JPH08273827A - Electric current controlling device for arc furnace - Google Patents

Electric current controlling device for arc furnace

Info

Publication number
JPH08273827A
JPH08273827A JP7072916A JP7291695A JPH08273827A JP H08273827 A JPH08273827 A JP H08273827A JP 7072916 A JP7072916 A JP 7072916A JP 7291695 A JP7291695 A JP 7291695A JP H08273827 A JPH08273827 A JP H08273827A
Authority
JP
Japan
Prior art keywords
current
arc
furnace
integration time
arc furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7072916A
Other languages
Japanese (ja)
Inventor
Koji Nakai
康二 仲井
Toshiaki Kasuga
利明 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7072916A priority Critical patent/JPH08273827A/en
Publication of JPH08273827A publication Critical patent/JPH08273827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE: To control electric current with proper responds independently of arc resistance which fluctuates based on the arc generating situation by providing a specified function regarding an electric current controlling device for arc furnace having a prescribed system to melt scraps by generating arc discharge. CONSTITUTION: An electric current controlling device for an arc furnace is one composed of an arc furnace 1, a d.c. reactor 3, an electric power transformer 4, an ignition angle controlling apparatus 5 to control the ignition angle of the electric power transformer 4, a current detector 6, and a current adjusting apparatus 7 to give a set instruction to the ignition angle controlling apparatus 5 based on an electric current signal from the current detector 6 as a feedback signal and the current controlling device is to melt scraps 11 by generating arc discharge. In the device, a voltage detector 8 and a computer 9 to carry out multiplication and division are installed, the current adjusting apparatus 7 is provided with an integration time changeable means for integration operation, and thus the current controlling device is provided with a function to compute a resistance value by the computer 9 based on the electric signals from the voltage detector 8 and the electric signals from the current detector 6 and to variably set the integration time by the integration time changeable means based on the value inversely proportional to the resistance value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流アーク炉などの負
荷抵抗が変化する場合の電流制御装置に関し、特に、ア
ーク長の変動に関わらず最適なアーク炉の電流制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current control device when a load resistance of a DC arc furnace or the like changes, and more particularly to an optimum current control device for an arc furnace regardless of variations in arc length.

【0002】[0002]

【従来の技術】図3に従来技術によるアーク炉の電流制
御装置のブロック回路図を示す。アーク炉は、炉1と,
電極2と,から構成される。また、アーク炉の電流制御
装置は、直流リアクトル3と,電力変換器4と,この電
力変換器4の点弧角を制御する点弧角調節器5と,電流
検出器6と,この電流検出器6の電流信号62を帰還信号
とし前記点弧角調節器5に設定指令を与える電流調節器
7と,から構成され、炉1中に投入されるスクラップ材
11と,電極2と,の間にアーク放電21を持続発生しスク
ラップ材11を溶解させる。
2. Description of the Related Art FIG. 3 shows a block circuit diagram of a conventional current control device for an arc furnace. The arc furnace is furnace 1,
And an electrode 2. The current control device of the arc furnace includes a DC reactor 3, a power converter 4, a firing angle controller 5 for controlling the firing angle of the power converter 4, a current detector 6, and this current detection. Scrap material to be charged into the furnace 1 and a current controller 7 which uses the current signal 62 of the reactor 6 as a feedback signal and gives a setting command to the ignition angle controller 5.
An arc discharge 21 is continuously generated between the electrode 11 and the electrode 2 to melt the scrap material 11.

【0003】かかる構成において、電流検出器6の検出
電流は整流手段61で整流されて電流信号62となり、電流
調節器7の帰還信号として負帰還される。即ち、この電
流信号62が電流指令値63と一致するように、電流調節器
7(ACR) が比例+積分動作を行う。電流調節器7の出力
信号73は、点弧角調節器5(FAR) の入力信号に加えら
れ、点弧角調節器5(FAR) の点弧位相角を制御する。そ
して、この点弧位相角出力は、電力変換器4の半導体制
御素子、例えば、サイリスタの導通角制御を行い、電力
変換器4の出力電圧を制御する。この電力変換器4の出
力電圧は、電極2と炉1との間のアーク放電21のアーク
電流を制御する。直流リアクトル3は、電極2と炉1と
が短絡したときの過電流を抑制するために用いられる。
また、アーク電圧の平均値は、電極2と炉1の距離を制
御することにより制御できる。
In such a configuration, the detected current of the current detector 6 is rectified by the rectifying means 61 to become the current signal 62, which is negatively fed back as the feedback signal of the current regulator 7. That is, the current regulator 7 (ACR) performs the proportional plus integral operation so that the current signal 62 matches the current command value 63. The output signal 73 of the current regulator 7 is added to the input signal of the firing angle regulator 5 (FAR) to control the firing phase angle of the firing angle regulator 5 (FAR). Then, this firing phase angle output controls the conduction angle of a semiconductor control element of the power converter 4, for example, a thyristor, and controls the output voltage of the power converter 4. The output voltage of this power converter 4 controls the arc current of the arc discharge 21 between the electrode 2 and the furnace 1. The DC reactor 3 is used to suppress overcurrent when the electrode 2 and the furnace 1 are short-circuited.
Further, the average value of the arc voltage can be controlled by controlling the distance between the electrode 2 and the furnace 1.

【0004】調節器の比例ゲインKpおよび積分時間Tiの
整定法は、多くの人により色々な整定法があるが、ここ
では、アーク炉の制御の分野で比較的多く適用されてい
るベトラーク法について述べる。 参考文献;「フィードバック制御系の最適化(トランジ
ダイン制御理論による最適調整手法)」富士電機
(株)、カタログ番号CP035 。
There are various settling methods for the proportional gain Kp and the integral time Ti of the controller, and many people have various settling methods. Here, the Betlerk method, which is relatively widely applied in the field of arc furnace control, is described here. Describe. Reference: “Optimization of feedback control system (optimum adjustment method by Transdyne control theory)” Fuji Electric Co., Ltd., Catalog No. CP035.

【0005】図4はベトラーク法による制御の整定法を
説明する説明図である。図4の(A)において、比例+積
分動作を有する調節器(以下、PI調節器という) の伝達
関数GRは、比例ゲインをVp、積分時間をTiとすると、
(1) 式で表される。
FIG. 4 is an explanatory view for explaining a control settling method based on the Betlerk method. In (A) of FIG. 4, the transfer function GR of the controller having proportional + integral operation (hereinafter, referred to as PI controller) has a proportional gain Vp and an integration time Ti.
It is expressed by equation (1).

【0006】[0006]

【数1】 [Equation 1]

【0007】また、制御対象の主な遅れを一次遅れと
し、この伝達関数GSは、制御対象のゲインをVs、一次遅
れ時間をT1とし、さらに、制御対象の高次の遅れを含
め、検出器などの数個の小さな遅れ要素をこの小さな遅
れ時間の和とし、この時定数σの一次遅れ項があるとし
て近似すると、この数個の小さな遅れ要素を含めた制御
対象の伝達関数GSは、二次遅れ系として(2) 式で近似さ
れる。
The main delay of the controlled object is a first-order delay, and this transfer function GS has a gain of the controlled object as Vs, a first-order delay time as T1, and a detector including a higher-order delay of the controlled object. If several small delay elements such as are taken as the sum of this small delay time and approximated as there is a first-order delay term of this time constant σ, the transfer function GS of the controlled object including these several small delay elements is It is approximated by Eq. (2) as a secondary delay system.

【0008】[0008]

【数2】 [Equation 2]

【0009】制御対象の主な一次遅れ項が緩慢な制御動
作を起こす主因であるので、この遅れ要素を補償するPI
調節器が適当であり、調節器の積分時間Tiと、制御対象
の主な一次遅れ時間T1と、を等しく選定する。この状態
での制御系の開ループ伝達関数G0は、(3) 式で表され
る。
Since the main first-order lag term of the controlled object is the main cause of the slow control operation, the PI that compensates for this lag element
A regulator is suitable, and the integration time Ti of the regulator and the main first-order delay time T1 to be controlled are selected to be equal. The open-loop transfer function G0 of the control system in this state is expressed by equation (3).

【0010】[0010]

【数3】 (Equation 3)

【0011】理想的な制御は、C=Rのときその制御目
的が達せられるが、実際は閉ループ伝達関数Gcが作用
し、C=Gc・Rとなる。従って、ベトラーク法による整
定法は、図4の(B) に図示される様に、閉ループ伝達関
数Gcができるだけ広い周波数ωの範囲にわたって、ゲイ
ン1が確保できることである。この様な条件を確保する
PI調節器の比例ゲインVp、積分時間Tiは、(4),(5) 式で
表される。また、このときの目標値Rのステップ状変更
に対する制御量Cの応答特性が図4の(C) に図示され
る。
The ideal control achieves its control purpose when C = R, but in reality, the closed loop transfer function Gc acts and C = Gc · R. Therefore, the settling method based on the Betlarke method is that the gain 1 can be secured over the range of the frequency ω where the closed-loop transfer function Gc is as wide as possible, as shown in FIG. 4 (B). Ensure such conditions
The proportional gain Vp and the integration time Ti of the PI controller are expressed by equations (4) and (5). Further, the response characteristic of the control amount C to the stepwise change of the target value R at this time is shown in FIG.

【0012】[0012]

【数4】 [Equation 4]

【0013】[0013]

【数5】 (Equation 5)

【0014】アーク炉の電流調節器7において、制御対
象の主な一次遅れ時間T1と、制御対象のゲインVSは、直
流リアクトル3のインダクタンスLとこの電流回路の直
流抵抗R(直流リアクトル3の抵抗RL、アーク抵抗Ra、
配線および炉内抵抗Re)で定まる。即ち、電力変換器4
の出力をvとし、直流リアクトル3を流れる電流iは、
(6) 式で表される。
In the current regulator 7 of the arc furnace, the main primary delay time T1 to be controlled and the gain VS to be controlled are the inductance L of the DC reactor 3 and the DC resistance R (resistance of the DC reactor 3) of this current circuit. RL, arc resistance Ra,
Determined by wiring and furnace resistance Re). That is, the power converter 4
Is the output of, and the current i flowing through the DC reactor 3 is
It is expressed by equation (6).

【0015】[0015]

【数6】 (Equation 6)

【0016】今、直流定格電圧をEdo 、直流定格電流を
Idn とし、電力変換器4の出力vと直流リアクトル3の
電流iを百分率表示でそれぞれv(%),i(%) で表すと、
(6) 式は(7) 式に変換できる。
Now, the DC rated voltage is Edo and the DC rated current is
Let Idn be the output v of the power converter 4 and the current i of the DC reactor 3 expressed as v (%) and i (%) in percentage,
Equation (6) can be converted to equation (7).

【0017】[0017]

【数7】 (Equation 7)

【0018】即ち、制御対象のゲインVsは、(8) 式とな
る。
That is, the gain Vs to be controlled is given by equation (8).

【0019】[0019]

【数8】 (Equation 8)

【0020】従って、アーク炉の電流調節器7におい
て、ベトラーク法の整定条件を満たすPI調節器の比例ゲ
インVp、積分時間Tiは、(4) 式に(8) 式を代入して、
(9),(10)式で表すことができる。
Therefore, in the current regulator 7 of the arc furnace, the proportional gain Vp and the integral time Ti of the PI regulator satisfying the setting conditions of the Betlerk method are obtained by substituting the equation (8) into the equation (4).
It can be expressed by equations (9) and (10).

【0021】[0021]

【数9】Kp=L・Idn /(2・σ・Edo )……(9)[Equation 9] Kp = L · Idn / (2 · σ · Edo) …… (9)

【0022】[0022]

【数10】Ti=L/R ,R=RL+Re+(Ra)……(10) ここで、L ;直流リアクトルのインダクタンス RL ;直流リアクトルの抵抗値 Re ;配線および炉内抵抗 (Ra) ;アーク抵抗 Idn ;直流定格電流 Edo ;直流定格電圧 σ ;直流リアクトルの遅れ成分を除く各部の遅れ時間
の合計値 即ち、アーク炉の電流調節器7においては、比例ゲイン
Vpは、アーク抵抗Raの影響を受けないが、積分時間Tiは
アーク抵抗Raの影響を受ける。
[Equation 10] Ti = L / R, R = RL + Re + (Ra) (10) where, L: DC reactor inductance RL; DC reactor resistance Re; Wiring and furnace resistance (Ra); Arc resistance Idn; DC rated current Edo; DC rated voltage σ; Total value of delay time of each part excluding delay component of DC reactor That is, in the current regulator 7 of the arc furnace, proportional gain
Vp is not affected by the arc resistance Ra, but the integration time Ti is affected by the arc resistance Ra.

【0023】[0023]

【発明が解決しようとする課題】この様な従来技術のア
ーク炉の電流制御装置では次の様な問題がある。即ち、
従来技術では、アーク発生中の直流リアクトルの回路の
抵抗成分Rは、アーク抵抗を含め(11)式で示される。
The conventional current control device for the electric arc furnace has the following problems. That is,
In the prior art, the resistance component R of the circuit of the DC reactor during arc generation is expressed by the equation (11) including the arc resistance.

【0024】[0024]

【数11】R=RL+Re+Ra ……(11) 従来の技術では、電流調節器7の積分時間Tiの整定は、
電極2と炉1とを短絡させた状態(抵抗値Ro=RL+R
e)、および、アーク発生中(抵抗値R=RL+Re+Ra)
の両方の状態をカバーするように整定しなければならな
いため、応答の遅い、即ち、積分時間が長い、電極2を
炉1とを短絡させた状態にして、整定を行わねばならな
かった。
[Equation 11] R = RL + Re + Ra (11) In the conventional technique, the settling of the integration time Ti of the current regulator 7 is
State where electrode 2 and furnace 1 are short-circuited (resistance value Ro = RL + R
e) and during arcing (resistance value R = RL + Re + Ra)
Since it has to be settled so as to cover both of the above conditions, the settling must be performed with the electrode 2 short-circuited with the furnace 1 having a slow response, that is, the integration time is long.

【0025】アーク発生中は、抵抗値が増えるため時定
数が短くなるが、電流調節器7の積分時間が固定で変わ
らないため、電流調節器7の応答が遅くなっていた。本
発明は上記の点にかんがみてなされたものであり、その
目的は前記した課題を解決して、アークの長短などアー
ク発生状況により変動するアーク抵抗に関わらず最適な
応答を有する電流制御を行うアーク炉の電流制御装置を
提供することにある。
While the arc is occurring, the time constant becomes short because the resistance value increases, but the response time of the current regulator 7 is slow because the integration time of the current regulator 7 is fixed and does not change. The present invention has been made in view of the above points, and an object thereof is to solve the above-mentioned problems and perform current control having an optimum response regardless of the arc resistance that varies depending on the arc generation situation such as the length of the arc. It is to provide a current control device for an arc furnace.

【0026】[0026]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、炉と電極とからなるアーク炉
と、直流リアクトルと,電力変換器と,この電力変換器
の点弧角を制御する点弧角調節器と,電流検出器と,こ
の電流検出器の電流信号を帰還信号とし点弧角調節器に
設定指令を与える電流調節器と,からなり、炉中に投入
されるスクラップ材と電極との間にアーク放電を発生し
スクラップ材を溶解するアーク炉の電流制御装置におい
て、電圧検出器と、乗除算演算を行う演算器と、を備
え、電流調節器は、少なくとも積分動作の積分時間可変
手段を備え、電圧検出器からの電圧信号と電流検出器か
らの電流信号とから演算器で抵抗値を演算し、この演算
された抵抗値に反比例した値で積分時間可変手段により
積分時間を可変設定するものとする。
In order to achieve the above object, in the present invention, an arc furnace comprising a furnace and electrodes, a DC reactor, a power converter, and an ignition angle of the power converter are set. Scrap to be put into the furnace, which consists of a firing angle controller to be controlled, a current detector, and a current regulator which uses the current signal of this current detector as a feedback signal to give a setting command to the firing angle controller. In a current control device for an arc furnace that generates an arc discharge between a material and an electrode to melt scrap material, a voltage detector and a computing unit for performing a multiplication / division operation are provided, and the current regulator has at least an integral operation. Of the voltage signal from the voltage detector and the current signal from the current detector, the resistance value is calculated by a calculator, and the integration time variable means has a value that is inversely proportional to the calculated resistance value. Variable setting of integration time And things.

【0027】また、演算器は、乗除算演算出力の出力値
を制限する制限手段、を備えるものとする。
Further, the arithmetic unit is provided with a limiting means for limiting the output value of the multiplication / division operation output.

【0028】[0028]

【作用】上記構成により、予め電極を炉に短絡した抵抗
値(Ro=RL+Re)の状態で、演算器および電流調節器の
積分時間(Ti0 =L/Ro)の調整を行う。次に、運転状
態にて、電流信号i(%)および電圧信号v(%)より、(12)式
の 演算を行い、その演算結果を電流調節器の積分時間
Tiとして使用する。
With the above structure, the integration time (Ti0 = L / Ro) of the calculator and the current regulator is adjusted in the state of the resistance value (Ro = RL + Re) in which the electrodes are short-circuited to the furnace in advance. Next, in the operating state, the calculation of equation (12) is performed from the current signal i (%) and the voltage signal v (%), and the calculation result is the integration time
Used as Ti.

【0029】[0029]

【数12】Ti= Ti0・Ro・i(%)/v(%) ……(12) この結果、i(%)/v(%)の項は、電圧、電流が安定に制御
されている定常状態では、アーク炉のアーク放電抵抗を
含めた直流リアクトル3の回路抵抗Rを示し、アークの
長短などアーク発生状況に影響されない最適な電流制御
ができる。
[Equation 12] Ti = Ti0 ・ Ro ・ i (%) / v (%) (12) As a result, the voltage and current of the i (%) / v (%) term are controlled stably. In the steady state, the circuit resistance R of the DC reactor 3 including the arc discharge resistance of the arc furnace is shown, and optimal current control can be performed without being influenced by the arc generation status such as the length of the arc.

【0030】また、電力変換器4の出力電圧変動が大幅
に変化したときなどでは、電流成分は直流リアクトル3
により急激には変化しない。従って、この様な場合、(1
2)式で演算される積分時間Tiの変動が激し過ぎ、逆に、
電流制御に不安定現象を与える。この(12)式で演算され
る積分時間Tiの演算出力を制限し、最適な積分時間Tiの
可変範囲を制限することにより、この問題を解決するこ
とができる。
When the output voltage fluctuation of the power converter 4 changes significantly, the current component is the DC reactor 3
Does not change rapidly. Therefore, in such a case, (1
The fluctuation of the integration time Ti calculated by equation (2) is too severe, and conversely,
It gives an unstable phenomenon to current control. This problem can be solved by limiting the calculation output of the integration time Ti calculated by the expression (12) and limiting the variable range of the optimum integration time Ti.

【0031】[0031]

【実施例】図1は本発明による一実施例のアーク炉の電
流制御装置のブロック回路図、図2はアーク電流が直流
リアクトルを流れる回路の等価回路図であり、図3に対
応する同一機能部材には同じ符号が付してある。図1に
おいて、アーク炉は、炉1と、電極2と、から構成され
る。また、アーク炉の電流制御装置は、直流リアクトル
3と,電力変換器4と,この電力変換器4の点弧角を制
御する点弧角調節器5(FAR) と,電流検出器6と,この
電流検出器6の電流信号62 i(%) を帰還信号とし点弧角
調節器5に設定指令を与える電流調節器7と,から構成
され、炉1中に投入されるスクラップ材11と電極2との
間でアーク放電21を持続発生し、スクラップ材11を溶解
させる。
1 is a block circuit diagram of a current control device for an arc furnace according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of a circuit in which an arc current flows through a DC reactor, and the same function corresponding to FIG. The members have the same reference numerals. In FIG. 1, the arc furnace comprises a furnace 1 and an electrode 2. The current control device of the arc furnace includes a DC reactor 3, a power converter 4, a firing angle controller 5 (FAR) for controlling the firing angle of the power converter 4, a current detector 6, The scrap material 11 and the electrode to be put into the furnace 1 are composed of a current controller 7 which gives a setting command to the ignition angle controller 5 by using the current signal 62 i (%) of the current detector 6 as a feedback signal. The arc discharge 21 is continuously generated between the two and the scrap material 11 is melted.

【0032】本発明による一実施例の電流制御装置で
は、電圧検出器8と、乗除算演算を行う演算器9と、を
備えて構成される。また、電流調節器7は、少なくと
も、積分動作の積分時間可変手段72、を備える。さらに
図示例では、演算器9は、乗算器91と除算器92と乗除算
演算出力の出力値を制限する制限手段93とを備えて構成
される。
The current controller of one embodiment according to the present invention comprises a voltage detector 8 and an arithmetic unit 9 for performing multiplication / division operation. Further, the current regulator 7 includes at least integration time varying means 72 for integration operation. Further, in the illustrated example, the arithmetic unit 9 is configured to include a multiplier 91, a divider 92, and a limiting unit 93 that limits the output value of the multiplication / division operation output.

【0033】かかる構成において、電圧検出器8からの
電圧信号81 v(%) と、電流検出器6からの電流信号62 i
(%) と、から演算器9で抵抗値(R)を演算し、この演
算された抵抗値Rに反比例した値で上述の積分時間可変
手段72により積分時間Tiを可変設定を行うことにより、
アーク炉のアーク電流の最適制御を行う。電流調節器7
がアナログ技術で構成されたハードウェアでは、従来技
術で説明した電流制御装置に、電圧検出器8と、割算器
92と乗算器91と出力制限器93を備えてなる演算器9が追
加される。また、電流調節器7がディジタル技術で構成
されたハードウェアでは、電圧検出器8のみが追加さ
れ、演算器9の演算手段は電流調節器7のプログラム処
理で実行される。
In such a configuration, the voltage signal 81 v (%) from the voltage detector 8 and the current signal 62 i from the current detector 6
(%), The resistance value (R) is calculated by the calculator 9, and the integration time Ti is variably set by the integration time changing means 72 with a value inversely proportional to the calculated resistance value R.
Optimum control of the arc current in the arc furnace. Current regulator 7
In the hardware configured by the analog technology, the voltage controller 8 and the divider are added to the current control device described in the related art.
An arithmetic unit 9 including 92, a multiplier 91 and an output limiter 93 is added. Further, in the hardware in which the current regulator 7 is configured by digital technology, only the voltage detector 8 is added, and the computing means of the computing unit 9 is executed by the program processing of the current regulator 7.

【0034】演算器9が行う演算は、(12)式で示される
演算Ti= Ti0・Ro・i(%)/v(%)の演算を行い、電流調節
器7の積分時間Tiとしている。電極2と炉1が短絡して
いるときは、 Ti0を電流調節器の積分時間として用い、
アーク発生中は、 Ti0・Ro/(Ro+Ra)を用いる。ここ
で、アーク抵抗Raは、アーク長によって変化する。この
ため、炉1内のスクラップが溶けることにより、アーク
抵抗Raは変化するが、抵抗(Ro+Ra)は、直流電圧v(%)
/直流電流i(%)により演算を行っているため、常に、電
流調節器7の積分時間Tiは、アーク抵抗Raの補償を受け
た最適な調整値に保つことができる。
The arithmetic operation performed by the arithmetic unit 9 is the arithmetic operation Ti = Ti0.Ro.i (%) / v (%) expressed by the equation (12), which is the integration time Ti of the current regulator 7. When the electrode 2 and the furnace 1 are short-circuited, Ti0 is used as the integration time of the current regulator,
Use Ti0 / Ro / (Ro + Ra) during arc generation. Here, the arc resistance Ra changes depending on the arc length. Therefore, the arc resistance Ra changes due to the melting of scrap in the furnace 1, but the resistance (Ro + Ra) is equal to the DC voltage v (%).
/ Since the calculation is performed by the DC current i (%), the integration time Ti of the current regulator 7 can always be kept at an optimum adjustment value that is compensated for the arc resistance Ra.

【0035】図2は、アーク電流が直流リアクトルを流
れる回路の等価回路図を示し、図2の(A) は電極2と炉
1が短絡しているときを示し、アーク電流が直流リアク
トルを流れる回路の等価回路は、直流リアクトル3の直
流抵抗RLと、配線および炉内抵抗Reからなり、図2の
(B) は電極2と炉1との間でアーク放電が発生している
ときを示し、このときは、さらにアーク抵抗Raが追加さ
れる。
FIG. 2 shows an equivalent circuit diagram of a circuit in which the arc current flows through the DC reactor. FIG. 2A shows the case where the electrode 2 and the furnace 1 are short-circuited, and the arc current flows through the DC reactor. The equivalent circuit of the circuit consists of the DC resistance RL of the DC reactor 3, the wiring and the furnace resistance Re,
(B) shows when arc discharge is occurring between the electrode 2 and the furnace 1, and at this time, arc resistance Ra is further added.

【0036】また、図1において、出力制限器93は、上
述の演算された電流調節器7の積分時間Tiが、過渡的に
大幅に変化したとき、電流制御に不安定現象(積分時間
Tiが小さすぎる)あるいは電流整定に時間大(積分時間
Tiが大きすぎる)などの悪影響を与える。このため、上
述の演算された積分時間Tiの演算出力を制限し、最適な
積分時間Tiの可変範囲を制限することにより、過渡的に
発生する上述の悪影響を避けることができる。
Further, in FIG. 1, the output limiter 93 has an unstable phenomenon (integration time) in the current control when the above-calculated integration time Ti of the current regulator 7 changes transiently and largely.
Ti is too small) or it takes a long time to set the current (integration time
Ti is too large). Therefore, by limiting the calculation output of the calculated integration time Ti and limiting the variable range of the optimum integration time Ti, it is possible to avoid the above-mentioned adverse effect that occurs transiently.

【0037】[0037]

【発明の効果】本発明により、電極と炉が短絡している
ときも、アーク発生中も、電流調節器の制御パラメータ
が最適値をとることができ、アークの長短などアーク発
生状況により変動するアーク抵抗に関わらず最適な応答
を有する電流制御を行うことができ、アーク電流制御が
安定し、アーク切れを起こりにくくすることができる。
また、アーク切れが起こりにくくなるため、アーク炉の
操業時間の短縮や電力効率の向上を計ることができる。
According to the present invention, the control parameter of the current regulator can take an optimum value even when the electrode and the furnace are short-circuited or during arc generation, and varies depending on the arc generation condition such as the length of the arc. It is possible to perform the current control having an optimum response regardless of the arc resistance, stabilize the arc current control, and make it difficult for the arc to break.
Further, since arc breakage is less likely to occur, the operating time of the arc furnace can be shortened and the power efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例のアーク炉の電流制御装
置のブロック回路図
FIG. 1 is a block circuit diagram of an electric current control device for an arc furnace according to an embodiment of the present invention.

【図2】アーク電流が直流リアクトルを流れる回路の等
価回路図
FIG. 2 is an equivalent circuit diagram of a circuit in which an arc current flows through a DC reactor.

【図3】従来技術のアーク炉の電流制御装置のブロック
回路図
FIG. 3 is a block circuit diagram of a conventional arc furnace current control device.

【図4】ベトラーク法による制御の整定法を説明する説
明図
FIG. 4 is an explanatory diagram illustrating a control settling method based on the Betlerk method.

【符号の説明】[Explanation of symbols]

1 炉 2 電極 3 直流リアクトル 4 電力変換器 5 点弧角調節器 6 電流検出器 62、i(%) 電流信号 63 電流指令値 7 電流調節器 71 比例動作手段 72 積分動作手段 8 電圧検出器 81、v(%) 電圧信号 9 演算器 91 乗算器 92 除算器 93 制限器 L 直流リアクトルのインダクタンス Ra アーク抵抗 Re 配線および炉内抵抗 RL 直流リアクトルの回路抵抗 Idn 直流定格電流 Edo 直流定格電圧 σ 直流リアクトルの遅れ成分を除く各部の遅れ時間
の合計値 Ti,Ti0 積分時間
1 furnace 2 electrode 3 direct current reactor 4 power converter 5 ignition angle adjuster 6 current detector 62, i (%) current signal 63 current command value 7 current regulator 71 proportional operating means 72 integral operating means 8 voltage detector 81 , V (%) Voltage signal 9 Operator 91 Multiplier 92 Divider 93 Limiter L DC inductor inductance Ra Arc resistance Re Wiring and furnace resistance RL DC reactor circuit resistance Idn DC rated current Edo DC rated voltage σ DC reactor Value of total delay time of each part excluding the delay component of Ti, Ti0 integration time

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉と,電極と,からなるアーク炉と、直流
リアクトルと,電力変換器と,この電力変換器の点弧角
を制御する点弧角調節器と,電流検出器と,この電流検
出器の電流信号を帰還信号とし前記点弧角調節器に設定
指令を与える電流調節器と,からなり、炉中に投入され
るスクラップ材と電極との間にアーク放電を発生しスク
ラップ材を溶解するアーク炉の電流制御装置において、 電圧検出器と、 乗除算演算を行う演算器と、を備え、 電流調節器は、少なくとも、積分動作の積分時間可変手
段、を備え前記電圧検出器からの電圧信号と電流検出器
からの電流信号とから前記演算器で抵抗値を演算し、こ
の演算された抵抗値に反比例した値で前記積分時間可変
手段により積分時間を可変設定する、 ことを特徴とするアーク炉の電流制御装置。
1. An arc furnace comprising a furnace, an electrode, a DC reactor, a power converter, a firing angle controller for controlling the firing angle of the power converter, a current detector, and a current detector. And a current controller which uses the current signal of the current detector as a feedback signal to give a setting command to the ignition angle controller, and an arc discharge is generated between the scrap material charged into the furnace and the electrode. In a current control device for an arc furnace that melts, a voltage detector and a calculator for performing a multiplication / division operation are provided, and the current regulator is provided with at least an integration time variable means for integration operation. And a current signal from the current detector, the resistance value is calculated by the calculator, and the integration time is variably set by the integration time variable means with a value inversely proportional to the calculated resistance value. Current control of arc furnace Control device.
【請求項2】請求項1に記載のアーク炉の電流制御装置
において、演算器は、乗除算演算出力の出力値を制限す
る制限手段、を備える、ことを特徴とするアーク炉の電
流制御装置。
2. The electric current control device for an electric arc furnace according to claim 1, wherein the arithmetic unit includes a limiting means for limiting an output value of the multiplication / division operation output. .
JP7072916A 1995-03-30 1995-03-30 Electric current controlling device for arc furnace Pending JPH08273827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7072916A JPH08273827A (en) 1995-03-30 1995-03-30 Electric current controlling device for arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7072916A JPH08273827A (en) 1995-03-30 1995-03-30 Electric current controlling device for arc furnace

Publications (1)

Publication Number Publication Date
JPH08273827A true JPH08273827A (en) 1996-10-18

Family

ID=13503162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072916A Pending JPH08273827A (en) 1995-03-30 1995-03-30 Electric current controlling device for arc furnace

Country Status (1)

Country Link
JP (1) JPH08273827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084098A1 (en) 2012-11-30 2014-06-05 富士電機株式会社 Control device design method and control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084098A1 (en) 2012-11-30 2014-06-05 富士電機株式会社 Control device design method and control device
US10409229B2 (en) 2012-11-30 2019-09-10 Fuji Electric Co., Ltd. Method of control device and control device

Similar Documents

Publication Publication Date Title
US4324944A (en) Arrangement for controlling the electrodes of an arc furnace
EP0774317A1 (en) Pulsed arc welding method and apparatus
US5351267A (en) Process for electrode control of a DC arc furnace, and an electrode control device
JP7108825B2 (en) Laser drive power supply
JPH08205406A (en) Method fdr stabilizing alternating current against reactive load fluctuation and apparatus for compensating reactive power
JPH07211452A (en) Adjusting method for d.c. arc furnace
JPH08273827A (en) Electric current controlling device for arc furnace
JPH04228265A (en) Controlling method for welding current or welding erectric power corres pondingly to welding spead and its circuit
JPH1133827A (en) Method and device for controlling electric arc
JPH0592269A (en) Consumable electrode ac pulse arc welding method
JPH06233530A (en) Variable-gain voltage control system of dc/dc converter using detection of load current
EP0227606B1 (en) Electronic device for controlling the supply of electrical power to resistance-welding equipment
AU2003217095A1 (en) Power control
SU1762423A1 (en) Device for automatic controlling electron-beam thermal unit
JPH05190278A (en) Dc arc furnace power supply device
US20230311230A1 (en) Cancellation of the effects of primary voltage variations
SU1066049A1 (en) Device for control of electric conditions of plasma generator
JPH0626457B2 (en) Control system of reactive power compensator
KR100246824B1 (en) Process for electrode control of a dc arc furnace, and an electrode control device
JPH09108837A (en) Method and device for pulse arc welding
JPH02281310A (en) Reactive power generator and its control method
JPH09274987A (en) Power control method in melting furnace
JPS6162102A (en) Control arithmetic unit
JPH0297278A (en) Control method for inverter apparatus
JPH03133088A (en) Controller of dc arc furnace