JPH0827501A - Powder compacting method - Google Patents

Powder compacting method

Info

Publication number
JPH0827501A
JPH0827501A JP6188873A JP18887394A JPH0827501A JP H0827501 A JPH0827501 A JP H0827501A JP 6188873 A JP6188873 A JP 6188873A JP 18887394 A JP18887394 A JP 18887394A JP H0827501 A JPH0827501 A JP H0827501A
Authority
JP
Japan
Prior art keywords
powder
molding
pellets
die
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6188873A
Other languages
Japanese (ja)
Inventor
Wataru Tsuchiya
亙 土屋
Etsuo Otsuki
悦夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6188873A priority Critical patent/JPH0827501A/en
Publication of JPH0827501A publication Critical patent/JPH0827501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a small-size thin-walled product of complicated shape at a low cost by subjecting pellets, prepared by mixing a binder composed essentially of thermoplastic resin with a metal or ceramic powder, to heating and then to compacting in a die. CONSTITUTION:A sintered compact is produced by compacting a metal powder or a ceramic powder and then sintering the resultant green compact. In the method of producing this sintered compact, a binder composed essentially of thermoplastic resin is mixed with the powder and the resultant mixture is kneaded and pelletized. The resulting pellets are heated in a heating zone 2 using infrared rays and formed into flowable state, and they are then conveyed by means of a conveyor 3 and introduced via an arm 4 into a compacting die 5, where these pellets 1 are compacted into the desired shape. Subsequently, the resultant green compact is cooled and taken out from the die 5 and then degreased and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金及び窯業分野
での粉末の成形方法に関し、通常の成形方法の圧縮成形
では製造困難な肉薄で複雑形状の成形体を低コストで成
形する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding powder in the fields of powder metallurgy and ceramics, and relates to a method for molding a thin and complex molded body which is difficult to manufacture by compression molding of a normal molding method at low cost. .

【0002】[0002]

【従来の技術】通常、粉末冶金及び窯業の分野では、以
下のような方法で製品を得ている。すなわち、調整され
た原料粉末に少量のバインダーを加え所望の形状に成形
用金型を用いて圧縮成形し、これを焼結することにより
金属またはセラミック焼結体を得る方法であり、これは
単純な形状の焼結体を安価、大量に製造するために最も
適切な方法として工業的に広く用いられている。しか
し、圧縮成形で製造可能な製品形状は、粉末を圧縮成形
用金型に充填する必要から、比較的単純な形状に制限さ
れ、また得られる成形体の強度が充分ではないため、強
度を維持するために、ある一定以上の肉厚を必要とする
という制限があった。また、粉末と金型内壁との摩擦に
起因して、成形体各部の密度が不均一となり、焼結時に
変形してしまう問題もある。
2. Description of the Related Art Usually, in the fields of powder metallurgy and ceramics, products are obtained by the following methods. That is, it is a method of obtaining a metal or ceramic sintered body by adding a small amount of binder to the adjusted raw material powder, compression-molding it into a desired shape using a molding die, and sintering it. It is widely used industrially as the most suitable method for inexpensively mass-producing large-sized sintered bodies. However, the product shape that can be produced by compression molding is limited to a relatively simple shape because it is necessary to fill powder into the compression molding die, and the strength of the resulting molded body is not sufficient, so the strength is maintained. In order to do so, there was a limitation that a certain thickness or more was required. Further, due to the friction between the powder and the inner wall of the mold, the density of each part of the molded body becomes non-uniform, and there is a problem that it is deformed during sintering.

【0003】近年、粉末射出成形法と呼ばれる製造方法
が注目を集めている。粉末射出成形法とは、原料粉末に
10〜20重量%程度の熱可塑性樹脂や可塑剤等からな
るバインダーを加え、混練した後、射出成形を行なって
成形体を得、ついで加熱等の操作によりバインダーを除
去する脱脂工程を経て焼結し、必要とする形状を持つ金
属、もしくはセラミック焼結体を得る方法である。これ
は、プラスチックの分野で一般的に行われている射出成
形技術を応用したもので、一般的な圧縮成形では困難な
複雑形状の製品が高い寸法精度で量産性良く得られると
いう利点がある。また、成形体には圧縮成形と比較して
多量のバインダーを含んでいるため成形体強度に優れ、
圧縮成形では保形困難な肉薄形状の形状の製品が得られ
るという利点がある。
In recent years, a manufacturing method called a powder injection molding method has attracted attention. The powder injection molding method is to add a binder composed of about 10 to 20% by weight of a thermoplastic resin or a plasticizer to a raw material powder, knead the mixture, and then perform injection molding to obtain a molded body, and then perform heating or the like. This is a method of obtaining a metal or ceramic sintered body having a required shape by sintering through a degreasing step of removing the binder. This is an application of an injection molding technique generally used in the field of plastics, and has an advantage that a product having a complicated shape, which is difficult to obtain by general compression molding, can be obtained with high dimensional accuracy and mass productivity. Also, since the molded body contains a large amount of binder as compared with compression molding, the molded body has excellent strength,
The compression molding has an advantage that a product having a thin shape whose shape is difficult to be obtained can be obtained.

【0004】しかし、射出成形の際、必要とする製品部
品の他に粉末とバインダーの混練物を製品形成部分に導
くための流路にあたるランナやスプルと呼ばれる部分も
同時に成形される。このランナやスプルは、混練物を滞
りなく製品形成部分に導くため、通常最低でも4mmの
肉厚(流路の間隙長)が必要であり、以下に記すような
問題点があった。
However, in injection molding, in addition to the required product parts, a part called a runner or sprue which is a flow path for guiding the kneaded product of the powder and the binder to the product forming part is also molded at the same time. Since the runner and sprue guide the kneaded material to the product-forming portion without delay, it is usually necessary to have a wall thickness of at least 4 mm (gap length of the flow path), which causes the following problems.

【0005】製品部分に対して比較的重量が大きいラ
ンナやスプルのような製品にならない部分が生じて混練
物の収率が低下してコストアップになる。の欠点を
解消するために、ランナやスプルを解砕して再び成形用
原料として用いることが行われる。しかし、成形機内で
受けた熱履歴により、混練物中のバインダーが劣化し、
成形体強度が低下するため、おのずとランナやスプルの
再利用回数には限界があり、の問題の根本的解決には
ならない。また、活性な金属粉末の場合、成形の熱履歴
により酸化が進み、ランナやスプルの再利用が不可能な
場合もある。成形サイクルが長くなり、コストアップ
になる。成形工程での費用は、ほぼ成形サイクルにより
決定される。これは射出成形の場合、混練物が冷却され
取り出しに必要な強度を得るまでの時間で決定されるの
で、成形体の製品部分が薄い場合でも、肉厚のランナや
スプルが冷却されるまでに時間を要し、その時間は最低
でも15秒以上かかる。これに対し圧縮成形の成形サイ
クルは最大でも数秒であり、圧縮成形と比較して成形工
程におけるコストが大である。
[0007] Some parts, such as runners and sprues, which are relatively heavy with respect to the product part, do not become a product, and the yield of the kneaded product decreases, resulting in an increase in cost. In order to eliminate the disadvantage of (1), the runner or sprue is crushed and used again as a raw material for molding. However, the heat history received in the molding machine deteriorates the binder in the kneaded material,
Since the strength of the molded body decreases, the number of times that the runner or sprue can be reused is naturally limited, and this is not a fundamental solution to the problem. Further, in the case of active metal powder, oxidation may proceed due to the heat history of molding, and it may be impossible to reuse the runner and sprue. The molding cycle becomes long and the cost increases. The cost of the molding process is largely determined by the molding cycle. In the case of injection molding, this is determined by the time until the kneaded product is cooled and the strength required for taking out is obtained, so even if the product part of the molded product is thin, it will be necessary to cool the thick runner and sprue. It takes time, and at least 15 seconds or more. On the other hand, the molding cycle of compression molding is several seconds at the maximum, and the cost in the molding process is higher than that of compression molding.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上述
した問題点を解決した、粉末冶金及び窯業の分野におけ
る粉末の成形方法に関し、特に小型、肉薄で複雑形状の
製品を低コストで得られる成形方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention relates to a powder molding method in the fields of powder metallurgy and ceramics, which solves the above-mentioned problems, and particularly, to obtain a product having a small size, a thin thickness, and a complicated shape at a low cost. It is to provide a molding method according to the present invention.

【0007】[0007]

【課題を解決するための手段】本発明によれば、金属粉
末または、セラミック粉末を成形、焼結することによ
り、焼結体を得る製造方法において、前記粉末に対して
熱可塑性樹脂を主成分とするバインダを混合、混練し、
造粒したペレットを用い、このペレットを加熱してから
金型内で圧縮成形することにより、成形体を得ることを
特徴とする成形方法が得られる。
According to the present invention, in a method for producing a sintered body by molding and sintering a metal powder or a ceramic powder, a thermoplastic resin is the main component of the powder. Mix and knead the binder to
A molding method characterized in that a molded body is obtained by using granulated pellets and heating the pellets and then compression-molding them in a mold.

【0008】[0008]

【作用】本発明者は、上述した粉末射出成形法の欠点を
解消すべく、成形方法について鋭意検討の結果、粉末射
出成形法での利点を残しながら射出成形機を用いない成
形方法について検討することにより、本発明を成すに到
った。
The present inventor, as a result of extensive studies on the molding method in order to eliminate the above-mentioned drawbacks of the powder injection molding method, has studied a molding method which does not use an injection molding machine while leaving the advantages of the powder injection molding method. As a result, the present invention has been accomplished.

【0009】本発明の成形方法は、以下の通りである。
金属粉末または、セラミック粉末と有機高分子を主成分
とするバインダーを混合、混練した混練物を、所望の成
形体に適した大きさに造粒したペレットを作製する。次
に、このペレットを加熱して流動可能な状態として、金
型内に入れ、通常の圧縮成形により混練物を金型内の製
品形成部分に充填し、冷却させて金型より取り出す方法
である。
The molding method of the present invention is as follows.
Metal powder or ceramic powder and a binder having an organic polymer as a main component are mixed and kneaded, and a kneaded product is granulated into a size suitable for a desired molded body to prepare pellets. Next, the pellets are heated to make them flowable, placed in a mold, and the kneaded product is filled into a product forming portion in the mold by ordinary compression molding, cooled, and taken out from the mold. .

【0010】本発明では、通常の圧縮成形と比較して、
原料粉末の金型内での流動性に優れているため、複雑形
状の成形体が得られ、また、圧縮成形と比較して粉末に
対して多量のバインダーが添加されているため成形体強
度に優れた肉薄の成形体が得られ、上記の粉末射出成形
法の利点を持つことができる。また、本発明では、粉末
射出成形法では必要なランナやスプルを必要としないた
め、上記の粉末射出成形法の欠点である圧縮成形と比較
してコストが高いという問題点が解消される。
In the present invention, as compared with ordinary compression molding,
The fluidity of the raw material powder in the mold is excellent, so a compact shaped body can be obtained, and since a large amount of binder is added to the powder compared to compression molding, the strength of the shaped body is improved. An excellent thin molded body can be obtained and the advantages of the powder injection molding method described above can be obtained. Further, in the present invention, the runner and sprue necessary for the powder injection molding method are not required, so that the problem that the cost is higher than that of the compression molding, which is a drawback of the powder injection molding method, is solved.

【0011】[0011]

【実施例】以下、本発明を実施例を用いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0012】(実施例1)図1は、本実施例1、2と比
較例1、2で用いられる成形装置の概略図を示す。図1
に示すごとく、混練して造粒されたペレット1は、赤外
線を用いた加熱部2で加熱されるようになっており、コ
ンベア3で移動する。このペレットを圧縮成形金型5の
中に入れるためのアーム4が設けられている。図2は、
本実施例1、2と比較例2で成形される成形体の斜視図
で肉厚0.2mmで、外側が15×15×10mmの枡
状の形状である。
(Example 1) FIG. 1 is a schematic view of a molding apparatus used in Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
As shown in (1), the pellets 1 kneaded and granulated are heated by the heating unit 2 using infrared rays, and moved by the conveyor 3. An arm 4 is provided for putting the pellets into a compression molding die 5. Figure 2
In the perspective views of the molded products molded in Examples 1 and 2 and Comparative Example 2, the thickness is 0.2 mm and the outside has a box-like shape of 15 × 15 × 10 mm.

【0013】原料粉末として平均粒径1.2μmのアル
ミナ粉末を調整し、アルミナ粉末86重量%に対し、バ
インダーとして低密度ポリエチレン7重量%、パラフィ
ンワックス6重量%、ジオクチルフタレート1重量%を
拡散用の回転翼を有する混合機で混合し、φ5mmの口
金と切断機構を取り付けた押出成形機で100℃で混
練、押出、切断することでφ5mm×8.2mmのペレ
ットを得た。
Alumina powder having an average particle diameter of 1.2 μm was prepared as a raw material powder, and 7% by weight of low-density polyethylene, 6% by weight of paraffin wax and 1% by weight of dioctyl phthalate were used as a binder for 86% by weight of alumina powder for diffusion. Were mixed with a mixer having a rotary blade of No. 5 and kneaded, extruded and cut at 100 ° C. with an extruder equipped with a φ5 mm die and a cutting mechanism to obtain pellets of φ5 mm × 8.2 mm.

【0014】このペレットを用い、図1に示す装置を用
いペレットを80℃に熱し金型5で圧縮成形することに
より図2に示す成形体を得た。
Using this pellet, the pellet shown in FIG. 2 was obtained by heating the pellet to 80 ° C. using the apparatus shown in FIG.

【0015】(比較例1)実施例1で用いた粉末を用
い、この粉末にバインダーとしてポリビニールアルコー
ル10wt%水溶液を3wt%添加し、自動乳鉢で混合
して成形用粉末を得た。この粉末を図1の圧縮成形金型
5を用いて圧縮成形を検討したが、成形体強度が低いた
め保形性に難があり所望の形状の成形体が得られなかっ
た。
(Comparative Example 1) Using the powder used in Example 1, 3 wt% of a 10 wt% aqueous solution of polyvinyl alcohol was added as a binder to the powder and mixed in an automatic mortar to obtain a molding powder. This powder was examined for compression molding using the compression molding die 5 of FIG. 1, but the shape retention was difficult due to the low strength of the molded body, and a molded body of the desired shape could not be obtained.

【0016】実施例1と比較例1より、本発明により通
常の圧縮成形が不可能な形状を成形可能とすることがわ
かる。
From Example 1 and Comparative Example 1, it can be seen that the present invention makes it possible to form a shape that cannot be subjected to ordinary compression molding.

【0017】(実施例2)原料粉末として平均粒径10
μmのチタン粉末を調整し、チタン粉末87重量%に対
し、バインダーとしてパラフィンワックス13重量%を
拡散用の回転翼を有する混合機で混合し、φ5mmの口
金と切断機構を取り付けた押出成形機で100℃で混
練、押出、切断することでφ5mm×8.2mmのペレ
ットを得た。
(Example 2) As a raw material powder, an average particle size of 10
Titanium powder of μm was prepared, and 13% by weight of paraffin wax as a binder was mixed with 87% by weight of titanium powder with a mixer having a rotary blade for diffusion, and the extruder was equipped with a φ5 mm die and a cutting mechanism. By kneading, extruding and cutting at 100 ° C., pellets of φ5 mm × 8.2 mm were obtained.

【0018】このペレットを用い、図1に示す装置を用
いペレットを80℃に熱し図2に示すような成形体が得
られる金型5で圧縮成形することにより成形体を得た。
Using the pellets, the pellets were heated to 80 ° C. by using the apparatus shown in FIG. 1 and compression-molded with a mold 5 which gives a molded article as shown in FIG. 2 to obtain a molded article.

【0019】この成形体を50℃/hrで昇温し、30
0℃で2時間保持することで脱脂し、その後、1100
℃で焼結した。なお、脱脂、焼結は真空中で行った。得
られた焼結体の酸素分析を行ったところ700ppmで
あった。
The temperature of this molded body was raised at 50 ° C./hr to 30
Degreasing by holding at 0 ℃ for 2 hours, then 1100
Sintered at ° C. Degreasing and sintering were performed in vacuum. When the oxygen analysis of the obtained sintered body was performed, it was 700 ppm.

【0020】(比較例2)実施例2で用いたチタン粉末
98wt%に対して流動パラフィン2wt%を自動乳鉢
にて混合して成形用粉末を得た。この粉末を図1の圧縮
成形金型5を用いて圧縮成形を検討したが、成形体強度
が低いため保形性に難があり所望の形状の成形体が得ら
れなかった。
Comparative Example 2 Molding powder was obtained by mixing 2 wt% of liquid paraffin with 98 wt% of titanium powder used in Example 2 in an automatic mortar. This powder was examined for compression molding using the compression molding die 5 of FIG. 1, but the shape retention was difficult due to the low strength of the molded body, and a molded body of the desired shape could not be obtained.

【0021】次に、実施例2で作製したペレットを用
い、図2に示した成形体が得られるような射出成形用金
型を用い120℃で射出成形した。得られた成形体のス
プルとランナを解砕して再び同条件で射出成形した。得
られた成形体の升状の製品部分を実施例2と同様に脱
脂、焼結することにより焼結体を得た。得られた焼結体
の酸素分析を行ったところ2000ppmであった。
Next, the pellets produced in Example 2 were injection-molded at 120 ° C. by using an injection-molding die which can obtain the molded body shown in FIG. The sprue and runner of the obtained molded product were disintegrated and injection molded again under the same conditions. The box-shaped product portion of the obtained molded body was degreased and sintered in the same manner as in Example 2 to obtain a sintered body. When the oxygen analysis of the obtained sintered body was performed, it was 2000 ppm.

【0022】実施例2と比較例2より、本発明により通
常の圧縮成形が不可能な形状を成形可能とすることがわ
かる。また、活性金属粉末に対して粉末射出成形法を適
用する場合、ランナやスプルの再利用が困難であり、本
発明と比較して原料粉末費等のコストが大幅に増加する
ことがわかる。
From Example 2 and Comparative Example 2, it can be seen that the present invention makes it possible to form a shape that cannot be subjected to ordinary compression molding. Further, when the powder injection molding method is applied to the active metal powder, it is difficult to reuse the runner and the sprue, and it can be seen that the cost such as the raw material powder cost is significantly increased as compared with the present invention.

【0023】なお、本実施例では、原料粉末としてアル
ミナ粉末とTi粉末を用いたが他のセラミック粉末や金
属粉末でも適用可能なことは明らかである。
Although alumina powder and Ti powder were used as the raw material powders in this embodiment, it is clear that other ceramic powders or metal powders can also be applied.

【0024】また、バインダーの主成分である熱可塑性
樹脂も各種適用でき、一例をあげれば各種ポリオレフィ
ンや各種アクリル系樹脂が適用可能であり、さらにワッ
クス類や可塑剤などが必要に応じて使用可能である。
Various kinds of thermoplastic resins, which are the main components of the binder, can be applied. For example, various polyolefins and various acrylic resins can be applied, and waxes and plasticizers can be used as required. Is.

【0025】本発明でのバインダー添加量であるが、少
ない場合は金型に充填するに必要な流動性が得られなか
ったり、必要な成形体強度が得られなかったりし、多い
場合は焼結時にバインダーの分解ガスが多量に発生して
焼結体に膨れ等の外観不良を生じる。バインダー添加量
は、使用粉末粒径、粒度分布、形状により異なり、粉末
に対して20〜55体積%程度で、好ましくは30〜5
0体積%程度である。
With respect to the amount of binder added in the present invention, if the amount is small, the fluidity required for filling the mold cannot be obtained, or the required molded body strength cannot be obtained. At the same time, a large amount of binder decomposition gas is generated, which causes a defective appearance such as swelling in the sintered body. The amount of the binder added varies depending on the particle size of the powder used, the particle size distribution, and the shape, and is about 20 to 55% by volume of the powder, preferably 30 to 5%.
It is about 0% by volume.

【0026】[0026]

【発明の効果】以上詳しく説明したように、本発明によ
れば、通常の成形方法の圧縮成形では製造困難である肉
薄で複雑形状の成形体が得られ、また、その成形コスト
は粉末射出成形よりもはるかに低く、本発明による成形
は従来の方法と比較して製品形状の自由度の増加による
高付加価値化と費用削減の効果は大きく工業上きわめて
重要である。
As described above in detail, according to the present invention, it is possible to obtain a thin molded article having a complicated shape which is difficult to manufacture by the compression molding of the ordinary molding method, and the molding cost thereof is powder injection molding. Much lower than the conventional method, the molding according to the present invention has a great effect of high added value and cost reduction by increasing the degree of freedom of the product shape as compared with the conventional method, and is extremely important industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2及び比較例1、2に係る成形装置
の概略図。
FIG. 1 is a schematic view of a molding apparatus according to Examples 1 and 2 and Comparative Examples 1 and 2.

【図2】実施例1、2と比較例1、2で成形される成形
体の斜視図。
FIG. 2 is a perspective view of molded bodies molded in Examples 1 and 2 and Comparative Examples 1 and 2.

【符号の説明】 1 ペレット 2 加熱部 3 コンベア 4 アーム 5 (圧縮成形)金型[Explanation of reference symbols] 1 pellet 2 heating unit 3 conveyor 4 arm 5 (compression molding) mold

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末またはセラミック粉末を成形、
焼結することにより、焼結体を得る製造方法において、
前記粉末に対して熱可塑性樹脂を主成分とするバインダ
を混合、混練、造粒して作製したペレットを加熱して、
金型内で圧縮成形することを特徴とする粉末の成形方
法。
1. Molding metal powder or ceramic powder,
In a manufacturing method for obtaining a sintered body by sintering,
Mixing a binder containing a thermoplastic resin as a main component with respect to the powder, kneading, and heating pellets produced by granulation,
A method for molding powder, comprising compression molding in a mold.
JP6188873A 1994-07-18 1994-07-18 Powder compacting method Pending JPH0827501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6188873A JPH0827501A (en) 1994-07-18 1994-07-18 Powder compacting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6188873A JPH0827501A (en) 1994-07-18 1994-07-18 Powder compacting method

Publications (1)

Publication Number Publication Date
JPH0827501A true JPH0827501A (en) 1996-01-30

Family

ID=16231373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6188873A Pending JPH0827501A (en) 1994-07-18 1994-07-18 Powder compacting method

Country Status (1)

Country Link
JP (1) JPH0827501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177201A (en) * 2012-04-20 2012-09-13 Hitachi Powdered Metals Co Ltd Method of manufacturing sintered component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177201A (en) * 2012-04-20 2012-09-13 Hitachi Powdered Metals Co Ltd Method of manufacturing sintered component

Similar Documents

Publication Publication Date Title
CN104525953B (en) Ultrasonic-assisted powder injection molding device and method
CN103962559B (en) A kind of fusible core formula metal injection moulding technique
CN108607989A (en) The ejection forming method of abnormal complex part
CN108421981A (en) POM plastics are used as can the injection molding application of fusible core
JP2000119703A (en) Production of sintered body
CN101433961A (en) Method for producing microwave isolator/circulator cavity
JPH0827501A (en) Powder compacting method
EP0799118A1 (en) Improved process for making preforms useful for encapsulating semiconductors
US20040217524A1 (en) Simplified processing of metal and cermet feedstocks
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JP2513905B2 (en) Ceramic injection molding method and molding die used therefor
JP2001303103A (en) Method for producing sintered powder molded body
JPH04337003A (en) Pellet for injection molding
JPH032005A (en) Method for extrusion molding of powder mixture
JPH05179309A (en) Method and die for extrusion
JPH03130305A (en) Manufacture of sintered body having hollow part and manufacturing apparatus used thereto
JPH0413804A (en) Manufacture of green compact having hollow part
CN112589955A (en) Powder injection molding method of ultra-thin wall honeycomb-shaped product
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
JPH06108109A (en) Mold for injection molding of metallic powder and injection molding device using this mold
JPH04259304A (en) Production of sintered body
JPH03191001A (en) Raw material for forming
JPH0383845A (en) Production of ceramic sintered compact
JPH07205144A (en) Manufacture of tablet
JPS62105976A (en) Manufacture of microporous ceramic powder or metal powder product