JPH08273198A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH08273198A
JPH08273198A JP7069574A JP6957495A JPH08273198A JP H08273198 A JPH08273198 A JP H08273198A JP 7069574 A JP7069574 A JP 7069574A JP 6957495 A JP6957495 A JP 6957495A JP H08273198 A JPH08273198 A JP H08273198A
Authority
JP
Japan
Prior art keywords
film
recording
interference
reflection film
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7069574A
Other languages
Japanese (ja)
Inventor
Makoto Miyamoto
真 宮本
Nobuhiro Tokujiyuku
伸弘 徳宿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7069574A priority Critical patent/JPH08273198A/en
Publication of JPH08273198A publication Critical patent/JPH08273198A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve recording sensitivity by laminating a first reflection film, first interference film, recording film, second interference film, second reflection film and protective film in this order successively from the substrate side on a transparent substrate and specifying the reflectivity of the unrecorded parts at a reproducing laser wavelength to specific % or above. CONSTITUTION: The thin films are laminated in order of the first reflection film 2, the first interference film 3, the recording film 4, the second interference film 5, the second reflection film 6 and the protective film 7 successively from the substrate side on the transparent substrate 1 and the reflectivity of the unrecorded parts at the reproducing laser wavelength is specified to >=65%. Further, the film thickness of the second reflection film 6 is specified to 30 to 45nm. As a result, the laser power required for recording of a reloadable optical recording medium CD-E of >=65% in the reflectivity of the unrecorded parts at the reproducing laser wavelength is lowered. The recording sensitivity is greatly improved while the optical characteristics required for the CD-E are satisfied by specifying the second reflection film thickness to 30 to 45nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は書換可能型光記録媒体、
特に未記録部の反射率が65%以上となる再生専用型光
ディスクと光学的に互換性がある書換可能型光記録媒体
に関する。なお、本発明では再生専用型光ディスクを代
表的な再生専用型光ディスクとして、CD−ROM、追
記型光ディスクをCD−R、書換可能な光ディスクをC
D−Eと表現するが、本発明は未記録部の反射率が65
%以上となる再生専用型光ディスクと光学的に互換性が
ある書換可能型光記録媒体であれば、適用可能であるの
で、特に、CD−Eに限定されるものではない。
The present invention relates to a rewritable optical recording medium,
In particular, the present invention relates to a rewritable optical recording medium that is optically compatible with a read-only optical disc whose reflectance in an unrecorded portion is 65% or more. In the present invention, a read-only optical disc is a typical read-only optical disc, a CD-ROM, a write-once optical disc is CD-R, and a rewritable optical disc is C.
In the present invention, the reflectance of the unrecorded portion is 65, which is expressed as DE.
Any rewritable optical recording medium that is optically compatible with a read-only type optical disc of which the content is at least 100% is applicable, and is not particularly limited to CD-E.

【0002】[0002]

【従来の技術】CD−ROMは大容量であり、大量生産
時の生産コストが低いため、コンピュータ用ソフトウエ
アの配布等に使用されている。しかしながら、データの
書き換えができないため、フロッピーディスクや光磁気
ディスクの様に、ユーザデータのデータファイルとして
は使用できない。このため、ユーザはCD−ROM再生
装置の他に、フロッピーディスクや光磁気ディスクの記
録再生装置を用意する必要がある。しかしながら、CD
−ROMに書き換えの機能を持たせることにより、1台
のCD−ROM記録再生装置を用いて、ソフトウエアの
入手とデータファイルが可能となる。
2. Description of the Related Art A CD-ROM has a large capacity and a low production cost in mass production, and is therefore used for distributing software for computers. However, since the data cannot be rewritten, it cannot be used as a data file of user data like a floppy disk or a magneto-optical disk. Therefore, the user needs to prepare a recording / reproducing apparatus for a floppy disk or a magneto-optical disk in addition to the CD-ROM reproducing apparatus. However, the CD
-By providing the ROM with a rewriting function, it becomes possible to obtain software and data files using one CD-ROM recording / reproducing device.

【0003】こうしたニーズに応え、書き換え可能なC
D−ROM(CD−E)の研究がなされている。CD−
E開発の第一の技術課題は、CD−Rの反射率規格(未
記録部の反射率65%以上、変調度60%以上)を満足
することにある。この種の光ディスクは、例えば、特開
平6−36342号公報、特開平6−162563号公
報に開示されている。
Rewritable C that meets these needs
Research on D-ROM (CD-E) has been made. CD-
The first technical problem of the E development is to satisfy the reflectance standard of CD-R (reflectance of unrecorded portion is 65% or more, modulation degree is 60% or more). This type of optical disc is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 6-36342 and 6-162563.

【0004】この問題を解決するための手段として、透
明基板上の基板側から、第一反射膜、第一干渉膜、記録
膜、第二干渉膜、第二反射膜の順に薄膜が積層された構
造のCD−Eが開発されている(第40回応用物理学関
係連合講演会講演予稿集の第1014頁(1993)、
および、第5回相変化記録研究会講演予稿集の第9頁〜
第14頁(1993)、および、Optical Data Storage
Topical Meeting Technical Digestの第59頁〜第6
0頁(1994))。
As a means for solving this problem, a thin film is laminated in the order of a first reflective film, a first interference film, a recording film, a second interference film and a second reflective film from the substrate side on a transparent substrate. Structure CD-E has been developed (Page 1014 (1993) of Proceedings of the 40th Joint Lecture on Applied Physics, 1993,
And page 9 of the proceedings of the 5th Phase Change Research Workshop
Page 14 (1993) and Optical Data Storage
Topical Meeting Technical Digest pages 59-6
0 (1994)).

【0005】[0005]

【発明が解決しようとする課題】ところで、光ディスク
用に開発されている半導体レーザーの出力は高出力のも
のでも70mWである。光ヘッドのレーザー効率は一般
的に最大45%程度であるから、この半導体レーザーの
ディスク上での最大出力は32mW程度となる。ところ
が、上記書換可能型光記録媒体は未記録部の反射率が7
0%以上となるため、未記録部の吸収率は30%以下と
なり、その結果、記録レーザーパワーがディスク上にお
いてに50mW以上の大出力が必要となってしまうとい
う問題がある。このような大出力の半導体レーザーを得
ることは困難であり、また大出力で使用するために半導
体の寿命が縮むという問題もある。
The output of a semiconductor laser developed for an optical disk is 70 mW even with a high output. Since the laser efficiency of the optical head is generally about 45% at maximum, the maximum output of this semiconductor laser on the disk is about 32 mW. However, the rewritable optical recording medium has a reflectance of 7 in the unrecorded area.
Since it is 0% or more, the absorptance of the unrecorded portion is 30% or less, and as a result, there is a problem that the recording laser power needs to be as high as 50 mW or more on the disk. It is difficult to obtain such a high-power semiconductor laser, and there is also a problem that the life of the semiconductor is shortened because it is used at a high output.

【0006】また、反射膜にAu等の貴金属を用いてい
るため、反射膜に要する材料コストが大きくなるという
問題がある。CD−Eの記録感度が低い本質的な原因は
反射率が70%と高いため、照射されたレーザー光線が
ほとんど反射し、記録膜に吸収される光量が少なくなる
からである。しかし、この他にもいくつかの原因が存在
している。このうちの一つが、反射膜用の金属にAuな
どの高反射率金属を用いていることである。これには理
由がある。高反射率、高変調度を達成するためには、で
きるだけ反射率が高い金属を反射膜にする必要がある。
ところが、高反射率金属(Au、Ag、Cu)は、熱伝
導率が200(W/m・K)以上と非常に大きい。この
結果、記録膜から反射膜を伝って熱が急速に拡散してし
まうため、記録膜が記録温度に達しにくくなるのであ
る。そこで、発明者等は鋭意研究の結果、金属薄膜の比
抵抗が膜厚に依存することに着目し、CD−E用の反射
膜として高反射率金属を用いた場合に、記録感度、光学
特性の双方を満足する最適な膜厚範囲を見いだした。
Further, since a noble metal such as Au is used for the reflection film, there is a problem that the material cost required for the reflection film increases. The essential cause of the low recording sensitivity of CD-E is that the reflectance is as high as 70%, so that most of the irradiated laser beam is reflected and the amount of light absorbed by the recording film is reduced. However, there are several other causes. One of them is to use a high reflectance metal such as Au as the metal for the reflective film. There is a reason for this. In order to achieve a high reflectance and a high degree of modulation, it is necessary to use a metal having a reflectance as high as possible for the reflective film.
However, high reflectance metals (Au, Ag, Cu) have a very high thermal conductivity of 200 (W / m · K) or more. As a result, heat is rapidly diffused from the recording film through the reflective film, so that the recording film is hard to reach the recording temperature. Then, as a result of earnest research, the inventors have paid attention to the fact that the specific resistance of a metal thin film depends on the film thickness, and when a high reflectance metal is used as a reflective film for CD-E, the recording sensitivity and the optical characteristics are improved. The optimum film thickness range that satisfies both of the above was found.

【0007】したがって、本発明の目的はCD−Eの記
録に要するレーザーパワーを低減させる、すなわち、C
D−Eの記録感度を向上させ、さらに、材料コストを低
減させることにある。
Therefore, an object of the present invention is to reduce the laser power required for recording CD-E, that is, C
It is to improve the recording sensitivity of DE and further reduce the material cost.

【0008】[0008]

【課題を解決するための手段】本発明の書換可能型光記
録媒体は、少なくとも透明基板上の基板側から、第一反
射膜、第一干渉膜、記録膜、第二干渉膜、第二反射膜の
順に薄膜が積層され、再生レーザー波長における未記録
部の反射率が65%以上であって、第二反射膜の膜厚が
30〜45nmであることを特徴とするものである。さ
らに、記録膜として、結晶とアモルファスの光学定数の
変化を利用して情報を記録する書換可能型光記録媒体で
あって、未記録部の記録膜が結晶であることを特徴とす
るものである。
A rewritable optical recording medium according to the present invention comprises a first reflection film, a first interference film, a recording film, a second interference film and a second reflection film from at least the substrate side on a transparent substrate. Thin films are laminated in this order on the film, the reflectance of the unrecorded portion at the reproduction laser wavelength is 65% or more, and the film thickness of the second reflective film is 30 to 45 nm. Further, the recording film is a rewritable optical recording medium in which information is recorded by utilizing a change in optical constant between crystalline and amorphous, and the recording film in the unrecorded portion is crystalline. .

【0009】[0009]

【作用】上述した積層構造を有する書換・可能型光ディ
スクにおいて、第二反射膜厚を30〜45nmとするこ
とにより、CD−Eに要求される光学特性を満足させつ
つ、記録感度を大幅に向上させることができる。また、
光ディスクの未記録(高反射率)部の記録膜を結晶状態
とすることによって熱伝導率を低下させ、記録感度を向
上することができる。
In the rewritable / writable type optical disk having the above-mentioned laminated structure, the second reflective film thickness is set to 30 to 45 nm, thereby satisfying the optical characteristics required for the CD-E and greatly improving the recording sensitivity. Can be made. Also,
By making the recording film in the unrecorded (high reflectance) part of the optical disk in a crystalline state, the thermal conductivity can be lowered and the recording sensitivity can be improved.

【0010】[0010]

【実施例】まず、本発明の原理を説明する。図1にAu
膜厚と比抵抗の関係の測定例を示した(応用物理学選書
3、「薄膜」の第166頁から引用)。Au膜厚が50
nm以上では比抵抗がほぼ一定の値を示しているが、A
u膜厚が45nm以下では急激に増大している。Wie
demann−Franzの法則によると、金属の熱伝
導率は比抵抗に逆比例する。したがって、Au膜を45
nm以下に薄膜化することにより、熱伝導率を低下させ
ることができると考えた。また、当然のことながら、A
u膜を薄膜化することにより、熱伝導の媒体となる単位
面積辺りの電子の量も減少する。これらの結果、第二反
射膜を伝って拡散する熱量が減少し記録感度が向上す
る。しかしながら第二反射膜を薄くすると、光学的に悪
影響が生じる可能性がある。そこで、実施例に示したよ
うに、光学シミュレーションを行ない、許容される最薄
膜厚を求めた結果、第二反射膜厚が最低30nmであれ
ば光学特性に影響を及ぼさないことがわかった。
First, the principle of the present invention will be described. Au in Figure 1
A measurement example of the relationship between the film thickness and the specific resistance is shown (cited from page 166 of Applied Physics Selection Manual 3, "Thin Film"). Au film thickness is 50
The specific resistance is almost constant above nm, but A
When the u film thickness is 45 nm or less, the film thickness increases rapidly. Wie
According to the Demann-Franz law, the thermal conductivity of a metal is inversely proportional to the specific resistance. Therefore, if the Au film is 45
It was considered that the thermal conductivity can be lowered by making the film thickness to be less than nm. Also, of course, A
By reducing the thickness of the u film, the amount of electrons per unit area that serves as a medium for heat conduction also decreases. As a result, the amount of heat diffused through the second reflective film is reduced and the recording sensitivity is improved. However, thinning the second reflective film may have an optical adverse effect. Therefore, as shown in the examples, an optical simulation was performed to find the allowable thinnest film thickness. As a result, it was found that the optical characteristics were not affected if the second reflective film thickness was at least 30 nm.

【0011】また、この効果は、透明基板と第一干渉膜
の間に第一反射膜が存在する場合に、特に大きな効果を
示す。また、本発明の効果は未記録(高反射率)部の記
録膜の状態が結晶である場合に顕著になる。また、上記
説明では、第二反射膜用金属としてAuを用いた場合に
ついて述べたが、他の高反射率金属(例えばAg、C
u)、あるいはこれらを主成分とする合金を用いた場合
においても同様の特性を示す。ただし、特に第二反射膜
用金属として耐食性に優れたAuを用いた場合、第二反
射膜を薄膜化した場合においても、長期間にわたり光学
特性、記録特性が変化しないため、信頼性の高いCD−
Eを提供することができる。また、第二反射膜厚の膜厚
が従来の半分程度と薄くなっているため、材料コストを
低減させることができる。
This effect is particularly great when the first reflective film is present between the transparent substrate and the first interference film. Further, the effect of the present invention becomes remarkable when the state of the recording film in the unrecorded (high reflectance) portion is crystalline. In the above description, the case where Au is used as the metal for the second reflective film is described, but other high reflectance metals (for example, Ag and C) are used.
The same characteristics are exhibited when u) or an alloy containing them as a main component is used. However, in particular, when Au having excellent corrosion resistance is used as the metal for the second reflective film, even if the second reflective film is thinned, the optical characteristics and recording characteristics do not change for a long period of time, so that a highly reliable CD −
E can be provided. Further, since the thickness of the second reflective film thickness is as thin as about half that of the conventional one, the material cost can be reduced.

【0012】以上に詳細に説明したように、第二反射膜
厚を30〜45nmとすることにより、CD−Eに要求
される光学特性を満足させつつ、記録感度を大幅に向上
させることができる。なお、反射膜を薄膜化し、特性を
向上させている例として、たとえば、光メモリシンポジ
ウム’92、第21頁〜第22頁にあるような構造が知
られているが、この従来例の目的は、データのオーバー
ライト時の再生信号のジッター低減にある。また、この
従来例の構造には第一反射膜がなく、さらに、Au膜の
膜厚も10〜20nmと薄すぎるため、CD−Eに要求
される光学特性を満足させることができない。したがっ
て、この従来例の考え方は本発明のものとは基本的に異
なっていることは言うまでもない。
As described in detail above, by setting the second reflection film thickness to 30 to 45 nm, the recording sensitivity can be greatly improved while satisfying the optical characteristics required for CD-E. . As an example in which the reflective film is thinned to improve the characteristics, for example, a structure as shown in pages 21 to 22 of Optical Memory Symposium '92 is known. This is to reduce the jitter of the reproduced signal when overwriting data. In addition, the structure of this conventional example does not have the first reflection film, and the film thickness of the Au film is too thin as 10 to 20 nm, so that the optical characteristics required for the CD-E cannot be satisfied. Therefore, it goes without saying that the idea of this conventional example is basically different from that of the present invention.

【0013】(実施例1)図2に第二反射膜の許容最薄
膜厚を求めるために、光学シミュレーションを行なった
光ディスクの構造を示した。ポリカーボネート基板1上
に第一反射膜2としてAu、第一干渉膜3としてZnS
−SiO2、記録膜4としてGeTe、第二干渉膜5と
してZnS−SiO2、第二反射膜6としてAu、そし
てUV保護膜7を順次積層した構造である。
(Embodiment 1) FIG. 2 shows the structure of an optical disk which was subjected to an optical simulation in order to obtain the allowable thinnest thickness of the second reflective film. Au as the first reflection film 2 and ZnS as the first interference film 3 on the polycarbonate substrate 1.
-SiO2, GeTe as the recording film 4, ZnS-SiO2 as the second interference film 5, Au as the second reflective film 6, and a UV protective film 7 are sequentially laminated.

【0014】図3に結晶、およびアモルファスの反射
率、および透過率の第二反射膜厚依存性を、図4に透過
率の第二反射膜厚依存性を示した。また、シミュレーシ
ョンに用いた光学定数を図5の表に示した。また、第一
反射膜は16nm、第一干渉膜は30nm、記録膜は1
6nm、第二干渉膜は30nmの各膜厚を有する。
FIG. 3 shows the dependency of crystal and amorphous reflectance and transmittance on the second reflection film thickness, and FIG. 4 shows the dependency of transmittance on the second reflection film thickness. The optical constants used in the simulation are shown in the table of FIG. Further, the first reflection film is 16 nm, the first interference film is 30 nm, and the recording film is 1 nm.
The second interference film has a thickness of 6 nm and the second interference film has a thickness of 30 nm.

【0015】図から明らかなように、第二反射膜厚が3
0nm以上では結晶、アモルファスとも反射率レベルが
ほとんど変化しない。反射率から判断する限り、第二反
射膜の厚さを30nmまで薄くできることがわかる。こ
れに対して、透過率については、結晶の透過率は30n
m以上ではほとんど変化していないが、アモルファスの
透過率が30nmでは大きく増大している。このこと
は、第二反射膜の膜厚を30nmとした場合、アモルフ
ァスでの吸収率が低下し、問題となる可能性があること
を示唆しているが実際には問題とならない。すなわち、
記録感度に直接影響しているパラメーターは、結晶状態
の反射率と透過率であり、最も高出力を必要とする場合
とは、結晶(高反射率)状態の記録膜に対して記録を行
う場合であるからである。したがって、アモルファスの
吸収率が低下しても記録感度に対して大きな影響はな
い。よって、第二反射膜の許容最薄膜厚は30nmであ
る。
As is apparent from the figure, the second reflection film thickness is 3
When the thickness is 0 nm or more, the reflectance level hardly changes in both crystal and amorphous. As far as the reflectance is judged, it can be seen that the thickness of the second reflective film can be reduced to 30 nm. On the other hand, regarding the transmittance, the crystal transmittance is 30 n.
Almost no change occurs at m or more, but the amorphous transmittance greatly increases at 30 nm. This suggests that when the thickness of the second reflective film is set to 30 nm, the absorptivity in the amorphous state may decrease, which may cause a problem, but it does not actually cause a problem. That is,
The parameters that directly affect the recording sensitivity are the reflectance and the transmittance in the crystalline state. The case where the highest output is required is the case where recording is performed on the recording film in the crystalline (high reflectance) state. Because it is. Therefore, even if the absorptivity of amorphous is lowered, it does not have a great influence on the recording sensitivity. Therefore, the allowable thinnest thickness of the second reflective film is 30 nm.

【0016】(実施例2)ここで、本発明を適用する第
一反射膜、第一干渉膜、記録膜、第二干渉膜、第二反射
膜を有する構造では、特に本発明の効果が大きいことを
示すため、ポリカーボネート基板上にAu膜のみを製膜
し、UV保護膜を塗布した単純な構造の、反射率、透過
率のAu膜厚依存性を計算し、結果を図6に示した。上
記、第一反射膜、第一干渉膜、記録膜、第二干渉膜、第
二反射膜を有する構造の場合、記録感度に大きく影響す
る記録膜が結晶時の反射率、透過率は、第二反射膜厚が
30nm以上であれば充分なレベルであった。しかし、
ポリカーボネート基板上にAu膜と保護膜のみを積層し
た構造では、Au膜厚が30nmでは反射率、透過率と
も、充分に飽和しているとは言えない。特に、透過率が
13%程度と大きいため、仮に、この状態で記録を行っ
たとしても、照射したレーザー光の透過量が大きいた
め、光の吸収量が低減し記録感度向上には結び付きにく
い。
(Embodiment 2) In the structure having the first reflection film, the first interference film, the recording film, the second interference film and the second reflection film to which the present invention is applied, the effect of the present invention is particularly great. In order to show that, only the Au film was formed on a polycarbonate substrate, and the Au film thickness dependence of reflectance and transmittance of a simple structure in which a UV protective film was applied was calculated, and the result is shown in FIG. . In the case of the structure having the first reflection film, the first interference film, the recording film, the second interference film, and the second reflection film, the reflectance and the transmittance when the recording film which has a large influence on the recording sensitivity is the crystal are When the two-reflection film thickness was 30 nm or more, it was at a sufficient level. But,
In the structure in which only the Au film and the protective film are laminated on the polycarbonate substrate, it cannot be said that the reflectance and the transmittance are sufficiently saturated when the Au film thickness is 30 nm. In particular, since the transmittance is as high as about 13%, even if recording is performed in this state, since the amount of transmitted laser light is large, the amount of absorbed light is reduced and it is difficult to improve recording sensitivity.

【0017】このように、第一反射膜、第一干渉膜、記
録膜、第二干渉膜、第二反射膜を有する構造で、本発明
の効果が特に大きい理由は、第一反射膜が存在している
ことと、未記録(高反射率)状態の記録膜が結晶である
からである。すなわち、第一反射膜が存在することと、
記録膜が結晶状態では光が透過しにくい性質を持ってい
るため、入射レーザー光が第二反射膜に達する前に基板
側に反射しているのである。以上のように、本発明の効
果は、少なくとも透明基板上の基板側から、第一反射
膜、第一干渉膜、記録膜、第二干渉膜、第二反射膜の順
に薄膜が積層された構造において、また、未記録(高反
射率)状態の記録膜の状態が結晶の場合、特に顕著にな
る。
As described above, in the structure having the first reflection film, the first interference film, the recording film, the second interference film and the second reflection film, the reason why the effect of the present invention is particularly large is that the first reflection film is present. This is because the recording film in the unrecorded (high reflectance) state is crystalline. That is, the presence of the first reflective film,
Since the recording film has a property that it is difficult for light to pass in the crystalline state, the incident laser light is reflected to the substrate side before reaching the second reflective film. As described above, the effect of the present invention is that the thin film is laminated in this order from the substrate side on the transparent substrate to the first reflection film, the first interference film, the recording film, the second interference film, and the second reflection film. In particular, when the state of the recording film in the unrecorded (high reflectance) state is crystalline, it becomes particularly remarkable.

【0018】(実施例3)実際に第二反射膜厚が異なる
数枚のディスクを作成し、結晶、およびアモルファスの
反射率の測定し結果を図7に示した。シミュレーション
で求めたように、各反射率レベルはほとんど変化してい
ない。また、これらのディスクをディスク線速度5.6
m/sで回転させ、周波数0.8MHzの信号を記録
し、最適記録パワーを測定した。図8には従来構造であ
る第二反射膜厚が70nmの場合を1に規格化した場合
の、最適記録パワーと第二反射膜厚の関係を示した。第
二反射膜厚が45nm以下において記録パワー低減効果
が顕著に現れている。また、第二反射膜厚が70nmと
30nmの場合を比較した場合、第二反射膜厚が30n
mでは記録パワーが20%程度低減し、記録感度が向上
した。
(Embodiment 3) Several discs having different second reflection film thicknesses were actually prepared, and the reflectances of crystal and amorphous were measured and the results are shown in FIG. 7. As shown in the simulation, each reflectance level has hardly changed. In addition, these discs have a disc linear velocity of 5.6.
Rotation was performed at m / s, a signal having a frequency of 0.8 MHz was recorded, and the optimum recording power was measured. FIG. 8 shows the relationship between the optimum recording power and the second reflective film thickness when the second reflective film thickness of 70 nm, which is the conventional structure, is standardized to 1. When the second reflection film thickness is 45 nm or less, the recording power reduction effect is remarkable. Further, when the cases where the second reflection film thickness is 70 nm and 30 nm are compared, the second reflection film thickness is 30 n.
At m, the recording power was reduced by about 20% and the recording sensitivity was improved.

【0019】(実施例4)実施例1の光学シミュレーシ
ョンでは、第一、第二反射膜にAuを用いた場合につい
て計算を行ったが、以下に、第一、第二反射膜としてA
uに少量の元素を添加した合金を用いた例を説明する。
具体的にはAuにTi、Cr、Co、Niを2〜3%添
加した合金を第一、第二反射膜とし第二反射膜厚の異な
る数枚のディスクを作成し、結晶、およびアモルファス
の反射率レベルを測定した。この場合においても、第二
反射膜厚が30nm以上であれば反射率レベルがほとん
ど変化しなかった。
(Embodiment 4) In the optical simulation of Embodiment 1, calculation was performed for the case where Au was used for the first and second reflective films.
An example using an alloy in which a small amount of element is added to u will be described.
Specifically, several discs having different second reflection film thicknesses were prepared by using an alloy obtained by adding 2% to 3% of Ti, Cr, Co, and Ni to Au as the first and second reflection films. The reflectance level was measured. Also in this case, the reflectance level hardly changed when the second reflection film thickness was 30 nm or more.

【0020】また、ディスク線速度5.6m/sで回転
させ、周波数0.8MHzの信号を記録し、最適記録パ
ワーを測定した結果、第二反射膜厚が45nm以下にお
いて記録パワー低減効果が顕著に現れた。この場合、第
二反射膜がAuであり、膜厚が70nmの場合と比較し
て、第二反射膜厚が30nmでは記録パワーが25〜3
5%程度低減し記録感度が向上した。第二反射膜をAu
にした場合と比較して、記録感度向上効果が大きい理由
は、Auに少量の元素を添加したため、Auの熱伝導率
が低下したためである。以上のように、本発明はAuに
少量の元素を添加した合金を第一、第二反射膜として使
用した場合においても効果がある。
Further, the disk was rotated at a linear velocity of 5.6 m / s, a signal having a frequency of 0.8 MHz was recorded, and the optimum recording power was measured. As a result, the recording power reduction effect is remarkable when the second reflection film thickness is 45 nm or less. Appeared in. In this case, as compared with the case where the second reflective film is Au and the film thickness is 70 nm, the recording power is 25 to 3 when the second reflective film thickness is 30 nm.
The recording sensitivity was improved by about 5%. Au as the second reflective film
The reason why the effect of improving the recording sensitivity is larger than that in the case where the heat conductivity of Au is large is that the thermal conductivity of Au is lowered because a small amount of element is added to Au. As described above, the present invention is effective even when an alloy obtained by adding a small amount of element to Au is used as the first and second reflective films.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明の書
換可能型光記録媒体を用いることにより、透明基板上の
基板側から、第一反射膜、第一干渉膜、記録膜、第二干
渉膜、第二反射膜の順に、薄膜が積層され、再生レーザ
ー波長における未記録部の反射率が65%以上である書
換可能型光記録媒体CD−Eの記録に要するレーザーパ
ワーを低減させ、さらに、材料コストを低減させること
ができる。
As described in detail above, by using the rewritable optical recording medium of the present invention, the first reflective film, the first interference film, the recording film, the second film, and the second reflective film are formed from the substrate side on the transparent substrate. A thin film is laminated in this order on the interference film and the second reflective film, and the laser power required for recording on the rewritable optical recording medium CD-E having a reflectance of 65% or more at the unrecorded portion at the reproduction laser wavelength is reduced, Further, the material cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】Au薄膜の膜厚と比抵抗の関係を示す図。FIG. 1 is a diagram showing the relationship between the film thickness of an Au thin film and the specific resistance.

【図2】本発明の実施例による光ディスクの構造を示す
図。
FIG. 2 is a diagram showing a structure of an optical disc according to an embodiment of the present invention.

【図3】本発明の実施例による光学シミュレーションの
結果を示す図。
FIG. 3 is a diagram showing a result of an optical simulation according to an example of the present invention.

【図4】本発明の実施例による光学シミュレーションの
結果を示す図。
FIG. 4 is a diagram showing a result of optical simulation according to an example of the present invention.

【図5】シュミレーションに用いた光学定数を示す図
表。
FIG. 5 is a chart showing optical constants used for simulation.

【図6】本発明の実施例による光学シミュレーションの
結果を示す図。
FIG. 6 is a diagram showing a result of an optical simulation according to an example of the present invention.

【図7】第二反射膜厚と反射率の関係を示す図。FIG. 7 is a diagram showing a relationship between a second reflective film thickness and reflectance.

【図8】第二反射膜厚と記録パワーの関係を示す図。FIG. 8 is a diagram showing a relationship between a second reflective film thickness and recording power.

【符号の説明】[Explanation of symbols]

1 ポリカーボネート基板 2 第一反射膜 3 第一干渉膜 4 記録膜 5 第二干渉膜 6 第二反射膜 7 UV保護膜 1 Polycarbonate Substrate 2 First Reflection Film 3 First Interference Film 4 Recording Film 5 Second Interference Film 6 Second Reflection Film 7 UV Protection Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも透明基板上の基板側から、第
一反射膜、第一干渉膜、記録膜、第二干渉膜、第二反射
膜の順に薄膜が積層され、再生レーザー波長における未
記録部の反射率が65%以上である書換可能型光ディス
クであって、第二反射膜の膜厚が30〜45nmである
ことを特徴とする書換可能型光記録媒体。
1. A thin film is laminated in the order of a first reflective film, a first interference film, a recording film, a second interference film and a second reflective film from at least a substrate side on a transparent substrate, and an unrecorded portion at a reproduction laser wavelength. Is a rewritable optical disk having a reflectance of 65% or more, and a film thickness of the second reflective film is 30 to 45 nm.
【請求項2】 記録膜として、結晶とアモルファスの光
学定数の変化を利用して情報を記録する請求項1に記載
の書換可能型光ディスクであって、未記録部の記録膜が
結晶であることを特徴とする書換可能型光記録媒体。
2. The rewritable optical disc according to claim 1, wherein information is recorded as a recording film by utilizing a change in crystalline and amorphous optical constants, wherein the recording film in the unrecorded portion is crystalline. A rewritable optical recording medium characterized by:
JP7069574A 1995-03-28 1995-03-28 Optical recording medium Pending JPH08273198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069574A JPH08273198A (en) 1995-03-28 1995-03-28 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069574A JPH08273198A (en) 1995-03-28 1995-03-28 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH08273198A true JPH08273198A (en) 1996-10-18

Family

ID=13406704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069574A Pending JPH08273198A (en) 1995-03-28 1995-03-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH08273198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023546A (en) * 1998-09-30 2000-04-25 장용균 Phase change optical disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023546A (en) * 1998-09-30 2000-04-25 장용균 Phase change optical disk

Similar Documents

Publication Publication Date Title
JP3292890B2 (en) Phase change type optical recording medium using light reflection and heat dissipation material
JP3525197B2 (en) Phase change optical recording medium
EP0626682B1 (en) Optical record medium
JPH1049916A (en) Information recording medium and information memory device
WO1999006220A1 (en) Information recording medium
JP2830557B2 (en) Phase change optical disk
JPH06243507A (en) Optical information carrier
JP3180813B2 (en) Optical information recording medium
JP2003331462A (en) Optical recording medium and its recording system
JP2000285509A (en) Draw type optical recording medium
EP1573727A1 (en) Dual-stack optical data storage medium and use of such medium
JPH08273198A (en) Optical recording medium
JP3130847B2 (en) Optical information recording medium
EP1376562A2 (en) Information read/write medium
JP3087454B2 (en) Optical information recording medium and structure design method thereof
JPS60164937A (en) Information recording medium
JPS62226446A (en) Optical recording medium
JPH04228126A (en) Optical information recording medium
JPH11176022A (en) Phase transition optical recording medium
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JP2903616B2 (en) Write-once optical recording medium
JP3153393B2 (en) Recordable optical disc
JP2000113505A (en) Phase transition type optical disk
JPH11185290A (en) Optical recording medium
JPH02302943A (en) Optical recording medium