JP2012177201A - Method of manufacturing sintered component - Google Patents

Method of manufacturing sintered component Download PDF

Info

Publication number
JP2012177201A
JP2012177201A JP2012096187A JP2012096187A JP2012177201A JP 2012177201 A JP2012177201 A JP 2012177201A JP 2012096187 A JP2012096187 A JP 2012096187A JP 2012096187 A JP2012096187 A JP 2012096187A JP 2012177201 A JP2012177201 A JP 2012177201A
Authority
JP
Japan
Prior art keywords
raw material
mold
molding
punch
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096187A
Other languages
Japanese (ja)
Inventor
Masahiro Okahara
正宏 岡原
Zenzo Ishijima
善三 石島
Mitsuo Kusano
光雄 草野
Kazuya Suzuki
和也 鈴木
Toru Hirano
透 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2012096187A priority Critical patent/JP2012177201A/en
Publication of JP2012177201A publication Critical patent/JP2012177201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for molding a favorable molding in manufacturing a minute sintered component by pressure molding a plastic raw material within a die cavity and sintering the obtained molding.SOLUTION: The method of manufacturing the sintered component includes: charging the raw material prepared by adding 40-60 vol.% of a binder consisting of a thermoplastic resin and wax to a metal powder and kneading it with heat into the die cavity of a die to pressure mold it to a desired shape; pulling successively out the pressed molding from the die; removing the binder with heat; and then sintering the molding with heat. In the method, the moving speed U of a punch in pressure molding is set lower than a speed obtained by [U=ΔP/(32μ×L)×De] with ΔP: a punch pressing force (Pa), μ: a viscosity (Pa s), L: a length (m), and De: an equivalent pipe diameter (m).

Description

本発明は粉末冶金法による焼結部品の製造方法に係り、特に、0.01〜0.2mm程度の幅の薄肉部や凸部を有する微小な焼結部品の製造方法に関する。   The present invention relates to a method for manufacturing a sintered part by a powder metallurgy method, and more particularly to a method for manufacturing a fine sintered part having a thin part or a convex part with a width of about 0.01 to 0.2 mm.

粉末冶金法は、原料粉末を押型の型孔内に充填し、これをパンチで加圧して圧粉成形して得られた成形体を焼結する押型法と、原料粉末を多量のバインダとともに混練した流動状態にある原料を金型内の空隙に加圧充填し、得られた成形体を加熱してバインダを除去した後、焼結する射出成形法に大別される。   In the powder metallurgy method, a raw material powder is filled in a mold cavity of a pressing mold, and this is pressed with a punch to form a compact and the compact is obtained. The raw powder is mixed with a large amount of binder. The fluidized raw material is pressure-filled into the voids in the mold, and the obtained molded body is heated to remove the binder, and then roughly divided into injection molding methods.

押型法では、原料粉末の流動性および金型との潤滑性を得るために、1質量%以下程度の成形潤滑剤を原料粉末に混入させることがあるが、成形潤滑剤の添加量が少ないことから、焼結工程のはじめの段階で揮発除去することが容易で、脱脂工程が短くて済むという利点がある。押型法では、原料粉末の金型への充填は、フィーダ(粉箱)と呼ばれる粉末供給装置より原料粉末を金型と下パンチ等で形成される空間に落とし込む方法で行われるが、この方法では充填に一定のばらつきが発生することが避けられない。一方、上記のような狭小な部位を有する微小な製品を製造する場合、このばらつきは許容することができる範囲ではなく、また、上記のような狭小な部位を形成するため、押型に微小な隙間を設けてこの隙間に原料粉末を充填しようとすると、原料粉末の粒径も小さいものを用いる必要がある。この場合、原料粉末の流動性が低下するとともに充填性が低下して、安定した原料粉末の供給を行うことができないといった不具合が生じる。   In the molding method, in order to obtain fluidity of the raw material powder and lubricity with the mold, a molding lubricant of about 1% by mass or less may be mixed into the raw material powder, but the amount of the molding lubricant added is small. Therefore, it is easy to volatilize and remove at the beginning of the sintering process, and there is an advantage that the degreasing process can be shortened. In the pressing method, filling of the raw material powder into the mold is performed by a method of dropping the raw material powder into a space formed by a mold and a lower punch from a powder feeder called a feeder (powder box). It is inevitable that a certain variation occurs in filling. On the other hand, when manufacturing a minute product having a narrow part as described above, this variation is not within an allowable range, and since a narrow part as described above is formed, a minute gap is formed in the mold. When it is intended to fill the gap with the raw material powder, it is necessary to use a raw material powder having a small particle size. In this case, the fluidity of the raw material powder is lowered and the filling property is lowered, so that there is a problem that a stable raw material powder cannot be supplied.

射出成形法は、上記の押型法では造形することができないアンダーカット等を有する形状のものでも造形することができるという利点がある。しかしながら、原料の流動性を確保するため原料粉末に30〜70体積%の熱可塑性樹脂等のバインダを添加して混練することから成形体に多量のバインダを含有しており、このため、バインダを除去する脱バインダ工程に時間がかかるという欠点がある。また、肉厚が0.1〜0.3mm程度の薄肉部に対しては金型のキャビティが小さくなりすぎるため、金属粉末をキャビティに均一に充填することが難しい。すなわち、射出成形法においては、原料はゲートおよびランナを介して金型内に射出されるが、原料を充填する金型の空隙が微少であると、このような空隙内部に原料を充填するためには原料を高圧で充填しなければならないが、装置の高圧化は現実的ではない。すなわち、金属粉末とバインダの分離が生じたり、型バリが生じることが問題となるからである。一方、バインダを増量して原料の流動性を高める検討も行われているが、バインダを増量すると焼結後の寸法収縮が大きくなり変形の問題が生じてくる。これらのことから、現実的に射出成形可能な肉厚の限界は0.5mmである。   The injection molding method has an advantage that even a shape having an undercut or the like that cannot be modeled by the above-described mold method can be modeled. However, in order to ensure the fluidity of the raw material, a binder such as 30 to 70% by volume of a thermoplastic resin is added to the raw material powder and kneaded, so the molded product contains a large amount of binder. There is a drawback that it takes time to remove the binder. Moreover, since the cavity of a metal mold | die becomes too small with respect to the thin part about 0.1-0.3 mm thick, it is difficult to fill a metal powder uniformly in a cavity. That is, in the injection molding method, the raw material is injected into the mold through the gate and the runner. However, when the gap of the mold for filling the raw material is very small, the raw material is filled in the gap. However, it is not practical to increase the pressure of the apparatus. That is, separation of the metal powder and the binder and mold burrs are problematic. On the other hand, studies have been made to increase the fluidity of the raw material by increasing the amount of the binder. However, if the amount of the binder is increased, the dimensional shrinkage after sintering becomes large, causing a problem of deformation. From these facts, the limit of the wall thickness that can be practically injection-molded is 0.5 mm.

このような状況の中、押型法と射出成形法の長所を兼ね備えた造形法が提案されている(特許文献1等)。これは、原料粉末に通常の押型法で与える以上の多量のバインダ等を与えた原料を用いて押型成形する方法である。特許文献1は冷陰極蛍光ランプ用電極に係る発明であり、モリブデン粉末またはタングステン粉末からなる金属粉末に、熱可塑性樹脂とワックスからなるバインダを40〜60体積%添加し、加熱混練して原料を調整する原料調整工程と、原料を所定量、押型の型孔内に充填する充填工程と、押型内の原料をパンチで加圧して有底円筒状に成形する加圧成形工程と、この加圧成形工程の後に得られた有底円筒状成形体を押型から抜き出す抜き出し工程と、押型から抜き出された有底円筒状成形体を加熱してバインダを除去する脱バインダ工程と、該脱バインダされた有底円筒状成形体を加熱して粉末どうしを拡散結合させる焼結工程とを行うことにより、円筒部の厚さが0.1〜0.2mmと狭小部を有する微小な焼結部品を製造することができることを記載している。また、上記の特許文献1においては、原料を熱可塑性樹脂の軟化点以上の温度に加熱して成形工程を行い、原料を熱可塑性樹脂の軟化点以下、かつワックスの軟化点以上の温度に冷却して抜き出し工程を行うことが記載されている。   Under such circumstances, a modeling method that combines the advantages of the stamping method and the injection molding method has been proposed (Patent Document 1, etc.). This is a method of die-molding using a raw material in which a raw material powder is provided with a larger amount of binder or the like than that provided by a normal die-molding method. Patent Document 1 is an invention relating to an electrode for a cold cathode fluorescent lamp. A metal powder made of molybdenum powder or tungsten powder is added with 40 to 60% by volume of a binder made of a thermoplastic resin and wax, and heated and kneaded to prepare a raw material. A raw material adjustment step for adjusting, a filling step for filling a predetermined amount of the raw material into the mold cavity, a pressure forming step for pressing the raw material in the die with a punch to form a bottomed cylindrical shape, and this pressurization The bottomed cylindrical molded body obtained after the molding process is extracted from the mold, the bottomed cylindrical molded body extracted from the mold is heated to remove the binder, and the binder is removed. A sintered part having a cylindrical portion with a thickness of 0.1 to 0.2 mm and a narrow sintered portion by heating the bottomed cylindrical molded body and performing a sintering step in which powders are diffusion-bonded to each other. Can be manufactured It describes that you can. In Patent Document 1, the raw material is heated to a temperature equal to or higher than the softening point of the thermoplastic resin to perform a molding step, and the raw material is cooled to a temperature equal to or lower than the softening point of the thermoplastic resin and equal to or higher than the softening point of the wax. And performing the extraction step.

特開2006−344581号公報JP 2006-344581 A

本発明は、上記特許文献1に記載されるように、可塑性原料を型孔内で加圧成形し、得られた成形体を焼結することで微小な焼結部品を製造するにあたり、良好な成形体を成形することができる製造方法を提供とすることを目的とする。As described in the above-mentioned Patent Document 1, the present invention is excellent in producing a small sintered part by pressure-molding a plastic raw material in a mold cavity and sintering the obtained molded body. It aims at providing the manufacturing method which can shape | mold a molded object.

本発明は、金属粉末に、熱可塑性樹脂とワックスからなるバインダを40〜60体積%添加し、加熱混練して原料を調整する原料調整工程と、所定量の前記原料を押型の型孔内に充填する充填工程と、前記押型内に充填した前記原料をパンチで加圧して所望の形状に成形する加圧成形工程と、前記加圧成形工程の後に得られた成形体を前記押型から抜き出す抜き出し工程と、前記押型から抜き出された成形体を加熱して前記バインダを除去する脱バインダ工程と、該脱バインダされた成形体を加熱して粉末どうしを拡散結合させる焼結工程とを備える焼結部品の製造方法において、前記加圧成形工程を、ΔP:パンチの加圧力(Pa)、μ:粘度(Pa・s)、L:長さ(m)、De:相当管径(m)としたとき、パンチの移動速度Uを下記[式1]で求められる速度以下として加圧成形することを特徴とする。
U=ΔP/(32μ×L)×De …[式1]
なお、この発明では、前記パンチの移動速度Uを、[式1]で求められる値の8割以上の速度で成形することを好ましい形態としている。
In the present invention , a metal powder is added with 40 to 60% by volume of a binder made of a thermoplastic resin and a wax, a raw material adjusting step for adjusting the raw material by heating and kneading, and a predetermined amount of the raw material in the mold die hole. A filling step for filling, a pressure forming step for pressing the raw material filled in the die with a punch to form it into a desired shape, and an extraction of the molded body obtained after the pressure forming step from the die A baking process comprising: a step of removing the binder by heating the molded body extracted from the mold; and a sintering step of diffusion bonding the powder by heating the molded body that has been debindered. In the method for producing a bonded part, the pressure forming step is expressed as follows: ΔP: punch pressing force (Pa), μ: viscosity (Pa · s), L: length (m), De: equivalent pipe diameter (m) When the punch movement speed U is It is characterized in that the pressure molding is performed at a speed equal to or less than the speed obtained by the formula 1].
U = ΔP / (32 μ × L) × De 2 ... [Formula 1]
In the present invention, the punch moving speed U is preferably formed at a speed equal to or higher than 80% of the value obtained by [Equation 1].

本発明によれば、可塑性原料を型孔内で加圧成形し、得られた成形体を焼結することで微小な焼結部品を製造するにあたり、良好な成形体を成形することができる製造方法が提供されるといった効果を奏する。 According to the present invention, when a plastic raw material is pressure-molded in a mold cavity, and the resulting molded body is sintered, a fine sintered part can be manufactured. There is an effect that a method is provided.

本発明に係る成形過程の模式図(上段の図)および該過程の上パンチ降下量と成形荷重との関係を示すグラフ(下段の写真)である。FIG. 4 is a schematic diagram (upper diagram) of a molding process according to the present invention and a graph (lower photograph) showing a relationship between an upper punch drop amount of the process and a molding load. 成形過程A〜Eごとの成形体を示す写真である。It is a photograph which shows the molded object for every shaping | molding process AE. 加圧成形時における薄肉部の盛り上がり量と盛り上がりに要する荷重との相関関係を、実測値と理論値で示すグラフである。It is a graph which shows the correlation of the amount of swelling of the thin part at the time of pressure molding, and the load required for swelling by an actual value and a theoretical value. 本発明の製造方法を好適に実施する金型ならびに該金型を用いた成形品1個取り構造の一実施形態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows one Embodiment of the metal mold | die which implements the manufacturing method of this invention suitably, and the molded article single piece | mold structure using this metal mold | die. 図4に示した金型の制御系を示す制御ブロック図である。It is a control block diagram which shows the control system of the metal mold | die shown in FIG. 図4に示した金型の動作を示す図である。It is a figure which shows operation | movement of the metal mold | die shown in FIG. 一実施形態の1成形サイクルに要する時間を説明する図である。It is a figure explaining the time which 1 molding cycle of one Embodiment requires. 一実施形態により得られた焼結部品の断面写真である。It is a cross-sectional photograph of the sintered part obtained by one Embodiment.

以下、図面を参照して本発明の一実施形態を説明する。
「原料の性状」
はじめに、原料粉末の加圧成形時の挙動を調べるため行った実験の結果を記す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
"Material properties"
First, the results of experiments conducted to investigate the behavior of raw material powder during pressure molding will be described.

金属粉末として平均粒径が2μmのタングステン粉末を用意し、ポリアセタール系樹脂とパラフィンワックスを主成分とする樹脂バインダを56vol%混合し、外径が1.88mmで全長が2.97mmの円柱体ペレットを作製して原料を用意した。また、直径が2.08mmの円形の型孔を有するダイスの外周にバンドヒータを取り付け、ダイスの型孔に下パンチを摺動自在に嵌合させて、インストロン型試験機(島津オートグラフ)に載置するとともに、上パンチとして直径が1.68mmと1.88mmの2種類のものを用意し、ダイスの型孔と上パンチが同芯となるよう配置してインストロン型試験機に取り付けて押型を構成した。この押型の型孔に原料を投入し、バンドヒータによりダイスと原料を433Kに加熱した後、上パンチを0.08mm/sの速度で降下させて原料の加圧成形を行い、肉厚が0.1mmと0.2mmの有底円筒形状に加圧成形した。このときの成形荷重の変化を図1に示す。なお、図1の上段の図は、加圧成形の過程をA〜Eの順で示しており、符号31は原料のペレット、32は型孔32aを有するダイス、33は下パンチ、34は上パンチをそれぞれ示している。また、図2は成形過程A〜Eごとの成形体の写真を示している。   Tungsten powder having an average particle diameter of 2 μm is prepared as a metal powder, and 56 vol% of a polyacetal-based resin and a resin binder mainly composed of paraffin wax are mixed, a cylindrical pellet having an outer diameter of 1.88 mm and a total length of 2.97 mm. A raw material was prepared. Instron type testing machine (Shimadzu Autograph) with a band heater attached to the outer periphery of a die having a circular die hole with a diameter of 2.08 mm, and a lower punch slidably fitted into the die die hole. 2 types of upper punches with diameters of 1.68 mm and 1.88 mm are prepared, and the die hole and the upper punch are arranged so that they are concentric and attached to the Instron type testing machine. The mold was constructed. The raw material is put into the die hole of this die, and the die and the raw material are heated to 433 K by a band heater, and then the upper punch is lowered at a speed of 0.08 mm / s to perform pressure forming of the raw material, and the wall thickness is 0 Press molding into bottomed cylindrical shapes of 1 mm and 0.2 mm. The change in the molding load at this time is shown in FIG. 1 shows the process of pressure molding in the order of A to E. Reference numeral 31 is a raw material pellet, 32 is a die having a mold hole 32a, 33 is a lower punch, and 34 is an upper part. Each punch is shown. Moreover, FIG. 2 has shown the photograph of the molded object for every shaping | molding process AE.

図1より、上パンチの移動距離と成形荷重の関係では、上パンチと原料が当接し(A)、上パンチの降下にともない原料の変形が生じ、原料が型孔壁面と接触する(B)までの変形初期(A〜B)と、原料が型孔壁面と接触(B)した後、さらに原料が変形して型孔内に充満した状態となる変形中期(B〜C)と、原料が型孔内に充満(C)した後、薄肉部の押し出し(D)が行われ、加圧成形が終了(E)するまでの変形後期(C〜E)の3段階を経ていることがわかる。また、変形初期(A〜B)、変形中期(B〜C)、変形後期(C〜E)の各段階で、それぞれ上パンチの移動距離に対して成形荷重が一定の割合で増加することがわかる。また、薄肉部の肉厚が0.1mmのものと0.2mmのものでは、肉厚が0.1mmのものでは薄肉部の形成における荷重が、肉厚が0.2mmのものよりも高く、上パンチの移動距離が増すにつれて荷重の増加量も大きくなることがわかる。   As shown in FIG. 1, the upper punch and the raw material abut on the relationship between the movement distance of the upper punch and the molding load (A), the raw material is deformed as the upper punch is lowered, and the raw material comes into contact with the mold hole wall surface (B). After the initial deformation (A to B), after the raw material comes into contact with the mold hole wall surface (B), the raw material is further deformed and the middle stage of deformation (B to C) in which the mold cavity is filled, and the raw material is It can be seen that after filling the mold cavity (C), the thin-walled portion is extruded (D) and undergoes the three stages of deformation (C to E) until the press molding is completed (E). Further, in each stage of the initial stage of deformation (A to B), the middle stage of deformation (B to C), and the latter stage of deformation (C to E), the molding load may increase at a constant rate with respect to the movement distance of the upper punch. Recognize. Further, in the case where the thickness of the thin portion is 0.1 mm and 0.2 mm, the load in the formation of the thin portion is higher than the thickness of 0.2 mm when the thickness is 0.1 mm, It can be seen that the amount of increase in the load increases as the moving distance of the upper punch increases.

さらに、図1より、目標とする有底円筒形状を得るために要する荷重は、肉厚が0.2mmの場合で1.6N、肉厚が0.1mmの場合で2.6N程度と、押型法に比して非常に小さい圧力で成形が可能であることがわかる。本実験において、上パンチの断面積は肉厚が0.1mmの場合で2.217mm、肉厚が0.2mmの場合で2.776mm程度であるから、上パンチの成形圧力は、肉厚が0.2mmの場合で0.72MPa、肉厚が0.1mmの場合で0.94MPa程度である。 Further, as shown in FIG. 1, the load required to obtain the target bottomed cylindrical shape is 1.6 N when the wall thickness is 0.2 mm, and about 2.6 N when the wall thickness is 0.1 mm. It can be seen that molding is possible with a pressure much smaller than that of the method. In this experiment, 2.217Mm 2 if the sectional area is the thickness of the upper punch is 0.1 mm, since the wall thickness is about 2 2.776mm in the case of 0.2 mm, the molding pressure of the upper punch, meat When the thickness is 0.2 mm, it is 0.72 MPa, and when the thickness is 0.1 mm, it is about 0.94 MPa.

ところで、定常圧力でバルク金属を後方押し出しする場合は、コンテナ(ダイス)やパンチ壁面部と接触した部分では原料とダイスの滑りが発生しないために押し出し圧力(成形荷重)が一定の値を示すこととなる。しかしながら、上記の実験において、変形後期(C〜E)に生じる薄肉部の押し出しに要する成形荷重は、上パンチの移動距離の増加にともなって一定割合で増加しており、この点が定常圧力でバルク金属を後方押し出しする場合とは明らかに異なる挙動を示している。   By the way, when the bulk metal is extruded backward at a steady pressure, the extrusion pressure (forming load) shows a constant value because the raw material and the die do not slide at the portion in contact with the container (die) or the punch wall surface. It becomes. However, in the experiment described above, the molding load required for the extrusion of the thin portion occurring in the later stage of deformation (C to E) increases at a constant rate as the moving distance of the upper punch increases. The behavior is clearly different from the case where the bulk metal is extruded backward.

この挙動は、薄肉部を押し出す変形後期においては、常にダイスと原料の滑りをともないながら薄肉部が形成されるため、上パンチの移動距離が増加することにより摩擦面積が増え、その結果、成形荷重が増加するものと考えられ、さらには、原料が型孔内に充満した(C)後では、半溶融した原料が液体として振る舞うことにより、このような滑りが発生するものと考えられる。したがって、変形初期から中期(A〜C)にかけては混練物の変形抵抗、すなわち固体の塑性変形を示し、その後の薄肉部の押し出し(変形後期:C〜E)にかけては混練物の粘性、すなわち液体の流動が支配的になるレオロジー的な変形挙動を示しているものと考えられる。   This behavior is due to the fact that in the later stage of deformation, where the thin part is pushed out, the thin part is always formed with the sliding of the die and the raw material. Furthermore, after the raw material is filled in the mold cavity (C), it is considered that such a slip occurs because the semi-molten raw material behaves as a liquid. Therefore, the deformation resistance of the kneaded product is shown from the initial stage to the middle stage (A to C), that is, plastic deformation of the solid. It is considered that the rheological deformation behavior becomes dominant.

そこで、この考えに基づき、薄肉部の肉厚が0.1mmおよび0.2mmと異なる場合の変形後期の挙動について、圧力損失の式(ハーゲン・ポアズイユの式)を用い、加圧成形時における薄肉部盛り上がり量に対する薄肉部の盛り上がりに要する荷重を計算した。その結果を、図3に示す。なお、圧力損失の式は下記[式2]のとおりである。
ΔP=32μ×L×U/De …[式2]
Therefore, based on this idea, the pressure loss equation (Hagen-Poiseuille equation) is used for the behavior in the later stage of deformation when the thickness of the thin portion is different from 0.1 mm and 0.2 mm. The load required for the bulge of the thin portion relative to the bulge amount was calculated. The result is shown in FIG. The pressure loss equation is as shown in [Equation 2] below.
ΔP = 32 μ × L × U / De 2 [Formula 2]

ここで、ΔP:圧力損失(Pa)、μ:粘度(Pa・s)、L:長さ(m)、U:流速(m/s)であり、本実験においてDe:相当管径(m)は、(型孔の直径−上パンチの直径)であり、これはすなわち薄肉部の厚さtの2倍である。   Here, ΔP: pressure loss (Pa), μ: viscosity (Pa · s), L: length (m), U: flow velocity (m / s), and De: equivalent pipe diameter (m) in this experiment. Is (diameter of mold cavity−diameter of upper punch), that is, twice the thickness t of the thin portion.

図3より、薄肉部の盛り上がり量と薄肉部の盛り上がりに要する荷重との相関関係は、上記の圧力損失の式による計算値と実測値がほぼ一致することがわかる。この結果より、バインダ成分の融点以上に十分に加熱されて流動状態にある原料を、流体として取り扱うことができることが確認された。   From FIG. 3, it can be seen that the correlation between the amount of bulging of the thin portion and the load required for the bulging of the thin portion substantially matches the calculated value by the above pressure loss equation and the actually measured value. From this result, it was confirmed that a raw material that is sufficiently heated to the melting point of the binder component and in a fluid state can be handled as a fluid.

以上の実験結果より、金属粉末に熱可塑性樹脂とワックスからなるバインダを添加して加熱混練した原料を、熱可塑性樹脂の軟化点以上の温度に加熱して加圧成形する場合には、原料を流体として取り扱うことができること、ならびに、狭小な薄肉部においては盛り上がり量に対する盛り上がりに要する荷重は上記の圧力損失の式により求めることができるといった知見が得られた。   From the above experimental results, when a raw material obtained by adding a binder composed of a thermoplastic resin and a wax to metal powder and heating and kneading is heated to a temperature equal to or higher than the softening point of the thermoplastic resin and pressure-molded, the raw material is The knowledge that it can be handled as a fluid and that the load required for the bulge amount in a narrow thin wall portion can be obtained by the above-described pressure loss equation was obtained.

したがって、バインダの溶融状態で粘度がμ(Pa・s)の原料を用い、成形体の長さがL(m)であり、薄肉部tによる相当管径De(m)の成形体を成形する場合に、パンチの加圧力ΔP(Pa)により、パンチの移動速度U(m/s)を下記[式1]で求められる速度以下に調整すれば、流体として振る舞う原料が、薄肉部が十分に盛り上がって薄肉部を充満させることができ、よって良好な成形体を成形することができることとなる。
U=ΔP/(32μ×L)×De …[式1]
Accordingly, a raw material having a viscosity of μ (Pa · s) in a molten state of the binder is used, and a molded body having a length of L (m) and an equivalent tube diameter De (m) by the thin-walled portion t is molded. In this case, if the punch moving pressure U (m / s) is adjusted to be equal to or lower than the speed obtained by the following [Equation 1], the raw material that behaves as a fluid is sufficiently thin It is possible to swell and fill the thin portion, so that a good molded body can be formed.
U = ΔP / (32 μ × L) × De 2 ... [Formula 1]

なお、パンチの移動速度Uを[式1]で求められる速度より遅い速度とした場合に良好な成形体を得ることはできるが、パンチの移動速度Uを極端に遅くすると、加圧成形工程が長くなるため生産性が低下することとなる。これに鑑み、パンチの移動速度Uは遅くとも[式1]で求められる速度の8割以上の速度とすることが好ましい。   Although a good molded product can be obtained when the moving speed U of the punch is slower than the speed obtained by [Equation 1], if the moving speed U of the punch is extremely slow, the pressure forming step is performed. Since it becomes long, productivity will fall. In view of this, it is preferable that the moving speed U of the punch is at least 80% of the speed obtained by [Equation 1] at the latest.

また、パンチの加圧力ΔPを増加させればパンチの移動速度Uを高速にすることができ、これにより成形工程に要する時間を短縮することが可能となる。   Further, if the punch pressure ΔP is increased, the punch moving speed U can be increased, thereby shortening the time required for the molding process.

ところで、一般的な密度の焼結品を押型法において製造する場合に、成形圧力は500〜800MPa程度であり、高密度の焼結品を製造する場合においては、1GPaを超える場合もある。一方、本発明のような、流動状態にある原料を加圧成形する場合には、図1からわかるように、上パンチの成形圧力は、肉厚が0.2mmの場合で0.72MPa、肉厚が0.1mmの場合で0.94MPa程度と、押型法に比して非常に小さい圧力で成形が可能である。したがって、流動状態にある原料を加圧成形する場合には、押型法で用いられるような、プレス容量が数十tから数百tもの高荷重のプレス装置は不要であるとともに、プレス装置を小型化することができる。また、流動状態にある原料を加圧成形する場合には、パンチの加圧力ΔPと、パンチの移動速度Uを精密に制御することができるプレス装置が好適である。このため、プレス装置としては精密なストローク制御が可能な単軸サーボプレス方式のものを用いることが好ましい。   By the way, when a sintered product having a general density is manufactured by the mold method, the molding pressure is about 500 to 800 MPa, and when a sintered product having a high density is manufactured, it may exceed 1 GPa. On the other hand, when the raw material in a fluidized state as in the present invention is pressure-molded, as can be seen from FIG. 1, the molding pressure of the upper punch is 0.72 MPa when the thickness is 0.2 mm, When the thickness is 0.1 mm, the molding can be performed at a pressure of about 0.94 MPa, which is much smaller than that of the mold method. Therefore, when press-molding a raw material in a fluidized state, there is no need for a high-load press device having a press capacity of several tens to hundreds of t, which is used in a pressing method, and the press device is small. Can be Further, in the case of pressure forming a raw material in a fluidized state, a press apparatus capable of precisely controlling the punch pressing force ΔP and the punch moving speed U is suitable. For this reason, it is preferable to use a single-axis servo press type capable of precise stroke control as the press device.

「押型の改良」
上記のように押型としては、加圧成形工程において、パンチをサーボ機構により駆動して精密制御するものが好ましいが、さらに、原料の加熱および成形後の成形体の冷却に要する時間の短縮を図るために、相対的に制御困難な冷却手段を押型の内側に配置し、その外側に制御容易な高周波誘導による加熱手段を配置した構成の押型とすることが好ましい。すなわち、高周波誘導による加熱手段を用いるので、表面付近に発生する渦電流により押型の型孔表面が直接加熱され、このため加熱時間が大幅に短縮される。また、冷媒を流す冷却手段が押型の型孔表面に近接して埋設されているため、冷媒を流すことにより、押型の型孔表面を急速に冷却することが可能である。このような構成としたことにより、押型の加熱と冷却のサイクルタイムを短縮させる制御が容易となる。
"Improved mold"
As described above, the pressing mold is preferably one in which the punch is driven by a servo mechanism and precisely controlled in the pressure molding step, but further, the time required for heating the raw material and cooling the molded body after molding is reduced. For this reason, it is preferable to provide a pressing die having a configuration in which the cooling means that is relatively difficult to control is arranged inside the pressing die, and the heating means by high-frequency induction that is easy to control is arranged outside thereof. That is, since the heating means by high frequency induction is used, the surface of the mold cavity is directly heated by the eddy current generated in the vicinity of the surface, so that the heating time is greatly shortened. In addition, since the cooling means for flowing the refrigerant is embedded in the vicinity of the surface of the mold cavity of the mold, it is possible to rapidly cool the surface of the mold cavity of the mold by flowing the refrigerant. By adopting such a configuration, the control for shortening the cycle time of heating and cooling of the die is facilitated.

図4は、本発明の製造方法を実施するのに好適な金型ならびにこの金型での成形品1個取り構造の一実施形態を示す断面図であり、(1)は原料の充填状態、(2)は成形完了時の状態を示している。同図で符号1は成形される原料、2は原料1を成形加工した後の有底円筒状の成形品、3は内部に原料が挿入される成形用の固定金型(下型)、4は固定金型3の上方に設置され、原料1を成形する可動金型(上型)を示している。   FIG. 4 is a cross-sectional view showing one embodiment of a mold suitable for carrying out the production method of the present invention and a single-piece molded structure with this mold, (1) is a raw material filling state, (2) shows the state when the molding is completed. In the figure, reference numeral 1 is a raw material to be molded, 2 is a bottomed cylindrical molded product after the raw material 1 is molded, 3 is a fixed mold for molding (lower mold) in which the raw material is inserted, 4 Indicates a movable mold (upper mold) which is installed above the fixed mold 3 and molds the raw material 1.

固定金型3には、中央に中空孔5aを有する円筒状の押型5が設けられている。押型5は原料を押し出し成形する金型部品であって、熱伝導性が良好でな金属であり、しかも高周波誘導によって加熱する磁性体(鉄など)からなるもので、可能な限り熱容量を小さくするために、小質量・小体積に形成される。可動金型4には、押型5の中空孔5a内に下降して原料1を押し出し成形する上インナーパンチ6と、押し出し成形された原料1の高さを決める上アウターパンチ7がそれぞれ設けられている。   The fixed die 3 is provided with a cylindrical pressing die 5 having a hollow hole 5a in the center. The die 5 is a mold part for extruding a raw material, is a metal having good thermal conductivity, and is made of a magnetic material (such as iron) that is heated by high frequency induction, and makes the heat capacity as small as possible. Therefore, it is formed in a small mass and a small volume. The movable mold 4 is provided with an upper inner punch 6 for lowering the raw material 1 by extrusion into the hollow hole 5a of the pressing die 5 and an upper outer punch 7 for determining the height of the extruded raw material 1. Yes.

図4の符号9は押型5の成形表面(型孔壁面)5bに近接して埋設された冷却手段であり、内部を冷水などの冷媒が流れる管状体からなものである。なお、冷却時に成形表面5bの温度むらを無くすために、図4(2)に示すように、冷却手段9の管状体の成形表面5bまでの距離Aと、管状体の縦方向のピッチBがほぼ同じに設定されている。冷却手段9の管状体には冷却時は冷媒(冷水)が流されるが、成形品の排出時(後述)には、加圧したエアを吹き込むことにより冷水が水切り排出されて中空状態となり、この状態は加熱時も保たれるように用いられる。   Reference numeral 9 in FIG. 4 is a cooling means embedded in the vicinity of the molding surface (mold hole wall surface) 5b of the die 5, and is made of a tubular body through which a coolant such as cold water flows. In order to eliminate the temperature unevenness of the molding surface 5b during cooling, as shown in FIG. 4 (2), the distance A to the molding surface 5b of the tubular body of the cooling means 9 and the pitch B in the longitudinal direction of the tubular body are as follows. It is set almost the same. When cooling the tubular body of the cooling means 9, a coolant (cold water) flows, but when the molded product is discharged (described later), the cold water is drained and discharged by blowing pressurized air into a hollow state. The state is used so as to be maintained during heating.

図4の符号8は、上記冷却手段の周囲に設けられた加熱手段である。この加熱手段8は、高周波誘導加熱コイル8aを絶縁物8b内に埋設した状態で冷却手段の周囲に巻回して構成されている。高周波誘導加熱は加熱能力が大であって制御が容易であるため、冷却手段より外側に配置されている。符号10は、加圧成形される原料1を受けて上インナーパンチ6と協働して原料1に軸方向への加圧力を与える下インナーパンチである。この下インナーパンチ10は、成形後に冷却されて固化した成形品2を押型5から押し上げる機能も有しており、上向きの矢印方向に移動することによって中空孔5aから成形品2を排出する。   Reference numeral 8 in FIG. 4 is a heating means provided around the cooling means. The heating means 8 is configured by winding a high-frequency induction heating coil 8a around the cooling means in a state of being embedded in an insulator 8b. Since the high frequency induction heating has a large heating capacity and is easy to control, it is disposed outside the cooling means. Reference numeral 10 denotes a lower inner punch that receives the raw material 1 to be pressure-molded and cooperates with the upper inner punch 6 to apply a pressing force in the axial direction to the raw material 1. The lower inner punch 10 also has a function of pushing up the molded product 2 that has been cooled and solidified after molding from the pressing die 5, and discharges the molded product 2 from the hollow hole 5a by moving in the upward arrow direction.

さらに図4の符号11は、固定金型3全体を120℃に保温する固定側保温ヒータであり、12は可動金型4全体を80℃に保温する可動側保温ヒータである。したがって、成形作業中、押型5は固定金型3とともに120℃に保温され、可動金型4は80℃に保温される。また、符号14は押型5の外周に配置された断熱板である。この断熱板14により、押型5が固定金型3から熱的に分離し、このため下型全体の熱容量が極力小さくされる。なお、押型5は固定金型3が常時120℃に保温されているので、空気伝播等により同等の温度に保たれるようになっている。   Further, reference numeral 11 in FIG. 4 is a fixed-side warming heater that keeps the entire fixed mold 3 at 120 ° C., and 12 is a movable-side warming heater that keeps the entire movable mold 4 at 80 ° C. Accordingly, during the molding operation, the pressing die 5 is kept warm at 120 ° C. together with the fixed die 3 and the movable die 4 is kept warm at 80 ° C. Reference numeral 14 denotes a heat insulating plate disposed on the outer periphery of the pressing die 5. By this heat insulating plate 14, the pressing die 5 is thermally separated from the fixed die 3, and therefore the heat capacity of the entire lower die is minimized. In addition, since the fixed die 3 is always kept at 120 ° C., the pressing die 5 is kept at the same temperature by air propagation or the like.

以上が金型の構成であり、この金型は構成が単純であることから、安価、かつメンテナンス性が向上したものとなっている。   The above is the structure of the mold, and since this mold has a simple structure, it is inexpensive and has improved maintainability.

図5は、金型の制御系の構成を示すブロック図である。同図で符号20は可動・固定の両金型3、4の駆動機構を含めた金型制御機構、21は固定側保温ヒータ11、可動側保温ヒータ12および高周波誘導加熱コイル8aを制御する加熱制御器である。なお、加熱制御器21は、高周波誘導加熱コイル8aを約25kHzの周波数で駆動する。図5の符号22は冷却手段9の管状体に冷媒やエアを供給する冷媒/エア制御器、23は金型制御機構20の動作を制御する金型制御器、24は各制御器を制御する制御部である。   FIG. 5 is a block diagram showing the configuration of the mold control system. In the figure, reference numeral 20 denotes a mold control mechanism including a drive mechanism for both movable and fixed molds 3 and 4, and 21 denotes heating for controlling the fixed-side heat retaining heater 11, the movable-side heat retaining heater 12, and the high-frequency induction heating coil 8a. It is a controller. The heating controller 21 drives the high frequency induction heating coil 8a at a frequency of about 25 kHz. 5 is a refrigerant / air controller for supplying refrigerant or air to the tubular body of the cooling means 9, 23 is a mold controller for controlling the operation of the mold control mechanism 20, and 24 is for controlling each controller. It is a control unit.

上記構成の金型の動作を、図4および図6に基づいて説明する。図4(1)において原料1が押型5の中空孔5aに挿入され(図6、原料供給)、同時に固定金型3の押型5の加熱が開始される(図6:T1〜T2)。この加熱は高周波誘導加熱によるため、加熱コイル8aの内側の磁性体である押型5の表面付近に発生する渦電流により、押型5の表面を含めた全体が直接加熱される。したがって、押型5の成形表面5b、すなわち原料1に接する表面が直接加熱されるので、原料1に対し高効率で熱を伝達することができる。   The operation of the mold having the above configuration will be described with reference to FIGS. In FIG. 4 (1), the raw material 1 is inserted into the hollow hole 5a of the pressing die 5 (FIG. 6, raw material supply), and at the same time, heating of the pressing die 5 of the fixed mold 3 is started (FIG. 6: T1 to T2). Since this heating is performed by high frequency induction heating, the entire surface including the surface of the pressing die 5 is directly heated by an eddy current generated near the surface of the pressing die 5 which is a magnetic body inside the heating coil 8a. Therefore, since the molding surface 5b of the die 5, that is, the surface in contact with the raw material 1 is directly heated, heat can be transferred to the raw material 1 with high efficiency.

このとき、冷媒/エア制御器22により、冷却手段9の管状体内は冷媒(冷水)のエア吹きで水切りされた中空状態であり、このため押型5の熱容量が小となっているので、上記の高効率熱伝達と相まって120℃から150℃への30℃の上昇時間が大幅に短縮される(図6:加熱工程T1〜T4)。実施例によれば、2〜3秒で120℃から150℃に達することができた。   At this time, the tubular body of the cooling means 9 is in a hollow state drained by the air blowing of the refrigerant (cold water) by the refrigerant / air controller 22, and therefore the heat capacity of the die 5 is small. Coupled with efficient heat transfer, the time to rise from 120 ° C. to 30 ° C. is greatly reduced (FIG. 6: heating steps T1 to T4). According to the examples, 120 ° C. to 150 ° C. could be reached in 2 to 3 seconds.

図6のT4のタイミングで原料1が150℃に加熱された状態に達すると、可動金型4が矢印方向に下降して図4(2)に示す下死点に達し、上インナーパンチ6が原料1を押し出し成形し、上アウターパンチ7が成形品2の高さを規定する(図4:T4〜T5)。   When the raw material 1 reaches a state where it is heated to 150 ° C. at the timing of T4 in FIG. 6, the movable mold 4 descends in the direction of the arrow to reach the bottom dead center shown in FIG. The raw material 1 is extruded and the upper outer punch 7 defines the height of the molded product 2 (FIG. 4: T4 to T5).

上記T4〜T5の成形タイミングでは、並行して加熱手段8の加熱動作が停止し、冷却手段9の冷却動作に切り替わる。すなわち冷却手段9の管状体に冷媒として4℃の冷水が供給される。この管状体は押型5の成形表面5bに近接して埋設されているので、押型5の内側から冷却が始まって押型5全体に広がる(図6:冷却工程T5〜T7)。この冷却工程で押型5を150℃から120℃まで、30℃だけ降温させるが、押型5は熱容量が小さく、しかも内側から冷却するので、成形品2の冷却が高効率に行われ、したがって短時間で降温させることができる。実施例によれば、冷水4℃を冷媒に用いた場合、約3秒で30℃降温させることができた。   At the molding timings T4 to T5, the heating operation of the heating unit 8 is stopped in parallel and the cooling operation of the cooling unit 9 is switched. That is, cold water at 4 ° C. is supplied as a refrigerant to the tubular body of the cooling means 9. Since this tubular body is embedded close to the molding surface 5b of the mold 5, cooling starts from the inside of the mold 5 and spreads over the entire mold 5 (FIG. 6: cooling steps T5 to T7). In this cooling step, the temperature of the die 5 is lowered from 150 ° C. to 120 ° C. by 30 ° C. However, since the die 5 has a small heat capacity and is cooled from the inside, the molded product 2 is cooled with high efficiency, and therefore, for a short time. The temperature can be lowered. According to the example, when cold water of 4 ° C. was used as the refrigerant, the temperature could be lowered by 30 ° C. in about 3 seconds.

次に、冷却により成形品2が硬化すると、可動金型4が上昇し図4(1)に示す上死点に戻り、次いで下インナーパンチ10が上向きの矢印方向に移動し(図6:T8〜T9)、中空孔5aから成形品2を上方に押し上げ(図6:T9〜T10)、図示しない機構により金型の外に排出される(図6:T10)。これらT8〜T10のタイミングが成形品取出し工程となる。   Next, when the molded product 2 is cured by cooling, the movable mold 4 is raised and returned to the top dead center shown in FIG. 4A, and then the lower inner punch 10 is moved in the upward arrow direction (FIG. 6: T8). To T9), the molded product 2 is pushed upward from the hollow hole 5a (FIG. 6: T9 to T10) and discharged out of the mold by a mechanism (not shown) (FIG. 6: T10). These timings T8 to T10 are the molded product removal step.

この成形品取出し工程のT8〜T10のタイミングにほぼ並行して、冷却手段9内の冷媒の水切りがなされる。具体的には、冷媒/エア制御器22の制御により冷却手段9の管状体にエアを吹き込んで冷水を水切り排出し、管状体内を中空状態にする。この水切りの後は、次の原料1が押型5に供給されて次の加熱工程に備えるものであるが、冷却手段9の管状体内の冷水が保温熱により加熱された状態で次の加熱工程で沸騰してしまう危険を防止することができるといった効果もある。   The coolant in the cooling means 9 is drained substantially in parallel with the timing of T8 to T10 of the molded product removal step. Specifically, under the control of the refrigerant / air controller 22, air is blown into the tubular body of the cooling means 9 to drain and discharge the cold water, thereby making the tubular body hollow. After the draining, the next raw material 1 is supplied to the stamping die 5 to prepare for the next heating step. In the next heating step, the cold water in the tubular body of the cooling means 9 is heated by the heat retaining heat. There is also an effect that the danger of boiling can be prevented.

以上のタイミングT1〜T11が成形の1サイクルを構成し、加熱・冷却を高速に行うことにより、成形サイクルタイムを短縮することができる。また、金型の動作が上下動のみで単純であり、成形の作業性およびメンテナンス性が向上するとともに、金型の取扱いが容易となる。   The above timings T1 to T11 constitute one molding cycle, and heating and cooling are performed at high speed, so that the molding cycle time can be shortened. In addition, the operation of the mold is simple with only up and down movement, so that the workability and maintenance of molding are improved, and the mold can be handled easily.

また、肉厚が0.2mmの有底円筒状の成形体を原料調整工程と、充填工程と、加圧成形工程とを経て得る場合に、上記の[式1]により、上パンチの降下速度を5mm/秒まで高速化して成形に要する時間を短縮するとともに、上記の押型構成による加熱工程および冷却工程に要する時間の短縮を図ったところ、図7に示すように、原料の充填−原料の加熱−成形−成形体の冷却−抜き出しのステップからなる1回の成形サイクルの時間を、通常の押型法の場合と同様の10秒/サイクル程度に達成可能であることが確認された。   Further, when a bottomed cylindrical molded body having a wall thickness of 0.2 mm is obtained through the raw material adjustment step, the filling step, and the pressure molding step, the lowering speed of the upper punch according to the above [Formula 1] Was reduced to 5 mm / sec to shorten the time required for molding, and the time required for the heating and cooling steps by the above-described mold configuration was reduced. As shown in FIG. It was confirmed that the time of one molding cycle comprising the steps of heating-molding-molded body cooling-extraction can be achieved to about 10 seconds / cycle as in the case of a normal stamping method.

さらに、上記サイクルで成形した有底円筒状成形体を脱バインダし、焼結した焼結部品の断面写真を図8に示す。この図8の写真により、肉厚が0.2mmの良好な焼結部品が得られることが確認された。   Further, FIG. 8 shows a cross-sectional photograph of a sintered part obtained by removing the binder from the bottomed cylindrical molded body formed by the above cycle and sintering it. From the photograph in FIG. 8, it was confirmed that a good sintered part having a thickness of 0.2 mm was obtained.

1…原料
2…成形品
3…固定金型(下型)
4…可動金型(上型)
5…押型
6…上インナーパンチ
7…上アウターパンチ
8…加熱手段
8a…高周波誘導加熱コイル
9…冷却手段
10…下インナーパンチ
11…固定側保温ヒータ
12…可動側保温ヒータ
1 ... Raw material 2 ... Molded product 3 ... Fixed mold (lower mold)
4 ... Moveable mold (upper mold)
DESCRIPTION OF SYMBOLS 5 ... Stamping die 6 ... Upper inner punch 7 ... Upper outer punch 8 ... Heating means 8a ... High frequency induction heating coil 9 ... Cooling means 10 ... Lower inner punch 11 ... Fixed side heat retention heater 12 ... Movable side heat insulation heater

Claims (2)

金属粉末に、熱可塑性樹脂とワックスからなるバインダを40〜60体積%添加し、加熱混練して原料を調整する原料調整工程と、
所定量の前記原料を押型の型孔内に充填する充填工程と、
前記押型内に充填した前記原料をパンチで加圧して所望の形状に成形する加圧成形工程と、
前記加圧成形工程の後に得られた成形体を前記押型から抜き出す抜き出し工程と、
前記押型から抜き出された成形体を加熱して前記バインダを除去する脱バインダ工程と、
該脱バインダされた成形体を加熱して粉末どうしを拡散結合させる焼結工程とを備える焼結部品の製造方法において、
前記加圧成形工程を、ΔP:パンチの加圧力(Pa)、μ:粘度(Pa・s)、L:長さ(m)、De:相当管径(m)としたとき、パンチの移動速度Uを下記[式1]で求められる速度以下として加圧成形することを特徴とする焼結部品の製造方法。
U=ΔP/(32μ×L)×De …[式1]
A raw material adjustment step of adding 40 to 60% by volume of a binder made of a thermoplastic resin and wax to the metal powder, and adjusting the raw material by heating and kneading,
A filling step of filling a predetermined amount of the raw material into the mold cavity of the mold;
A pressure forming step of pressing the raw material filled in the pressing mold with a punch to form a desired shape;
An extraction step of extracting the molded body obtained after the pressure molding step from the pressing die;
A binder removal step of removing the binder by heating the molded body extracted from the die;
In a method for manufacturing a sintered part, comprising a sintering step of diffusion bonding the powders by heating the debindered molded body,
When the pressure forming step is ΔP: pressing force of the punch (Pa), μ: viscosity (Pa · s), L: length (m), De: equivalent pipe diameter (m), the moving speed of the punch A method for producing a sintered part, wherein U is pressure-molded at a speed equal to or less than a speed obtained by the following [Formula 1].
U = ΔP / (32 μ × L) × De 2 ... [Formula 1]
前記パンチの移動速度Uを、前記[式1]で求められる値の8割以上の速度で成形することを特徴とする請求項1に記載の焼結部品の製造方法。 2. The method for manufacturing a sintered part according to claim 1, wherein the punch moving speed U is formed at a speed equal to or greater than 80% of the value obtained by the [Expression 1].
JP2012096187A 2012-04-20 2012-04-20 Method of manufacturing sintered component Pending JP2012177201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096187A JP2012177201A (en) 2012-04-20 2012-04-20 Method of manufacturing sintered component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096187A JP2012177201A (en) 2012-04-20 2012-04-20 Method of manufacturing sintered component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008132905A Division JP5140490B2 (en) 2008-05-21 2008-05-21 Method for manufacturing sintered parts

Publications (1)

Publication Number Publication Date
JP2012177201A true JP2012177201A (en) 2012-09-13

Family

ID=46979219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096187A Pending JP2012177201A (en) 2012-04-20 2012-04-20 Method of manufacturing sintered component

Country Status (1)

Country Link
JP (1) JP2012177201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025183A (en) * 2013-07-29 2015-02-05 日立化成株式会社 Method of producing sintered part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155107A (en) * 1989-11-14 1991-07-03 Daido Steel Co Ltd Manufacture of radial anisotropic ndfeb magnet
JPH0827501A (en) * 1994-07-18 1996-01-30 Tokin Corp Powder compacting method
JP2000239706A (en) * 1999-02-25 2000-09-05 Tdk Corp Method and device for powder compaction with high density
JP2006281273A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Pmg Corp Powder compacting die device, and method for compacting powder compacting
JP2006344581A (en) * 2005-05-11 2006-12-21 Hitachi Powdered Metals Co Ltd Electrode for cold-cathode fluorescent lamp and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155107A (en) * 1989-11-14 1991-07-03 Daido Steel Co Ltd Manufacture of radial anisotropic ndfeb magnet
JPH0827501A (en) * 1994-07-18 1996-01-30 Tokin Corp Powder compacting method
JP2000239706A (en) * 1999-02-25 2000-09-05 Tdk Corp Method and device for powder compaction with high density
JP2006281273A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Pmg Corp Powder compacting die device, and method for compacting powder compacting
JP2006344581A (en) * 2005-05-11 2006-12-21 Hitachi Powdered Metals Co Ltd Electrode for cold-cathode fluorescent lamp and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025183A (en) * 2013-07-29 2015-02-05 日立化成株式会社 Method of producing sintered part

Similar Documents

Publication Publication Date Title
JP4848318B2 (en) Mold control method
KR20130100366A (en) Method for manufacturing high-strength sinter-molded compact, and device for manufacturing same
JP5140490B2 (en) Method for manufacturing sintered parts
CN102666046A (en) Rotary high speed low compression thermoplastic molding method and apparatus
JP5936648B2 (en) Press forming method and press forming apparatus of semi-solid metal material
KR20130139300A (en) High density molding method and high density molding device for mixed powder
CN102490301A (en) Micropart powder compression molding method
CN107756733A (en) A kind of plastic injection compression precise forming mold and technique
JP2012177201A (en) Method of manufacturing sintered component
JP2006286545A (en) Manufacturing method of separator for fuel cell, and manufacturing device of separator for fuel cell
JP2009091651A (en) Die apparatus for metal powder injection molding
JP2008230025A (en) Plastic lens molding method
CN108002688A (en) The method that microstructured glass element tin liquor aids in die forming
WO2011114378A1 (en) Injection molding method, method for manufacturing molded product, and injection molding device
JP5507958B2 (en) Method for forming powder molded body of micro component
CN106345957A (en) Semi-solid-state die forging mold device
CN208359219U (en) A kind of insulating support mold
CN217670685U (en) Vertical injection molding machine with adjustable equipment height
JP2020040293A (en) Manufacturing method of injection molded article and mold structure
CN203316719U (en) Compression forming mould for powder metallurgical products
CN203019603U (en) Rotor lining bag die of magnetic plastic lining pump
CN104924554A (en) Injection molding machine
CN105149584A (en) Powder injection molding mold and using method thereof
CN201079834Y (en) Die heating and cooling device for powder injection formation
CN216579352U (en) Novel hot-pressing die

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150423