JP2903616B2 - Write-once optical recording medium - Google Patents

Write-once optical recording medium

Info

Publication number
JP2903616B2
JP2903616B2 JP2097086A JP9708690A JP2903616B2 JP 2903616 B2 JP2903616 B2 JP 2903616B2 JP 2097086 A JP2097086 A JP 2097086A JP 9708690 A JP9708690 A JP 9708690A JP 2903616 B2 JP2903616 B2 JP 2903616B2
Authority
JP
Japan
Prior art keywords
layer
sbse
write
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2097086A
Other languages
Japanese (ja)
Other versions
JPH03293193A (en
Inventor
正次 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2097086A priority Critical patent/JP2903616B2/en
Publication of JPH03293193A publication Critical patent/JPH03293193A/en
Application granted granted Critical
Publication of JP2903616B2 publication Critical patent/JP2903616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ユーザーが1回に限り情報の記録を行うこ
とのできる,いわゆるDRAW(Direct Read After Writ
e)タイプと称される追記型光記録媒体に関するもので
あり、特に合金化による反射率変化を利用して情報の記
録を行う追記型光記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a so-called DRAW (Direct Read After Writ) in which a user can record information only once.
e) The present invention relates to a write-once optical recording medium referred to as a type, and more particularly to a write-once optical recording medium for recording information by utilizing a change in reflectance due to alloying.

〔発明の概要〕[Summary of the Invention]

本発明は、レーザ光の照射によってSbSe層とBiTe層と
を合金化し、多重繰り返し反射の条件を変えて実質的な
反射率を変化させ情報の記録を行う追記型光記録媒体に
おいて、SbSe層に第3元素を添加することにより、再生
回数を大幅に増大させるものである。
The present invention relates to a write-once optical recording medium in which the SbSe layer and the BiTe layer are alloyed by laser light irradiation, and the information is recorded by changing the conditions of multiple repetitive reflections and changing the substantial reflectance. By adding the third element, the number of times of reproduction is greatly increased.

〔従来の技術〕[Conventional technology]

従来より、追記型の光記録媒体としては、レーザ光に
よる局部加熱により記録層を溶融ないしは蒸発させ、形
状変化により記録を行うものや、記録層に光学的特性
(例えば反射率)の変化を生じさせて記録を行うもの
等、種々の方式のものが提案されている。
2. Description of the Related Art Conventionally, write-once optical recording media include those that perform recording by melting or evaporating the recording layer by local heating with a laser beam and change the shape, and that the optical characteristics (eg, reflectance) of the recording layer change. Various systems, such as a system that performs recording by causing the system to perform recording, have been proposed.

しかしながら、これら従来の追記型光記録媒体は、記
録パワーや解像度、安定性等の点で一長一短を有してお
り、これらの欠点を解消すべく、本願出願人は、特開昭
60−28045号公報において、記録層をSbSe層とBiTe層と
から構成し、これらを合金化することで情報の記録を行
う追記型光記録媒体を提案した。
However, these conventional write-once optical recording media have advantages and disadvantages in terms of recording power, resolution, stability, and the like.
Japanese Patent Application Laid-Open No. 60-28045 proposed a write-once optical recording medium in which a recording layer is composed of an SbSe layer and a BiTe layer, and information is recorded by alloying these layers.

上記追記型光記録媒体の構成並びに記録原理を簡単に
説明すると、この追記型光記録媒体は、基板上に記録層
が設けられ記録情報に応じて強度変調したレーザ光を前
記記録層に集光照射して情報の記録を行うものであっ
て、該記録層が基板上に順次被着されたSbSe層、BiTe
層、光透過層及び反射層より構成されてなるものであ
る。
Briefly describing the configuration and the recording principle of the write-once optical recording medium, this write-once optical recording medium has a recording layer provided on a substrate, and focuses a laser beam whose intensity is modulated in accordance with recording information on the recording layer. Irradiating to record information, wherein the recording layer is a SbSe layer and a BiTe layer sequentially deposited on a substrate.
And a light transmission layer and a reflection layer.

ここで、SbSe層は使用レーザ光に対して高い透過率を
有し、一方BiTe層は使用レーザ光に対して高い吸収率を
示し且つSbSe層と容易に合金をつくる。
Here, the SbSe layer has a high transmittance for the used laser light, while the BiTe layer shows a high absorption for the used laser light and easily forms an alloy with the SbSe layer.

また、SbSe層の厚さは、多重繰り返し反射による干渉
効果を利用して基板側から入射されるレーザ光に対して
その反射率が低くなるように選定されており、光透過層
の厚さはBiTe層との界面を透過する光量を減ずるように
選定されている。
In addition, the thickness of the SbSe layer is selected so that its reflectance is low with respect to laser light incident from the substrate side by utilizing an interference effect due to multiple repetitive reflection, and the thickness of the light transmission layer is It is selected to reduce the amount of light transmitted through the interface with the BiTe layer.

このような構成の追記型光記録媒体に対し、情報に応
じてレーザ光を照射すると、このレーザ光はBiTe層に効
率良く吸収されて熱に変換され、この熱によってSbeS層
とBiTe層とが合金化される。その結果、SbSe層による多
重繰り返し反射の条件が変わり、光学特性,すなわち反
射率が大きく変わって情報の記録が行われる。
When a write-once optical recording medium having such a configuration is irradiated with laser light according to information, the laser light is efficiently absorbed by the BiTe layer and converted into heat, and the heat causes the SbeS layer and the BiTe layer to be converted. Alloyed. As a result, the condition of the multiple repetitive reflection by the SbSe layer changes, and the optical characteristics, that is, the reflectivity greatly changes, and information is recorded.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、追記型の光記録媒体は、長期に亘る信頼性
が商品価値を決める大きな部分を占めており、C/Nが変
わらずに安定に再生できる回数をできる限り多くする必
要がある。
By the way, in a write-once optical recording medium, the reliability over a long period of time is a major factor in determining the commercial value, and it is necessary to increase the number of times of stable reproduction without changing the C / N as much as possible.

上述の合金化による反射率変化を利用した追記型光記
録媒体では、例えばデジタル信号を記録した場合に106
回程度と、これまでの追記型光記録媒体を上回る再生回
数が保障されている。
In a write-once optical recording medium utilizing the change in reflectivity due to alloying described above, for example, when a digital signal is recorded, 10 6
In this case, the number of times of reproduction is higher than that of the conventional write-once optical recording medium.

しかしながら、今後追記型光記録媒体が使用されてい
くであろう分野を考えると、前記再生回数でも十分なも
のとは言えない。例ば映像記録用(アナログ信号記録
用)の追記型光記録媒体では、109回程度が要求され
る。
However, considering the field in which the write-once optical recording medium will be used in the future, the above-mentioned number of times of reproduction is not sufficient. The recordable optical recording medium of Example If video recording (for analog signal recording), about 10 9 times is required.

再生回数を上げるには、再生時のレーザ出力を下げる
等、再生装置側の対応によることも考えられるが、この
場合にはS/N等を犠牲にすることになる。
In order to increase the number of times of reproduction, it is conceivable to take measures on the reproduction apparatus side, such as lowering the laser output at the time of reproduction, but in this case, S / N is sacrificed.

したがって、基本的には媒体側の対応で再生回数を上
げてやるのが好ましい。
Therefore, it is basically preferable to increase the number of times of reproduction corresponding to the medium side.

そこで本発明は、このような従来の実情に鑑みて提案
されたものであって、長期信頼性に優れ、安定に再生可
能な回数を大幅に増加することが可能な追記型光記録媒
体を提供することを目的とする。
Accordingly, the present invention has been proposed in view of such a conventional situation, and provides a write-once optical recording medium which has excellent long-term reliability and can greatly increase the number of times of stable reproduction. The purpose is to do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、上述の目的を達成せんものと長期に亘
り鋭意研究を重ねた結果、SbSe層への第3元素の添加が
安定化に有効で、合金化が妨げられ長時間再生において
も未記憶部分が未記録のまま保持されるのと知見を得る
に至った。
The present inventors have conducted intensive research over a long period of time to achieve the above object, and as a result, the addition of a third element to the SbSe layer is effective for stabilization, and alloying is hindered and even during long-term regeneration. It has been found that the unrecorded part is kept unrecorded.

本発明は、かかる知見に基づいて完成されたものであ
って、基板上にSbSe層及びBiTe層が積層形成されてな
り、上記SbSe層はGe,Mn,Cu,Ag,Znより選ばれた少なくと
も1種を0.1〜3.0原子%含有することを特徴とするもの
である。
The present invention has been completed on the basis of such knowledge, and an SbSe layer and a BiTe layer are formed on a substrate by lamination, and the SbSe layer is at least one selected from Ge, Mn, Cu, Ag, and Zn. One type is characterized by containing 0.1 to 3.0 atomic%.

本発明の追記型光記録媒体においては、基板上には先
ずSbSeが成膜される。
In the write-once optical recording medium of the present invention, first, SbSe is formed on a substrate.

上記基板は、記録及び読み出しレーザ光に対して高い
透過率を有する材料よりなり、したがって基板材料とし
てはポリメチルメタクリルレート等のアクリル樹脂やポ
リカーボネート樹脂等が使用される。この基板にはグル
ープ(案内溝)やピット等が形成されていてもよい。
The substrate is made of a material having a high transmittance with respect to recording and reading laser beams. Therefore, an acrylic resin such as polymethyl methacrylate or a polycarbonate resin is used as the substrate material. Groups (guide grooves), pits and the like may be formed on this substrate.

一方、SbSe層は、使用するレーザ光に対して十分に透
明であり、且つBiTe層と容易に合金化する材料によって
構成され、その基本組成はSbSex(0.5<x<2)で表さ
れる。通常はSb2Se3に近い組成に選ばれる。
On the other hand, the SbSe layer is sufficiently transparent to a laser beam to be used and is made of a material that easily alloys with the BiTe layer, and its basic composition is represented by SbSe x (0.5 <x <2). . Usually, a composition close to Sb 2 Se 3 is selected.

ここで、本発明においては、上記基本組成に加えてSb
Se層にGe,Mn,Cu,Ag,Znのうちの少なくとも1種を添加
し、アモルファス状態のSbSe層の安定化を図ることとす
る。
Here, in the present invention, in addition to the above basic composition, Sb
At least one of Ge, Mn, Cu, Ag, and Zn is added to the Se layer to stabilize the amorphous SbSe layer.

本発明者等の実験によれば、これら第3元素の添加
は、SbSe層の結晶化温度の上昇をもたらし、合金化が抑
制されて再生回数の向上につながることが確認された。
According to experiments performed by the present inventors, it has been confirmed that the addition of these third elements increases the crystallization temperature of the SbSe layer, suppresses alloying, and leads to an increase in the number of times of reproduction.

このとき、上記Ge,Mn,Cu,AgまたはZnの添加量は、SbS
exに対して0.1〜3.0原子%とすることが好ましい。添加
量が0.1原子%未満であると、再数回数向上の効果がほ
とんど期待できない。逆に添加量が3.0原子%を超える
と、再生時の安定性は向上するものの、記録に際して大
きなレーザ出力が必要になる。しがって、レーザ出力の
低出力化を考えたときには十分な記録ができ難くなり、
C/Nが劣化する等の不都合が生ずる。
At this time, the amount of Ge, Mn, Cu, Ag or Zn added was SbS
It is preferably set to 0.1 to 3.0 atomic% with respect to e x. If the addition amount is less than 0.1 atomic%, the effect of improving the number of repetitions can hardly be expected. Conversely, if the amount exceeds 3.0 atomic%, stability during reproduction is improved, but a large laser output is required for recording. Therefore, when considering the reduction of the laser output, it becomes difficult to perform sufficient recording,
Inconveniences such as deterioration of C / N occur.

上述のSbSe層の膜厚は、基板との界面及びBiTe層との
界面の間で生ずる繰り返し多重反射の干渉の結果、基板
側からレーザ光を照射した場合に実質的反射率が低くな
り、BiTe層において記録レーザ光が効率良く吸収される
ように設定される。なお、BiTe層における記録レーザ光
の吸収効率を上げるためには前記反射率はなるべく低い
方が有利であるが、記録再生装置におけるレーザ光のオ
ートフォーカス機構あるいはオートトラッキング機構等
の安定動作のためには反射光量がある程度大きいことが
必要であり、この意味から未記録状態での反射率が10〜
20%程度になるように設定することが望ましい。
The thickness of the above-described SbSe layer is substantially reduced when laser light is irradiated from the substrate side as a result of interference of repeated multiple reflections occurring between the interface with the substrate and the interface with the BiTe layer, and the BiTe The layer is set so that the recording laser light is efficiently absorbed. In order to increase the absorption efficiency of the recording laser light in the BiTe layer, it is advantageous that the reflectance is as low as possible, but for the stable operation of the laser beam auto-focusing mechanism or auto-tracking mechanism in the recording / reproducing apparatus. It is necessary that the amount of reflected light is large to some extent. In this sense, the reflectance in an unrecorded state is 10 to
It is desirable to set to about 20%.

SbSe層の上にはBiTe層が隣接して積層形成される。こ
のBiTe層は、レーザ光を十分に吸収する低融点の金属
(ここではBi,Te)より構成され、前記SbSe層と合金化
して当該SbSe層の光学的性質を変える金属層である。こ
のBiTe層の基本組成はBiTey(0.1<y<3)で表され、
通常はBi2Te3に近い組成に選ばれる。また、BiTe層の膜
厚は、100〜500Åの範囲に選ばれることが好ましい。
A BiTe layer is formed adjacently on the SbSe layer. The BiTe layer is made of a metal having a low melting point (Bi, Te in this case) that sufficiently absorbs laser light, and is a metal layer that is alloyed with the SbSe layer to change the optical properties of the SbSe layer. The basic composition of this BiTe layer is represented by BiTe y (0.1 <y <3),
Usually, a composition close to Bi 2 Te 3 is selected. The thickness of the BiTe layer is preferably selected in the range of 100 to 500 °.

本発明の追記型光記録媒体においては、前述のSbSe
層,BiTe層の他、光透過層や反射層等が設けられていて
もよい。
In the write-once optical recording medium of the present invention, the aforementioned SbSe
In addition to the layer and the BiTe layer, a light transmitting layer and a reflecting layer may be provided.

前記光透過層は、BiTe層をも透過した一部のレーザ光
が後述の反射層で反射されて再びBiTe層に戻るようにな
すものであり、熱伝導度が低いカルコゲナイドガラスに
よって構成され、例えばSbSe3のようにSbSe層と同様の
材料が用いられる。
The light-transmitting layer is to make a part of the laser light that has also passed through the BiTe layer reflected on the reflective layer described later and return to the BiTe layer again, and is formed of a chalcogenide glass having a low thermal conductivity. The same material as the SbSe layer such as SbSe 3 is used.

この光透過層は、前記BiTe層上に成膜され、基板側か
ら見たときに上記BiTe層の背面側に配される。光透過層
の膜厚は、BiTe層との界面を透過するレーザ光量を減ず
るように設定され、BiTe層におけるレーザ光の吸収効率
を高めるように設定される。したがって、前記光透過層
の膜厚は1200〜1500Å程度に選ばれる。
The light transmitting layer is formed on the BiTe layer, and is disposed on the back side of the BiTe layer when viewed from the substrate side. The thickness of the light transmitting layer is set so as to reduce the amount of laser light transmitted through the interface with the BiTe layer, and to increase the efficiency of laser light absorption in the BiTe layer. Therefore, the thickness of the light transmitting layer is selected to be about 1200 to 1500 °.

また、反射層は、前記BiTe層あるいは光透過層の背面
側に設けられるものであって、使用レーザ光に対する反
射率が大きくなるようにAl,Sn,Ag,Au等の金属または合
金材料によって形成される。あるいは、NiCr,W,Mo,Ti等
の高融点金属を用い、BiTe層がレーザ光照射による加熱
によって周辺へ飛散あるいは蒸発するのを防止するよう
にしてもよい。いずれの場合にも、反射層の厚さは外部
に漏れるレーザ光量が十分小さく無視できるような範囲
に選ばれるが、特に高融点金属を用いた場合には、これ
によってあまり熱容量が変化しないように200Å以下程
度,例えば60Å程度に設定される。
The reflection layer is provided on the back side of the BiTe layer or the light transmission layer, and is formed of a metal or alloy material such as Al, Sn, Ag, and Au so that the reflectance with respect to a used laser beam is increased. Is done. Alternatively, a high melting point metal such as NiCr, W, Mo, Ti or the like may be used to prevent the BiTe layer from scattering or evaporating to the periphery due to heating by laser beam irradiation. In any case, the thickness of the reflective layer is selected in a range where the amount of laser light leaking to the outside is sufficiently small and can be neglected. It is set to about 200 mm or less, for example, about 60 mm.

以上は片面タイプの光記録媒体の説明であるが、同様
の構成のものを接着剤層を介して貼り合わせて両面タイ
プとすることも可能である。
The above is the description of the single-sided type optical recording medium. However, it is also possible to form a double-sided type by bonding together those having the same configuration via an adhesive layer.

〔作用〕[Action]

SbSe層にGe,Mn,Cu,Ag,Znのいずれかを第3元素として
添加すると、SbSe単独の場合に比べて結晶化温度が高く
なる。
When any one of Ge, Mn, Cu, Ag, and Zn is added to the SbSe layer as a third element, the crystallization temperature becomes higher than in the case of SbSe alone.

この結晶化温度の上昇は、アモルファス状態のSbSe層
の安定化につながり、BiTe層との合金化が抑制されるこ
とになる。
This increase in the crystallization temperature leads to stabilization of the SbSe layer in an amorphous state, and suppresses alloying with the BiTe layer.

したがって、再生光が照射されたとしても未記録部分
の状態保持が良好なものとなり、再生可能回数が増加す
る。
Therefore, even if the reproduction light is irradiated, the state of the unrecorded portion can be kept good, and the number of reproducible times increases.

〔実施例〕〔Example〕

以下、本発明を適用した具体的な実施例について実験
結果をもとに説明する。
Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.

本実施例の追記型光記録媒体は、第1図に示すよう
に、基板(1)上にSbSe層(2)、BiTe層(3)、Sb2S
e3からなる光透過層(4)、Al−Ti合金からなる反射層
(5)及び保護膜(6)が順次積層形成されてなるもの
である。
As shown in FIG. 1, a write-once optical recording medium according to the present embodiment has an SbSe layer (2), a BiTe layer (3), a Sb 2 S layer on a substrate (1).
e light transmission layer of 3 (4), the reflective layer made of Al-Ti alloy (5) and the protective layer (6) is made of are sequentially laminated.

膜厚は、SbSe層(2)が300Å、BiTe層(3)が150
Å、光透過層(4)が1300Å、反射層(5)が1000Åで
ある。また、SbSe層(2)と光透過層(4)はRFスパッ
タにより、BiTe層(3)と反射層(5)はDCスパッタに
より成膜した。
The thickness of the SbSe layer (2) is 300 °, the thickness of the BiTe layer (3) is 150
Å, the light transmitting layer (4) is 1300 (, and the reflecting layer (5) is 1000Å. The SbSe layer (2) and the light transmitting layer (4) were formed by RF sputtering, and the BiTe layer (3) and the reflecting layer (5) were formed by DC sputtering.

このような構成を前提とし、先ず、SbSe層(2)単独
膜にGeまたはMnを添加し、添加量によりSbSe層(2)の
結晶化温度がどのように変化するかを調べた。
On the premise of such a configuration, first, Ge or Mn was added to the single film of the SbSe layer (2), and how the crystallization temperature of the SbSe layer (2) changes depending on the addition amount was examined.

結果を第2図に示す。なお、ここでは、DSCによる測
定において、昇温速度3deg/分としたときの発熱カーブ
のピーク温度を結晶化温度Tcと定義した。
The results are shown in FIG. Here, in the measurement by DSC, the peak temperature of the heat generation curve when the heating rate was 3 deg / min was defined as the crystallization temperature Tc.

その結果、Geを添加した場合(図中線i)、Mnを添加
した場合(図中線ii)のいずれの場合においても、添加
量とともに結晶温度Tcが高くなっていることが確認され
た。このことは、GeあるいはMnの添加によって、SbSe層
のアモルファス相が安定化されていることを示している
と言える。
As a result, it was confirmed that the crystal temperature Tc increased with the addition amount in both cases of adding Ge (line i in the figure) and adding Mn (line ii in the figure). This indicates that the addition of Ge or Mn has stabilized the amorphous phase of the SbSe layer.

そこで次に、SbSe層(2)にGeを2.0原子%添加した
サンプル(構成は第1図に示す通り。以下同じ。)、Mn
を1.1原子%添加したサンプル、第3元素を添加してい
ないサンプル(比較例に相当する。)を作成し、それぞ
れのサンプルについてSbSe層の結晶化温度Tcと再生可能
回数の関係を調べた。なお、追記型の光記録媒体におい
てデジタル信号を再生する際のレーザダイオードの出力
は通常1.9mW程度に設定されるが、本測定に際しては、
加速試験とするために再生出力を2.5mWとした。また、
各サンプルは、光学ピックアップに対して13.2m/秒の線
速で回転した。
Therefore, next, a sample in which 2.0 atomic% of Ge was added to the SbSe layer (2) (the structure is as shown in FIG. 1; the same applies hereinafter), Mn
Was prepared in which 1.1 atomic% was added and a sample in which the third element was not added (corresponding to a comparative example), and the relationship between the crystallization temperature Tc of the SbSe layer and the number of reproducible times was examined for each sample. The output of the laser diode when reproducing a digital signal in a write-once optical recording medium is usually set to about 1.9 mW.
The reproduction output was set to 2.5 mW for the acceleration test. Also,
Each sample was rotated at a linear speed of 13.2 m / sec with respect to the optical pickup.

結果を第3図に示す。図中の点aは第3元素を添加し
ていないサンプルに、点bはMnを1.1原子%添加したサ
ンプルに、また点cはGeを2.0原子%添加したサンプル
にそれぞれ対応している。
The results are shown in FIG. The point a in the figure corresponds to the sample to which the third element is not added, the point b corresponds to the sample to which Mn is added at 1.1 atomic%, and the point c corresponds to the sample to which Ge is added at 2.0 atomic%.

この第3図を見ると、SbSe層の結晶化温度Tcの上昇に
伴って再生可能回数が増大しており、特にGeを2.0原子
%添加したサンプルでは、第3元素を添加していないサ
ンプルに比べて再生可能回数が1桁以上多くなっている
ことがわかる。
As can be seen from FIG. 3, the number of reproducible times increases as the crystallization temperature Tc of the SbSe layer increases. It can be seen that the number of reproducible times is increased by one digit or more.

以上、Ge及びMnを添加した場合についての実験結果の
ついて説明したが、CuやAg,Znを添加した場合にも同様
の効果が認められた。
As described above, the experimental results in the case where Ge and Mn are added have been described. However, the same effect was observed in the case where Cu, Ag, and Zn were added.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明において
は、SbSeとBiTeの合金化による反射率変化を利用して情
報を記録する追記型光記録媒体のSbSe層に第3元素を添
加しているので、当該SbSe層の結晶化温を上昇して安定
化することができ、再生光が長時間照射されても未記録
部分を未記録のままの状態に保持することができる。
As is clear from the above description, in the present invention, the third element is added to the SbSe layer of the write-once optical recording medium that records information by using a change in reflectance due to alloying of SbSe and BiTe. Therefore, the crystallization temperature of the SbSe layer can be increased and stabilized, and the unrecorded portion can be kept in an unrecorded state even when the reproduction light is irradiated for a long time.

したがって、再生可能回数やスチル可能時間を増大す
ることができ、長期信頼性に優れた追記型光磁気記録媒
体を提供することが可能となる。
Therefore, the number of reproducible times and the possible still time can be increased, and a write-once magneto-optical recording medium excellent in long-term reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用した追記型光記録媒体の構成例を
示す要部概略断面図である。 第2図はGe及びMnの添加量とSbSe層の結晶化温度の関係
を示す特性図である。 第3図はGeまたはMnを添加したサンプル及び第3元素を
添加していないサンプルについてSbSe層の結晶化温度と
再生可能回数の関係をプロットした特性図である。 1……基板 2……SbSe層 3……BiTe層
FIG. 1 is a schematic cross-sectional view of a main part showing a configuration example of a write-once optical recording medium to which the present invention is applied. FIG. 2 is a characteristic diagram showing the relationship between the amounts of Ge and Mn added and the crystallization temperature of the SbSe layer. FIG. 3 is a characteristic diagram plotting the relationship between the crystallization temperature of the SbSe layer and the number of reproducible times for the sample to which Ge or Mn is added and the sample to which no third element is added. 1 ... substrate 2 ... SbSe layer 3 ... BiTe layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上にSbSe層及びBiTe層が積層形成され
てなり、 上記SbSe層はGe,Mn,Cu,Ag,Znより選ばれた少なくとも1
種を0.1〜3.0原子%含有することを特徴とする追記型光
記録媒体。
An SbSe layer and a BiTe layer are laminated on a substrate, wherein the SbSe layer is at least one selected from Ge, Mn, Cu, Ag, and Zn.
A write-once optical recording medium comprising 0.1 to 3.0 atomic% of a seed.
JP2097086A 1990-04-12 1990-04-12 Write-once optical recording medium Expired - Fee Related JP2903616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097086A JP2903616B2 (en) 1990-04-12 1990-04-12 Write-once optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097086A JP2903616B2 (en) 1990-04-12 1990-04-12 Write-once optical recording medium

Publications (2)

Publication Number Publication Date
JPH03293193A JPH03293193A (en) 1991-12-24
JP2903616B2 true JP2903616B2 (en) 1999-06-07

Family

ID=14182833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097086A Expired - Fee Related JP2903616B2 (en) 1990-04-12 1990-04-12 Write-once optical recording medium

Country Status (1)

Country Link
JP (1) JP2903616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851729A (en) * 1995-08-31 1998-12-22 Sony Corporation Optical disc

Also Published As

Publication number Publication date
JPH03293193A (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US6190750B1 (en) Rewritable optical information medium
JP3506491B2 (en) Optical information media
CA1220552A (en) Information recording medium
WO2000021081A1 (en) Information recording medium and information recording device
JP2000322770A (en) Optical information recording medium
US6660451B1 (en) Optical information recording medium
JP4018340B2 (en) Rewritable optical information medium
JP3180813B2 (en) Optical information recording medium
JP2903616B2 (en) Write-once optical recording medium
JP2002298433A (en) Phase change optical recording medium
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
JP3199713B2 (en) How to record and play back information
US8449965B2 (en) Multilayer optical recording medium and optical recording method
JPS62226446A (en) Optical recording medium
JP2000190637A (en) Optical information recording medium
JP3602589B2 (en) Optical recording medium and optical recording method
TW476942B (en) Rewritable optical information medium
JPH07147025A (en) Optical disk
JPS63167440A (en) Method for recording or recording and erasing information
JP2827201B2 (en) Optical recording medium
JP2005289044A (en) Optical information recording medium and its manufacturing method, recording method and recorder
KR20000010481A (en) Phase change optical disk
JPH05325258A (en) Optical information recording medium
JP2001126310A (en) Phase transition optical information recording medium
JPH0963119A (en) Optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees