removing nitrogen oxides, and is particularly suitable for use in automobile exhaust gas treatment, garbage incinerator exhaust gas treatment and the like. is there. Further, for example, when it is used for exhaust gas treatment of an automobile, it can be used together with a treatment device using a three-way catalyst so as to effectively treat carbon dioxide and sulfur oxides.

【0031】かかる処理装置は、窒素酸化物を電気化学
的に処理するものであり、処理される排気ガスの種類、
処理条件等に大きく左右されることなく窒素酸化物を有
効に処理できるものである。
Such a treatment apparatus is for treating nitrogen oxides electrochemically, and is a kind of exhaust gas to be treated.
The nitrogen oxide can be effectively treated without being largely affected by the treatment conditions and the like.

【0032】なお、上記実施例では処理部材を管状にし
たが、被処理ガスを第1の電極に有効に接触し得るもの
であれば特に限定されず、例えば、多層構造にして第1
の電極に接触する流路に被処理ガスを流すようにしても
よい。
Although the treatment member is tubular in the above embodiment, it is not particularly limited as long as it can effectively contact the gas to be treated with the first electrode.
The gas to be processed may be caused to flow in the flow path that comes into contact with the electrode.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
排気ガス中の窒素酸化物を有効に且つ連続的に処理する
ことができる。
As described above, according to the present invention,
The nitrogen oxides in the exhaust gas can be treated effectively and continuously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る排気ガス処理装置の概
略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing an exhaust gas treatment device according to an embodiment of the present invention.

【図2】ジルコニアセラミックスの電気抵抗値と温度と
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the electric resistance value of zirconia ceramics and temperature.

【符号の説明】[Explanation of symbols]

10 処理部材 11 第1電極 12 第2電極 13 移動層 14 ヒータ 15 直流電源 16A,16B 排気ガス 10 Processing Member 11 First Electrode 12 Second Electrode 13 Moving Layer 14 Heater 15 DC Power Supply 16A, 16B Exhaust Gas

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含有する被処理ガスの流れ
と接触するよう配置され且つ電子伝導性及びイオン伝導
性を有するペロブスカイト型セラミックスからなる第1
の電極層と、この第1の電極に接触した状態で設けられ
且つ酸素イオン伝導性を有する固体電解質セラミックス
からなるイオン移動層と、このイオン移動層の前記第1
の電極とは反対側に接触した状態で設けられ且つ電子伝
導性及びイオン伝導性を有するペロブスカイト型セラミ
ックスからなる第2の電極層とからなる処理部材と;こ
の処理部材を所定の温度に保持する加熱手段と;前記処
理部材の前記第1の電極層及び前記第2の電極層がそれ
ぞれ陰極及び陽極となるよう電圧を印加する電源と;を
具備することを特徴とする窒素酸化物の除去装置。
1. A first perovskite ceramic which is arranged so as to come into contact with a flow of a gas to be treated containing nitrogen oxides and which has electron conductivity and ion conductivity.
Electrode layer, an ion transfer layer which is provided in contact with the first electrode and is made of solid electrolyte ceramics having oxygen ion conductivity, and the first transfer layer of the ion transfer layer.
A treatment member comprising a second electrode layer made of perovskite-type ceramics, which is provided in contact with the other side of the electrode and has electron conductivity and ionic conductivity; and this treatment member is kept at a predetermined temperature. A heating means; and a power supply for applying a voltage so that the first electrode layer and the second electrode layer of the processing member serve as a cathode and an anode, respectively; .
【請求項2】 請求項1において、前記処理部材が、前
記第1の電極を内側とする管状部材であることを特徴と
する窒素酸化物の除去装置。
2. The nitrogen oxide removing apparatus according to claim 1, wherein the processing member is a tubular member having the first electrode inside.
【請求項3】 請求項1又は2において、前記固体電解
質セラミックスが、前安定化ジルコニアであることを特
徴とする窒素酸化物の除去装置。
3. The nitrogen oxide removing apparatus according to claim 1 or 2, wherein the solid electrolyte ceramic is pre-stabilized zirconia.
【請求項4】 電子伝導性及びイオン伝導性を有するペ
ロブスカイト型セラミックスからなる第1の電極層と、
この第1の電極に接触した状態で設けられ且つ酸素イオ
ン伝導性を有する固体電解質セラミックスからなるイオ
ン移動層と、このイオン移動層の前記第1の電極とは反
対側に接触した状態で設けられ且つ電子伝導性及びイオ
ン伝導性を有するペロブスカイト型セラミックスからな
る第2の電極層とからなる処理部材を所定の温度に保持
するとともに前記第1の電極層及び前記第2の電極層が
それぞれ陰極及び陽極となるよう電圧を印加し、 前記処理部材の前記第1の電極層に接触するように窒素
酸化物を含有する被処理ガスを流す、ことを特徴とする
窒素酸化物の除去方法。
4. A first electrode layer made of perovskite type ceramics having electronic conductivity and ionic conductivity,
The ion transfer layer is provided in contact with the first electrode and is made of a solid electrolyte ceramic having oxygen ion conductivity, and is provided in contact with the ion transfer layer opposite to the first electrode. Further, a treatment member including a second electrode layer made of perovskite-type ceramics having electron conductivity and ion conductivity is maintained at a predetermined temperature, and the first electrode layer and the second electrode layer respectively serve as a cathode and a cathode. A method for removing nitrogen oxides, wherein a voltage is applied so as to serve as an anode, and a gas to be treated containing nitrogen oxides is caused to flow so as to come into contact with the first electrode layer of the treatment member.
【請求項5】 請求項4において、前記処置部材を40
0℃〜1000℃に加熱することを特徴とする窒素酸化
物の除去方法。
5. The treatment member according to claim 4, wherein
A method for removing nitrogen oxides, which comprises heating to 0 ° C to 1000 ° C.
【請求項6】 請求項4又は5において、前記固体電解
質セラミックスが、前安定化ジルコニアであることを特
徴とする窒素酸化物の除去方法。
6. The method for removing nitrogen oxide according to claim 4, wherein the solid electrolyte ceramic is pre-stabilized zirconia.
JP7168017A 1995-06-09 1995-06-09 Method and apparatus for removing nitrogen oxide Pending JPH08332342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7168017A JPH08332342A (en) 1995-06-09 1995-06-09 Method and apparatus for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7168017A JPH08332342A (en) 1995-06-09 1995-06-09 Method and apparatus for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH08332342A true JPH08332342A (en) 1996-12-17

Family

ID=15860269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7168017A Pending JPH08332342A (en) 1995-06-09 1995-06-09 Method and apparatus for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH08332342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078031A1 (en) * 2002-03-15 2003-09-25 National Institute Of Advanced Industrial Science And Technology Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP2007283208A (en) * 2006-04-17 2007-11-01 Nippon Soken Inc Electrochemical catalyst for exhaust gas cleaning
US20100287916A1 (en) * 2007-10-08 2010-11-18 Saint-Gobain Centre De Recherches Et D'etudes Eur. Purification structure incorporating a biased electrochemical catalyst system
JP2012157848A (en) * 2011-02-03 2012-08-23 Sumitomo Electric Ind Ltd Gas decomposing apparatus, power generator, and method of decomposing gas
JP2013078721A (en) * 2011-10-03 2013-05-02 Japan Fine Ceramics Center Nitrogen oxide decomposition electrode and use thereof
CN110459798A (en) * 2019-07-17 2019-11-15 浙江锋锂新能源科技有限公司 The sulfide solid electrolyte and preparation method and solid state battery of core-shell structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078031A1 (en) * 2002-03-15 2003-09-25 National Institute Of Advanced Industrial Science And Technology Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP2007283208A (en) * 2006-04-17 2007-11-01 Nippon Soken Inc Electrochemical catalyst for exhaust gas cleaning
US20100287916A1 (en) * 2007-10-08 2010-11-18 Saint-Gobain Centre De Recherches Et D'etudes Eur. Purification structure incorporating a biased electrochemical catalyst system
US8465631B2 (en) * 2007-10-08 2013-06-18 Saint-Gobain Centre De Recherches Et D'etudes Europeen Purification structure incorporating a biased electrochemical catalyst system
JP2012157848A (en) * 2011-02-03 2012-08-23 Sumitomo Electric Ind Ltd Gas decomposing apparatus, power generator, and method of decomposing gas
JP2013078721A (en) * 2011-10-03 2013-05-02 Japan Fine Ceramics Center Nitrogen oxide decomposition electrode and use thereof
CN110459798A (en) * 2019-07-17 2019-11-15 浙江锋锂新能源科技有限公司 The sulfide solid electrolyte and preparation method and solid state battery of core-shell structure

Similar Documents

Publication Publication Date Title
US4253925A (en) Method and apparatus for catalytic dissociation of NO
JP2006198563A (en) Solid carbon decomposition type ceramic chemical reaction device
EP1287242A1 (en) Apparatus for removing soot and no x? in exhaust gas from diesel engines
KR20100064378A (en) Purification structure incorporating a biased electrochemical catalyst system
JP4217457B2 (en) Nitrogen oxide decomposing element and nitrogen oxide decomposing apparatus provided with the same
JPH0866621A (en) Method for removing nitrogen oxide
JPH08332342A (en) Method and apparatus for removing nitrogen oxide
US6886328B2 (en) Exhaust gas processing system
JP3657542B2 (en) Chemical reactor
JP3626971B2 (en) Chemical reactor
JP2000140566A (en) Gas purification and gas purification apparatus
JP2003265926A (en) Chemical reactor for cleaning nitrogen oxide and method for cleaning nitrogen oxide
JP2008026299A (en) Gas sensor
US6331232B1 (en) Device and method for reduction of oxides of nitrogen
JP6418587B2 (en) Nitrogen oxide concentration measurement and ammonia slip detection sensor
JP4201319B2 (en) Electrochemical cell type chemical reaction system
JP2003047827A (en) Waste gas cleaning element
JPH0564724A (en) Method and apparatus for treating exhaust gas using solid electrolyte
JP2004058029A (en) Energy saving electrochemical reaction system and activation method therefor
JPH0999213A (en) Element for purifying waste gas and purifying method of nitrogen oxides
JP3124472B2 (en) Electrochemical element, electrochemical device and processing device using the same
JPS6178421A (en) Removal of nitrogen oxide
JP4132893B2 (en) Electrode material for chemical reactor
JPH09299749A (en) Exhaust gas purifying element, production thereof and method for purifying nitrogen oxides
JPH04131429U (en) Nitrogen oxide removal equipment