JPH08271393A - Permeability measuring sample, manufacture thereof, and permeability measuring method - Google Patents

Permeability measuring sample, manufacture thereof, and permeability measuring method

Info

Publication number
JPH08271393A
JPH08271393A JP7070173A JP7017395A JPH08271393A JP H08271393 A JPH08271393 A JP H08271393A JP 7070173 A JP7070173 A JP 7070173A JP 7017395 A JP7017395 A JP 7017395A JP H08271393 A JPH08271393 A JP H08271393A
Authority
JP
Japan
Prior art keywords
transmittance
sample
measurement
measuring
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7070173A
Other languages
Japanese (ja)
Other versions
JP3572425B2 (en
Inventor
Hiroki Jinbo
宏樹 神保
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07017395A priority Critical patent/JP3572425B2/en
Publication of JPH08271393A publication Critical patent/JPH08271393A/en
Application granted granted Critical
Publication of JP3572425B2 publication Critical patent/JP3572425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To prevent a measurement error in measuring the permeability of a raw material by removing the surface roughness, residual impurities such as an abrasive material, and a structural defect caused by the residual stress generated by machining, and setting the surface loss of the measuring wavelength of the polished face of a sample to a specific value or below. CONSTITUTION: Specifications of a permeability measuring sample are set to the parallelism of 30sec or below, the face accuracy of about the same as that of the parallelism, the surface roughness rms=10Å or below, the internal absorption coefficient of 0.1%/cm for stable measurement. The surface loss occurs when various components contained in an abrasive such as the main components CeO2 , Al2 O3 and diamond abrasive grains of the abrasive of an optical raw material remain as the impurities remaining on the surface of the sample. The effect of the metal impurities can be removed when high-purity SiO2 fine grains are used for finish polishing. The structural defect caused by the residual stress can be removed by the acid and alkali cleaning method. The ultraviolet cleaning of the sample before measurement is effective. The surface loss of the measuring wavelength is set to 0.1% or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素材、例えば多成分
光学ガラス、合成石英ガラス、結晶材料等の透過率、例
えば内部透過率(反射損失を含まない分光透過率)の高
精度な測定に用いるサンプル及びその作製方法、測定方
法に関するものである。特に、g線(436nm)、i
線(365nm)リソグラフィーに代表される可視・紫
外線光学系に使用される多成分光学ガラスや、KrF
(248nm)、ArF(193nm)エキシマレ−ザ
リソグラフィーなどの300nm以下の紫外線光学系に
使用される合成石英ガラス、結晶材料の透過率測定サン
プルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended for highly accurate measurement of the transmittance of optical materials such as multi-component optical glass, synthetic quartz glass, and crystalline materials, such as internal transmittance (spectral transmittance not including reflection loss). The present invention relates to a sample to be used, a manufacturing method thereof, and a measuring method. Especially, g line (436 nm), i
Multi-component optical glass used in visible / ultraviolet optical systems typified by linear (365 nm) lithography and KrF
(248 nm), ArF (193 nm) The present invention relates to a synthetic quartz glass used in an ultraviolet optical system of 300 nm or less such as excimer laser lithography, and a sample for measuring transmittance of a crystalline material.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパと呼ばれる露光装置が用いられ
る。このステッパの光源は、近年のLSIの高集積化に
伴ってg線からi線へと短波長化が進められている。こ
のようなステッパの照明系あるいは投影レンズに用いら
れる光学ガラスの内部透過率は、99.8%/cmある
いは99.9%/cm以上(内部吸収0.2%/cm、
あるいは、0.1%/cm以下)が要求される。そし
て、さらなるLSIの高集積化に伴い、ステッパの光源
はKrFやArFエキシマレーザーへと移行している。
このようなエキシマレーザーステッパの照明系あるいは
投影レンズには、もはや一般光学ガラスは使用できず、
石英ガラスや蛍石などの素材に限定される。このような
エキシマレーザーステッパの照明系あるいは投影レンズ
に用いられる石英ガラス、蛍石においても、その内部透
過率は99.8%/cmあるいは99.9%/cm以上
が要求される。したがって、紫外光領域での上記光学素
材の高透過率化を目指した開発が進められている。一方
で、短波長化が進むにつれて、光学素材の内部透過率を
高精度で測定することが技術的に非常に難しくなってい
る。したがって、光学素材の高透過率を達成するために
は、まず第一に、このような微弱な吸収しか存在しない
光学ガラスや合成石英ガラスや結晶材料等の内部透過率
(内部吸収0.1%/cm程度)を精度良く測定し、評
価可能な技術が不可欠である。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, an exposure device called a stepper is used. The light source of this stepper has been shortened in wavelength from g line to i line with the recent high integration of LSI. The internal transmittance of the optical glass used in the illumination system or projection lens of such a stepper is 99.8% / cm or 99.9% / cm or more (internal absorption 0.2% / cm,
Alternatively, 0.1% / cm or less) is required. The light source of the stepper has been changed to a KrF or ArF excimer laser as the LSI is further integrated.
General optical glass can no longer be used for the illumination system or projection lens of such an excimer laser stepper,
Limited to materials such as quartz glass and fluorite. Quartz glass and fluorite used in the illumination system or projection lens of such excimer laser stepper are also required to have an internal transmittance of 99.8% / cm or 99.9% / cm or more. Therefore, development aiming at high transmittance of the above optical material in the ultraviolet region is under way. On the other hand, as the wavelength becomes shorter, it becomes technically very difficult to measure the internal transmittance of the optical material with high accuracy. Therefore, in order to achieve a high transmittance of an optical material, first of all, the internal transmittance (internal absorption of 0.1%) of optical glass, synthetic quartz glass, crystal material, etc., having only such weak absorption exists. / Cm) is required to be accurately measured and evaluated.

【0003】[0003]

【発明が解決しようとする課題】内部透過率の測定方法
としては日本光学硝子工業会規格JOGIS−17−8
2に光学ガラスの内部透過率の測定方法が規定されてい
る。その他の光学素材である石英ガラスあるいは結晶材
料についても、内部透過率の測定方法はこれに準ずるも
のである。この規定の中で、透過率測定サンプルの作製
については、厚さ3mmと10mmの1対とし、両者共
平行に対面を研磨すること、内部透過率の表示について
は、10mm厚のガラスに対する値で表示すること、ま
た、小数点以下第3位を四捨五入しているため、測定精
度は内部吸収1%/cmに過ぎず、特に内部透過率の測
定誤差の問題が顕著になるi線、エキシマレーザー等の
短波長域は対象とされていなかった。
As a method of measuring the internal transmittance, the Japan Optical Glass Industry Association standard JOGIS-17-8 is used.
2 defines the method of measuring the internal transmittance of optical glass. With respect to other optical materials such as quartz glass and crystal materials, the method of measuring the internal transmittance is based on this. In this specification, for the preparation of the transmittance measurement sample, the thickness of 3 mm and the pair of 10 mm are used as a pair, and the opposite surfaces are ground in parallel, and the internal transmittance is indicated by the value for the glass of 10 mm thickness. Since it is displayed and the number is rounded off to two decimal places, the measurement accuracy is only 1% / cm for internal absorption, and i-line, excimer laser, etc. where the problem of measurement error of internal transmittance becomes particularly noticeable. The short wavelength region of was not targeted.

【0004】光学素材の透過率の測定方法において、内
部吸収0.1%/cmを有意差として測定するために
は、主に、以下に示す事項が検討される。 基本性能の高い分光光度計を用いて分光透過率(反射
損失込みの透過率)を測定する。 市販の分光光度計において、測定光路内にサンプルを
挿入することで生じる光路ずれに起因する透過率ずれを
補正する。 高精度な、すなわち測定誤差の少ないサンプルを作製
する。
In the method of measuring the transmittance of an optical material, the following items are mainly examined in order to measure the internal absorption of 0.1% / cm as a significant difference. Spectral transmittance (transmittance including reflection loss) is measured using a spectrophotometer with high basic performance. In a commercially available spectrophotometer, the transmittance shift caused by the optical path shift caused by inserting the sample into the measurement optical path is corrected. A sample with high accuracy, that is, a measurement error is small, is manufactured.

【0005】、に関しては、装置の開発により、1
93nm、248nmにおける測定ゆらぎを3σで±
0.01%を達成した。また、平行光線である事で、屈
折による光路のズレにより生じる、検出器として使用さ
れる光電子増倍管の光電面の感度むらの影響が、実質上
無い装置を作製した。
With respect to ,, due to the development of the device,
Measurement fluctuation at 93 nm and 248 nm is ± 3σ
Achieved 0.01%. In addition, since the light rays are parallel rays, a device having substantially no influence of uneven sensitivity on the photocathode of the photomultiplier tube used as a detector, which is caused by deviation of the optical path due to refraction, was manufactured.

【0006】しかしながら、に関しては、従来、透過
率測定サンプルの規格が存在せず、サンプルの精度を規
定する項目及び程度が定量化されていなかった。したが
って、透過率測定サンプルの規格を実現する作製方法も
示されていなかった。
[0006] However, as for the conventional method, there is no standard for the sample for measuring the transmittance, and the item and the degree of defining the accuracy of the sample have not been quantified. Therefore, a manufacturing method for realizing the standard of the transmittance measurement sample has not been shown.

【0007】[0007]

【課題を解決するための手段】本発明者らは、光学素材
の透過率の測定方法において、透過率測定サンプルの規
格及び作製方法に起因する測定誤差を鋭意研究した。そ
して、サンプルに起因する測定誤差要素を検討した結
果、サンプルの研磨面の平行度、面精度、表面粗さが問
題となることが解った。
Means for Solving the Problems In the method of measuring the transmittance of an optical material, the inventors of the present invention have earnestly studied the measurement error caused by the standard of the sample for measuring the transmittance and the manufacturing method. Then, as a result of examining the measurement error factors due to the sample, it was found that the parallelism, surface accuracy, and surface roughness of the polished surface of the sample were problems.

【0008】一般にサンプルの作製は評価する光学素材
の一部を分光光度計のサンプル室に入るような形状に切
り出し、厚さ方向の向かい合う二面を市販の研磨剤で光
学研磨することにより行われる。ここで、平行度とは、
光学研磨面の向かい合う二面のうちの一面を基準とし、
その基準面に対する傾き(角度)である。また、面精度
とは研磨面の平面原器からのずれ量であり、表面粗さと
は各光学研磨面の凹凸の高さである。
Generally, a sample is prepared by cutting out a part of an optical material to be evaluated into a shape that fits into a sample chamber of a spectrophotometer, and optically polishing two opposing surfaces in the thickness direction with a commercially available abrasive. . Here, the parallelism is
Based on one of the two facing optical polishing surfaces,
It is the inclination (angle) with respect to the reference plane. Further, the surface accuracy is the amount of deviation of the polishing surface from the flat prototype, and the surface roughness is the height of the irregularities on each optical polishing surface.

【0009】本発明者らは、先に、平行度30秒以下、
面精度を平行度と同程度以下、表面粗さrms=10Å
以下のサンプルを用いることにより、光学素材の内部透
過率を±0.1%以下の誤差で高精度に測定することが
可能となることを提案した。さらに、透過率測定サンプ
ルを作製する際に使用した切削、研磨剤等の残留不純物
や加工により発生した残留応力に起因する構造欠陥が光
学素材の分光透過率の低下原因であることを見い出し、
光学素材のサンプルの作製において、サンプルを表面粗
さrms=10Å程度に前研磨した後、SiO2研磨剤
でrms=10Å以下にする、あるは酸またはアルカリ
処理することを特徴とする透過率測定サンプルの作製方
法を提案した。
The present inventors have previously stated that the parallelism is 30 seconds or less,
Surface accuracy is less than or equal to parallelism, surface roughness rms = 10Å
It has been proposed that the internal transmittance of the optical material can be measured with high accuracy with an error of ± 0.1% or less by using the following samples. Furthermore, the cutting used when making the transmittance measurement sample, it was found that the structural defects caused by the residual stress such as residual impurities and processing such as abrasives is the cause of the decrease in the spectral transmittance of the optical material,
In the preparation of a sample of an optical material, the sample is pre-polished to have a surface roughness of rms = 10 Å, and then rms = 10 Å or less with a SiO 2 abrasive, or a transmittance measurement characterized by acid or alkali treatment. A method of making samples was proposed.

【0010】しかしながら、例えば短波長の紫外域また
は真空紫外域の光学素材の透過率測定においては、さら
に高精度の測定が望まれる。そこで、透過率測定サンプ
ルの表面の状態が測定精度に大きく影響することについ
て、さらに研究を進めた。サンプル表面の状態は、上述
した要素のうち、特に表面粗さ、研磨剤等の残留不純
物、そして加工により発生する残留応力に起因する構造
欠陥の3つに支配される。そこで、サンプルの表面損失
を0.1%以下とすることにより、さらに高精度の測定
が可能となった。
However, in measuring the transmittance of an optical material in the ultraviolet region of the short wavelength or the vacuum ultraviolet region, for example, higher precision measurement is desired. Therefore, further research was conducted on how the surface condition of the transmittance measurement sample greatly affects the measurement accuracy. The condition of the surface of the sample is controlled by three of the above-mentioned factors, in particular, surface roughness, residual impurities such as abrasives, and structural defects caused by residual stress generated by processing. Therefore, by setting the surface loss of the sample to 0.1% or less, it is possible to measure with higher accuracy.

【0011】さらに、測定前に、紫外線洗浄を行う事に
より、サンプル表面の測定結果に及ぼす影響を抑えるこ
とが可能となった。
Furthermore, by performing ultraviolet cleaning before the measurement, it is possible to suppress the influence on the measurement result of the sample surface.

【0012】[0012]

【作用】サンプルの平行度と透過率に影響を及ぼす測定
光の光路ずれについては、以下の式が成り立つ。
The following equation holds for the optical path shift of the measuring light which affects the parallelism and the transmittance of the sample.

【0013】[0013]

【数1】 [Equation 1]

【0014】これにより透過率の相対比較を行う場合は
サンプルの平行度を規定する必要があることが解る。ま
た、測定光に対するサンプルの傾斜方向が測定光の検出
器上での変位方向を決めるため、好ましくは測定時にサ
ンプルの傾斜方向を揃える必要がある。しかしながら、
実験結果から平行度を30秒以下とすれば測定誤差が無
視できることが解った。
From this, it is understood that it is necessary to define the parallelism of the samples when performing the relative comparison of the transmittances. Further, since the inclination direction of the sample with respect to the measurement light determines the displacement direction of the measurement light on the detector, it is preferable that the inclination directions of the sample be aligned during measurement. However,
From the experimental results, it was found that the measurement error can be ignored if the parallelism is 30 seconds or less.

【0015】面精度の測定は縞走査型干渉計を使用して
行った。なお、上記で規定したサンプルの平行度(30
秒)と同等の高低差を与える面精度は次式から求めるこ
とができる。
The surface precision was measured using a fringe scanning interferometer. In addition, the parallelism of the sample defined above (30
The surface accuracy that gives a height difference equivalent to (sec) can be obtained from the following equation.

【0016】[0016]

【数2】 [Equation 2]

【0017】ここで、λは測定光の波長であり、通常5
46nm、2は面の数、Lはサンプルの直径、対角線等
のサンプルの研磨された面の最大の長さ(cm)を意味
する。したがって、面精度=1.33Lλ以下が必要と
なる。透過率測定サンプルの面精度の実測値を上記式に
より導かれた面精度以内にすれば、測定精度上問題がな
いことが解った。上式よりdを求めると、d=1.33
Lとなる。
Where λ is the wavelength of the measuring light, which is usually 5
46 nm, 2 means the number of faces, L means the diameter of the sample, the maximum length (cm) of the polished face of the sample such as the diagonal line. Therefore, surface accuracy = 1.33Lλ or less is required. It was found that there is no problem in measurement accuracy if the actual measurement value of the surface accuracy of the transmittance measurement sample is within the surface accuracy derived by the above formula. When d is calculated from the above equation, d = 1.33
It becomes L.

【0018】表面粗さについては、特に光学素材の分光
透過率が屈折率から算出される理論透過率よりも低く測
定されることに着目し、サンプル規格の検証実験を行っ
た。その一例を紹介する。まず、理論透過率について説
明する。多重反射を考慮した分光透過率Tは以下の
(1)、(2)式で定義される。
Regarding the surface roughness, a verification experiment of sample specifications was conducted, paying attention to the fact that the spectral transmittance of the optical material is measured lower than the theoretical transmittance calculated from the refractive index. Here is an example. First, the theoretical transmittance will be described. The spectral transmittance T considering multiple reflection is defined by the following equations (1) and (2).

【0019】[0019]

【数3】 (Equation 3)

【0020】Rは測定光が光学素材表面に対して垂直に
入射したときの反射率である。
R is the reflectance when the measurement light is incident perpendicularly to the surface of the optical material.

【0021】[0021]

【数4】 [Equation 4]

【0022】理論透過率T0は(1)式において光量の
低下が反射損失のみの場合、すなわち、内部吸収係数a
が0の場合の分光透過率の計算値あるいは、サンプル厚
みが無限に小さい場合の分光透過率の計算値である。一
般に、分光透過率が理論透過率より低く測定される、す
なわち測定光量の表面損失の一因として、サンプルの表
面粗さに起因する散乱損失が考えられている。
The theoretical transmissivity T 0 is expressed by the equation (1) when the decrease in light quantity is only reflection loss, that is, the internal absorption coefficient a
Is the calculated value of the spectral transmittance when 0 is 0 or the calculated value of the spectral transmittance when the sample thickness is infinitely small. Generally, the spectral transmittance is measured to be lower than the theoretical transmittance, that is, the scattering loss due to the surface roughness of the sample is considered as one of the causes of the surface loss of the measurement light amount.

【0023】そこで、図1及び図2に測定波長248n
m及び193nmでのサンプルの表面粗さと散乱損失を
除外した理論透過率の関係を示す。表面粗さに起因す
る、表面の散乱損失を除外した理論透過率T(散)は以下
の近似式を用いて算出される。
Therefore, the measurement wavelength 248n is shown in FIGS.
The relationship between the surface roughness of the sample at m and 193 nm and the theoretical transmittance excluding scattering loss is shown. The theoretical transmittance T (dispersion) excluding the surface scattering loss due to the surface roughness is calculated using the following approximate expression.

【0024】[0024]

【数5】 (Equation 5)

【0025】また、図中に示す種々の表面粗さに対する
分光透過率は、透過率測定サンプルに同一条件で製造さ
れた合成石英ガラスを用い、表面粗さ以外の規格は平行
度30秒、面精度3λ、厚さt=10±0.05mmと
した。尚、表面粗さは光学干渉方式の表面粗さ計を用い
て測定し、以下の式で求められる。
As for the spectral transmittances for various surface roughnesses shown in the figure, synthetic quartz glass manufactured under the same conditions was used as the transmittance measurement sample, and standards other than the surface roughness were parallelism of 30 seconds and surface roughness. The precision was 3λ and the thickness t was 10 ± 0.05 mm. The surface roughness is measured by using an optical interference type surface roughness meter and is calculated by the following formula.

【0026】[0026]

【数6】 (Equation 6)

【0027】図1及び図2から解る様に、表面散乱損失
を含めた理論透過率を計算すると、サンプルの表面粗さ
の増加に伴い、測定波長の理論透過率、すなわち248
nmでは92.12%/cm、193nmでは90.8
7%/cmからずれる傾向がある。ここで、図1,2中
の波線は表面散乱損失のない場合の理論透過率を示し、
実線は、表面粗さに依存した表面散乱を含めた理論透過
率を、●ドットは実測定値を示す。
As can be seen from FIGS. 1 and 2, the theoretical transmittance including the surface scattering loss was calculated. As the surface roughness of the sample increased, the theoretical transmittance at the measurement wavelength, that is, 248.
nm is 92.12% / cm, and 193 nm is 90.8.
It tends to deviate from 7% / cm. Here, the wavy lines in FIGS. 1 and 2 show the theoretical transmittance in the case where there is no surface scattering loss,
The solid line shows the theoretical transmittance including surface scattering depending on the surface roughness, and the ● dot shows the actual measured value.

【0028】そこで、理論上、測定精度を確保するため
には表面粗さrms=10Å以下の透過率測定サンプル
の規格が必要となることが解る。以上のことから、本発
明は光学素材の透過率の測定方法において、透過率測定
サンプルに規格を設け、その規格を平行度30秒以下、
面精度を平行度と同程度以下、表面粗さrms=10Å
以下とし、内部吸収係数0.1%/cmを有意差として
安定に測定することを可能とする。
Therefore, it is theoretically understood that the standard of the transmittance measurement sample having the surface roughness rms = 10 Å or less is required to secure the measurement accuracy. From the above, according to the present invention, in the method for measuring the transmittance of an optical material, a standard is set for the transmittance measurement sample, and the standard is set to a parallelism of 30 seconds or less,
Surface accuracy is less than or equal to parallelism, surface roughness rms = 10Å
It is possible to stably measure the internal absorption coefficient of 0.1% / cm as a significant difference.

【0029】一方、図1及び図2から解る様に、種々の
表面粗さに対する分光透過率の実測定値(●ドット)
は、大きなばらつきがあるが表面散乱損失を除外した理
論透過率と同様な傾向を示す。しかしながら、分光透過
率は表面粗さのみによらず、表面散乱損失を除外した理
論透過率より少なくとも0.1%以上低く測定されるこ
とが解る。また、この現象は特に、波長の短い193n
mで顕著である。
On the other hand, as can be seen from FIGS. 1 and 2, actual measured values of the spectral transmittance for various surface roughness (● dots)
Shows a tendency similar to the theoretical transmittance excluding surface scattering loss although there is a large variation. However, it is understood that the spectral transmittance is measured at least 0.1% or more lower than the theoretical transmittance excluding the surface scattering loss regardless of the surface roughness. In addition, this phenomenon is especially caused by the short wavelength of 193n.
It is remarkable in m.

【0030】また、本発明者らは、分光透過率の低下原
因である表面損失が、散乱損失だけでは説明できないこ
とから、サンプル表面の各種測定を行った。サンプル表
面の残留不純物の分析は通常の表面分析方法、例えばE
SCA、蛍光X線分析装置では、感度の点で問題があ
り、不純物の定量は不可能であった。そこで、全反射蛍
光X線分析装置により分析を行った。結果を以下に示
す。 a)分光透過率が特に低く測定されたサンプル表面に多
量のCe不純物が検出された。 b)全反射蛍光X線分析法によりCe不純物が検出され
ない、サンプルでも193nmでの分光透過率が低く測
定されることがあった。
Since the surface loss, which is the cause of the decrease in the spectral transmittance, cannot be explained only by the scattering loss, the present inventors conducted various measurements on the sample surface. Residual impurities on the sample surface can be analyzed by a usual surface analysis method, for example E
The SCA and X-ray fluorescence analyzer had a problem in sensitivity and it was impossible to quantify impurities. Therefore, analysis was performed using a total reflection X-ray fluorescence analyzer. The results are shown below. a) A large amount of Ce impurities was detected on the sample surface where the spectral transmittance was measured to be particularly low. b) In some cases, Ce impurities were not detected by the total reflection X-ray fluorescence analysis, and the sample had a low spectral transmittance at 193 nm.

【0031】これは、サンプルを作製する際に使用され
る研磨剤の主成分であるCeO2がサンプル表面の微小
クラック部に残留しているためと考えられる。サンプル
表面に残留する不純物としては、光学素材の研磨剤の主
成分CeO2、Al23、ZrO2及びダイヤモンド砥粒
等の他にも研磨剤に含まれている様々な成分が考えられ
る。これらの成分がサンプル表面に微量の不純物として
残留する場合においても同様な表面損失を引き起こすと
考えられる。
It is considered that this is because CeO 2 which is the main component of the polishing agent used for producing the sample remains in the microcracks on the surface of the sample. As the impurities remaining on the surface of the sample, various components contained in the polishing agent may be considered in addition to the main components CeO 2 , Al 2 O 3 , ZrO 2 and diamond abrasive grains of the polishing agent of the optical material. It is considered that even when these components remain as trace impurities on the sample surface, similar surface loss is caused.

【0032】金属不純物の影響はとしては、高純度Si
2微粒子を使用した、仕上げ研磨によって、除去可能
である。また、さらに短波長域では、検出限界以下の有
機系の残留物やCe以外の不純物等の影響あるいは残留
応力に起因する構造欠陥の影響が大きくなり、b)の結
果が得られる事が実験、分析などによりわかってきた。
The influence of metallic impurities is as follows:
It can be removed by finish polishing using O 2 fine particles. Further, in the shorter wavelength region, the influence of organic residues below the detection limit, impurities other than Ce, etc., or the influence of structural defects due to residual stress becomes large, and the result of b) can be obtained by experiments, It became clear by analysis.

【0033】残留応力については、酸もしくはアルカリ
洗浄法により除去可能である。これらの事実から、透過
率測定に影響を与える因子として、サンプルの表面散乱
以外の原因としては、サンプル表面の吸収による損失の
影響が大きいことが判明した。そこで、本発明者らは光
学素材の透過率の測定方法において、内部吸収係数0.
1%/cmを有意差として精度良く測定することを可能
とする、透過率測定サンプルの作製方法を検討した。そ
の結果、紫外線照射による紫外線洗浄を行うことが有効
であることを様々な実験により見い出した。
The residual stress can be removed by an acid or alkali cleaning method. From these facts, it was clarified that the factor other than the surface scattering of the sample is largely influenced by the loss due to the absorption of the sample surface as the factor affecting the transmittance measurement. Therefore, the inventors of the present invention used an internal absorption coefficient of 0.
A method for producing a transmittance measurement sample that enables accurate measurement with a significant difference of 1% / cm was examined. As a result, it was found by various experiments that it is effective to perform ultraviolet cleaning by ultraviolet irradiation.

【0034】これは、サンプルに紫外線を照射する事
で、表面の有機物を分解し発生したオゾンO3で同時に
酸化除去する事で、表面の洗浄する方法である。紫外線
洗浄に至った、経緯を以下に記す。クリ−ンル−ムや清
浄度を保ったまま真空封入後N2パージした容器内にサ
ンプルを保管しても、比較的早く透過率測定値が変化し
測定に誤差を生じること、及びクリ−ンル−ム内のSi
基板の表面汚染現象にヒントを得、放出ガス分析、ES
CA、接触角測定等様々な実験を行ったところ、以下の
事がわかった。 湿式精密洗浄後、時間の経過と共に透過率が減少す
る。 湿式精密洗浄後、時間の経過と共に表面に炭化水素系
の不純物が増加する。
This is a method of cleaning the surface by irradiating the sample with ultraviolet rays to decompose organic substances on the surface and simultaneously oxidizing and removing the generated ozone O 3 . The history of UV cleaning is described below. Even if the sample is stored in a container that has been vacuum-sealed and N 2 purged while maintaining the clean room and cleanliness, the transmittance measurement value changes relatively quickly and an error occurs in the measurement. -Si in the frame
Inspired by the surface contamination phenomenon of the substrate, emission gas analysis, ES
Various experiments such as CA and contact angle measurements revealed the following. After the wet precision cleaning, the transmittance decreases with time. After wet precision cleaning, hydrocarbon-based impurities increase on the surface over time.

【0035】これらより、透過率低下の原因は、表面に
付着した数原子層の炭化水素系不純物による表面損失で
あると推定される。これらの対策として、測定直前に、
紫外線洗浄を行うことを試してみた。実験にて確認した
結果、紫外線洗浄法は、処理が簡便であり、短時間で極
めて効果が高い事が確認できた。この事からも、表面損
失の主因として、表層の炭化水素化合物の存在が確認で
きる。
From these, it is estimated that the cause of the decrease in transmittance is the surface loss due to the hydrocarbon-based impurities in the several atomic layers attached to the surface. As a measure against these, just before measurement,
I tried to do UV cleaning. As a result of experiments, it was confirmed that the ultraviolet cleaning method is simple in treatment and extremely effective in a short time. From this, it can be confirmed that the presence of the hydrocarbon compound in the surface layer is the main cause of the surface loss.

【0036】次に、紫外線洗浄による効果の実験結果を
詳しく記述する。紫外線洗浄の原理は、低圧Hgランプ
等を用いた紫外線照射による炭水化物などの有機化合物
の分解作用と、照射の際、空気中のO2が、O2→O+
O、O+O2→O3の反応を経て生成される活性酸素O*
の強力な酸化作用により有機化合物がガス状態の物質、
例えばH2O、CO2、N2等に変化し、非照射表面より
除去され、非常に清浄な表面が得られる事にある。
Next, the experimental results of the effect of the ultraviolet cleaning will be described in detail. The principle of UV cleaning is to decompose organic compounds such as carbohydrates by UV irradiation using a low-pressure Hg lamp and to reduce O 2 in the air from O 2 → O + during irradiation.
O, O + O 2 → O 3 generated active oxygen O *
The organic compound is in the gaseous state due to the strong oxidizing action of
For example H 2 O, then changed to CO 2, N 2, etc., are removed from the non-irradiated surface, in that a very clean surface is obtained.

【0037】ただし、紫外線処理で除去でき得る、汚染
物は表層数原子層である事が望ましい。これは、汚染物
による膜厚が厚いと、処理時間が長くなる事がある。こ
の為他の洗浄法、例えば、酸及びアルカリ洗浄、もしく
は、水系、有機系を組み合わせたいわゆる精密洗浄法な
どと組み合わせる事が望ましい。この効果は、波長がよ
り短い、193nmで顕著であるので、193nm透過
率測定について、調査した。
However, it is desirable that the contaminants that can be removed by the ultraviolet treatment have a few atomic layers on the surface. This is because if the film thickness due to contaminants is large, the processing time may increase. For this reason, it is desirable to combine with other cleaning methods, for example, acid and alkali cleaning, or so-called precision cleaning method in which an aqueous system and an organic system are combined. This effect is more pronounced at the shorter wavelength, 193 nm, so 193 nm transmittance measurements were investigated.

【0038】まず、紫外線処理時間と193nmの反射
損失込み透過率の関係を調査した。図3に示す様に、処
理開始と共に透過率測定値が上昇し、屈折率から計算し
た理論透過率値90.87%に漸近する。理論値からの
ズレは、内部散乱による損失である。内部散乱測定値か
ら算出した内部散乱損失係数0.15%/cmを考慮す
ると内部吸収は0.05%/cm以下と見積もる事が出
来る。
First, the relationship between the UV treatment time and the transmittance including reflection loss at 193 nm was investigated. As shown in FIG. 3, the measured transmittance increases with the start of the treatment, and approaches the theoretical transmittance value of 90.87% calculated from the refractive index. The deviation from the theoretical value is the loss due to internal scattering. Considering the internal scattering loss coefficient of 0.15% / cm calculated from the internal scattering measurement value, the internal absorption can be estimated to be 0.05% / cm or less.

【0039】また、紫外線処理時間と接触角の関係を図
4に、接触角と表面損失の関係を図5に示す。ここで、
接触角とは、水を使用した液適法により測定した値であ
る。清浄な表面は、高い表面エネルギ−を持ち、汚染さ
れた表面は低い表面エネルギ−を持つため、等量の液滴
を滴下すると、清浄な面では大きく広がり接触角は小さ
く、汚染された面では、滴をはじくため、大きな接触角
となる。
FIG. 4 shows the relationship between the UV treatment time and the contact angle, and FIG. 5 shows the relationship between the contact angle and the surface loss. here,
The contact angle is a value measured by a liquid solution method using water. A clean surface has a high surface energy, and a contaminated surface has a low surface energy. Therefore, when an equal amount of droplets is dropped, it spreads widely on a clean surface and has a small contact angle, and on a contaminated surface. , Because it repels drops, it has a large contact angle.

【0040】つまり、接触角が大きいサンプルの表面に
は、汚染物である有機物が表面に付着しており、紫外線
処理により、有機物が除去され、表面損失が減少する。
このため、透過率の測定が正確に出来ると思われる。図
4より読みとると、表面損失を0.1%にする為には、
接触角を10゜以下にする事により達成できることが確
認できた。
That is, on the surface of the sample having a large contact angle, the contaminant organic substance adheres to the surface, and the organic substance is removed by the ultraviolet treatment, and the surface loss is reduced.
Therefore, it seems that the transmittance can be accurately measured. Reading from FIG. 4, in order to make the surface loss 0.1%,
It was confirmed that this can be achieved by setting the contact angle to 10 ° or less.

【0041】光源としては、Hgランプ等の紫外域で高
出力のランプ、エキシマランプ、ArFエキシマレ−ザ
−の様な紫外域パルスレーザ、Arイオンレーザの第2
次高調波またはNd:YAG第3次高調波の様な紫外域
CWレーザ等が使用できる事を低圧Hgランプ同様の実
験にて確認した。特に、Hgランプを用いた場合は、サ
ンプル自体がダメージを受けてサンプルの物性変化(例
えば透過率低下、クラックの発生、表面形状の変化等)
を防ぐことができるので、好ましい。
As the light source, a high output lamp in the ultraviolet region such as an Hg lamp, an excimer lamp, an ultraviolet pulse laser such as an ArF excimer laser, and an Ar ion laser are used.
It was confirmed by an experiment similar to the low pressure Hg lamp that an ultraviolet CW laser such as the third harmonic or the Nd: YAG third harmonic can be used. In particular, when the Hg lamp is used, the sample itself is damaged and changes in the physical properties of the sample (for example, decrease in transmittance, occurrence of cracks, change in surface shape, etc.)
Is preferable because it can prevent

【0042】紫外線処理の際の、雰囲気O2濃度依存性
を確認したところ、5%以上のO2濃度では処理による
効果及び処理時間による洗浄効果はほとんど変わらなか
った。しかし、5%以下では、処理効果がやや劣り、同
じ効果を得るための処理時間が長くなった。このため、
紫外線処理時の雰囲気O2濃度は望ましくは5%以上が
必要である。
When the dependency of the O 2 concentration on the atmosphere during the ultraviolet treatment was confirmed, the effect by the treatment and the cleaning effect by the treatment time were almost the same at an O 2 concentration of 5% or more. However, if it is 5% or less, the treatment effect is slightly inferior, and the treatment time for obtaining the same effect becomes long. For this reason,
The atmosphere O 2 concentration during the ultraviolet treatment is preferably 5% or more.

【0043】この効果は、多成分の光学ガラス、及びC
aF2等の光学単結晶等の透過率精密測定にも、適用で
きる。以下、実施例により、本発明を詳しく説明する。
This effect is due to the multi-component optical glass and C
It can also be applied to precision measurement of transmittance of an optical single crystal such as aF 2 . Hereinafter, the present invention will be described in detail with reference to examples.

【0044】[0044]

【実施例】光学素材である高純度石英ガラスインゴット
は、原料として高純度の四塩化ケイ素を用い、石英ガラ
ス製バーナーにて酸素ガス及び水素ガスを混合・燃焼さ
せ、中心部から原料ガスをキャリアガス(通常酸素ガ
ス)で希釈して噴出させ、ターゲット上に堆積、溶融し
て合成した。これにより、直径180mm、長さ550
mmの石英ガラスインゴットを得た。
[Example] A high-purity quartz glass ingot, which is an optical material, uses high-purity silicon tetrachloride as a raw material, and an oxygen gas and a hydrogen gas are mixed and burned by a quartz glass burner, and the raw material gas is carried from the center. It was diluted with a gas (usually oxygen gas), ejected, deposited on a target, melted, and synthesized. This gives a diameter of 180 mm and a length of 550
A mm quartz glass ingot was obtained.

【0045】さらに、得られた石英ガラスインゴット及
び蛍石単結晶について、含有金属不純物(Ti,Cr,
Fe,Ni,Cu,Zn,Co,Mn)の定量分析を誘
導結合プラズマ発光分光法によって行ったところ、濃度
がそれぞれ20ppb以下であり、本石英ガラス及び蛍
石は高純度であることがわかった。また、この石英ガラ
スの内部散乱損失係数は、積分球を使用した実測値から
0.15%/cmである事を算出した。ここで、内部散
乱の原因は、石英ガラスの本質的な物性に起因する、レ
−リ−散乱・ブリリアン散乱等が主因である。
Further, regarding the obtained quartz glass ingot and fluorite single crystal, metal impurities (Ti, Cr,
When quantitative analysis of Fe, Ni, Cu, Zn, Co, Mn) was performed by inductively coupled plasma emission spectroscopy, the concentrations were 20 ppb or less, respectively, and it was found that the silica glass and fluorite are of high purity. . The internal scattering loss coefficient of this quartz glass was calculated to be 0.15% / cm from the actual measurement value using an integrating sphere. Here, the main cause of the internal scattering is Rayleigh scattering, Brillian scattering, and the like, which are caused by the essential physical properties of quartz glass.

【0046】透過率測定器は、平行ビ−ムを用いたダブ
ルビ−ム超精密分光光度計を作製し、使用した。ここ
で、193nm透過率に関して、平行光でない市販の分
光光度計で得たデ−タと、本実施例で作製した超精密分
光光度計で得たデ−タの比較を図6に示す。
As the transmittance measuring device, a double-beam ultra-precision spectrophotometer using parallel beams was prepared and used. Here, regarding the 193 nm transmittance, FIG. 6 shows a comparison between the data obtained by a commercially available spectrophotometer which is not parallel light and the data obtained by the ultra-precision spectrophotometer manufactured in this example.

【0047】サンプルは全く同一のものを測定し、表面
損失は本特許のサンプル作製法を用いたため、事実上無
視し得る量である。実線は、内部散乱損失係数0.15
%/cmの内部散乱損失分を含んだ、理論透過率であ
る。●ドットは本特許の超精密分光光度計、■ドットは
市販の分光光度計で、透過率のサンプル厚さ依存性を測
定した実デ−タである。●ドットの回帰直線は、切片が
理論値と一致している事、直線からのズレが小さいのに
対して、■ドットはサンプル厚さのによる光路のズレに
よる、光電子倍増管の光電面の感度むらの影響により、
直線性がみられない。本実施例の超精密分光光度計は、
平行光を用いているため、精度が非常に良い事が確認さ
れた。図6中の●ドットの回帰式と理論値実線のズレは
内部吸収によると思われる。この様に、本発明の透過率
測定法を用いれば、内部吸収は、透過損失−内部散乱損
失により、高精度で算出する事が可能である。
The same sample was measured, and the surface loss was practically negligible because the sample preparation method of this patent was used. The solid line shows the internal scattering loss coefficient of 0.15.
It is the theoretical transmittance including the internal scattering loss of% / cm. ● Dots are ultra-precision spectrophotometers of this patent, ■ Dots are commercially available spectrophotometers, and are actual data obtained by measuring the dependence of the transmittance on the sample thickness. ● In the regression line of dots, the intercept agrees with the theoretical value, and the deviation from the straight line is small, while the dot shows the sensitivity of the photocathode of the photomultiplier tube due to the deviation of the optical path due to the sample thickness. Due to the effect of unevenness,
There is no linearity. The ultra-precision spectrophotometer of this example is
It was confirmed that the accuracy was very good because parallel light was used. The deviation of the ● dot regression equation and the theoretical solid line in Fig. 6 seems to be due to internal absorption. As described above, by using the transmittance measuring method of the present invention, the internal absorption can be calculated with high accuracy from the transmission loss-internal scattering loss.

【0048】以下実施例のデ−タは全て、本発明により
作製した平行ビ−ムを用いたダブルビ−ム超精密分光光
度計を使用した。また、使用した石英ガラスサンプルの
内部散乱損失係数は、全て0.15%/cm±0.03
である。 [実施例1]透過率サンプルの紫外線洗浄効果を確認し
た結果を、図7に示す。
In all the data of the following examples, a double-beam ultra-precision spectrophotometer using a parallel beam produced according to the present invention was used. The internal scattering loss coefficients of the quartz glass samples used were all 0.15% / cm ± 0.03.
Is. [Example 1] The results of confirming the ultraviolet cleaning effect of the transmittance sample are shown in Fig. 7.

【0049】■ドットは、SiO2で仕上げ研磨し、平
行度30秒以下、面精度を平行度と同程度以下、表面粗
さrms=10Å以下とした精密研磨後、精密洗浄を行
ったサンプルの測定値である。また、●ドットは、さら
に透過率測定前に紫外線洗浄を10分間行ったサンプル
のデータである。
(3) The dots were finely polished by SiO2, the parallelism was 30 seconds or less, the surface accuracy was less than or equal to the parallelism, and the surface roughness was rms = 10Å or less. It is a value. Further, ● dots are data of a sample which was further washed with ultraviolet rays for 10 minutes before the measurement of the transmittance.

【0050】それぞれ、波線、一点鎖線は、回帰直線で
あり、決定係数R=0.99、標準誤差=0.01であ
った。実線は、内部散乱損失係数を0.15%/cmの
内部散乱損失分を含んだ理論透過率(反射・内部散乱損
失込み透過率)を示す。紫外線処理無しのデータの直線
性は、本特許による測定装置の精度が高いため良いが、
切片が理論値より0.12%低い。これは、傾きが●ド
ットの回帰直線と同一である事からも、有機系汚染物に
よる表面損失であると判断される。
The wavy line and the alternate long and short dash line are regression lines, respectively, and the coefficient of determination R = 0.99 and standard error = 0.01. The solid line indicates the theoretical transmittance (transmittance including reflection / internal scattering loss) including the internal scattering loss of 0.15% / cm. The linearity of the data without UV treatment is good due to the high accuracy of the measuring device according to this patent,
The intercept is 0.12% lower than theoretical. This is also considered to be the surface loss due to organic contaminants, because the slope is the same as the regression line of ● dots.

【0051】それに対して、紫外線洗浄した、●ドット
の測定値は、切片が理論値と一致した。この様に切片の
ずれは表面損失を示し、それに対し内部散乱損失を含ん
だ、理論透過率、測定値の回帰直線など厚さ依存性を示
す成分が、内部透過損失である。 [実施例2]透過率サンプルの作製法と透過率測定装置
を使用した測定例を図8を示す。
On the other hand, in the measured value of the dot which was washed with ultraviolet rays, the intercept was in agreement with the theoretical value. Thus, the deviation of the intercept indicates the surface loss, and the component showing the thickness dependency such as the theoretical transmittance and the regression line of the measured value, which includes the internal scattering loss, is the internal transmission loss. [Example 2] Fig. 8 shows a method for producing a transmittance sample and a measurement example using a transmittance measuring device.

【0052】測定に使用した、サンプルはやや吸収が通
常より若干大きい事が予測されるものを用いた。透過率
測定サンプルは、SiO2で仕上げ研磨し、平行度30
秒以下、面精度を平行度と同程度以下、表面粗さrms
=10Å以下とした精密研磨後、精密洗浄を行い、さら
に透過率測定前に紫外線洗浄を10分間行ったサンプル
の透過率測定データである。
The sample used for the measurement was one whose absorption was expected to be slightly larger than usual. The sample for transmittance measurement was finish-polished with SiO 2 and had a parallelism of 30.
Seconds or less, surface accuracy equal to or less than parallelism, surface roughness rms
This is the transmittance measurement data of a sample obtained by performing precision cleaning after precision polishing of 10 Å or less and further performing ultraviolet cleaning for 10 minutes before measuring the transmittance.

【0053】実線は、内部散乱損失係数0.15%/c
mの内部散乱損失分を含んだ理論透過率(反射・内部散
乱損失込み透過率)を示す。破線は、回帰直線であり、
決定係数R=0.99、標準誤差=0.01であった。
非常に直線性が高い事及び切片が実線と一致、つまり理
論値と一致している事がわかる。回帰直線の傾きから、
透過損失係数0.19%/cmを算出した。透過損失係
数−内部散乱損失係数=吸収係数であるから、0.19
−0.15=0.04%/cmを求めた。 [実施例3]透過率サンプルの作製法と透過率測定装置
を使用した測定例を図9を示す。
The solid line shows the internal scattering loss coefficient of 0.15% / c.
The theoretical transmittance including the internal scattering loss of m (transmittance including reflection / internal scattering loss) is shown. The dashed line is the regression line,
The coefficient of determination R was 0.99 and the standard error was 0.01.
It can be seen that the linearity is very high and the intercept matches the solid line, that is, the theoretical value. From the slope of the regression line,
A transmission loss coefficient of 0.19% / cm was calculated. Transmission loss coefficient-internal scattering loss coefficient = absorption coefficient, so 0.19
−0.15 = 0.04% / cm was calculated. [Example 3] Fig. 9 shows a method for producing a transmittance sample and a measurement example using a transmittance measuring device.

【0054】測定に使用した、サンプルはやや吸収が平
均的である事が予測されるものを用いた。透過率測定サ
ンプルは、SiO2で仕上げ研磨し、平行度30秒以
下、面精度を平行度と同程度以下、表面粗さrms=1
0Å以下とした精密研磨後、精密洗浄を行い、さらに透
過率測定前に紫外線洗浄を10分間行ったサンプルの透
過率測定データである。
The sample used for the measurement was one in which absorption was expected to be somewhat average. The sample for transmittance measurement was finish-polished with SiO 2 and had a parallelism of 30 seconds or less, a surface accuracy of the same degree or less as the parallelism, and a surface roughness rms = 1.
It is the transmittance measurement data of a sample which was subjected to precision cleaning after precision polishing to 0 Å or less, and further subjected to ultraviolet cleaning for 10 minutes before transmittance measurement.

【0055】実線は、内部散乱損失係数0.15%/c
mの内部散乱損失分を含んだ理論透過率(反射・内部散
乱損失込み透過率)を示す。波線は、回帰直線であり、
決定係数R=0.99、標準誤差=0.01であった。
非常に直線性が高い事及び切片が実線と一致、つまり理
論値と一致している事がわかる。回帰直線の傾きから、
透過損失係数0.17%/cmを算出した。透過損失係
数ー内部散乱損失係数=吸収係数であるから、0.17
−0.15=0.02%/cmを求めた。
The solid line shows the internal scattering loss coefficient of 0.15% / c.
The theoretical transmittance including the internal scattering loss of m (transmittance including reflection / internal scattering loss) is shown. The wavy line is the regression line,
The coefficient of determination R was 0.99 and the standard error was 0.01.
It can be seen that the linearity is very high and the intercept matches the solid line, that is, the theoretical value. From the slope of the regression line,
A transmission loss coefficient of 0.17% / cm was calculated. Transmission loss coefficient-internal scattering loss coefficient = absorption coefficient, so 0.17
−0.15 = 0.02% / cm was calculated.

【0056】[0056]

【発明の効果】本発明によるサンプルの規格及びサンプ
ルの作製方法により、光学素材の内部透過率を±0.1
%/cm以下の誤差で高精度に測定することが可能とな
った。本発明は、短波長域の紫外域及び真空紫外域の透
過率測定において特に有効である。
According to the standard of the sample and the method of manufacturing the sample according to the present invention, the internal transmittance of the optical material is ± 0.1.
It has become possible to measure with high accuracy with an error of% / cm or less. INDUSTRIAL APPLICABILITY The present invention is particularly effective in measuring the transmittance in the ultraviolet region of the short wavelength region and the vacuum ultraviolet region.

【0057】また、短波長域の微少な吸収が問題となる
光学部品にも利用可能である。
Further, it can also be used for optical parts in which minute absorption in the short wavelength region poses a problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】 サンプルの表面粗さと種々の透過率(248
nm)の関係をプロットしたグラフである。
FIG. 1 shows the sample surface roughness and various transmittances (248
(nm) is the graph which plotted the relationship.

【図2】 サンプルの表面粗さと種々の透過率(193
nm)の関係をプロットしたグラフである。
FIG. 2 shows the sample surface roughness and various transmittances (193
(nm) is the graph which plotted the relationship.

【図3】 サンプル紫外線処理時間と分光透過率(19
3nm)の関係をプロットしたグラフである。
FIG. 3 Sample UV treatment time and spectral transmittance (19
3 nm) is a graph plotting the relationship.

【図4】 サンプル紫外線処理時間とサンプル表面接触
角の関係をプロットしたグラフである。
FIG. 4 is a graph plotting the relationship between the sample UV treatment time and the sample surface contact angle.

【図5】 サンプル表面接触角と表面損失(193n
m)の関係をプロットしたグラフである。
FIG. 5: Sample surface contact angle and surface loss (193n
It is the graph which plotted the relationship of m).

【図6】 本発明による超精密透過率測定装置の透過率
測定におけるサンプル厚さ依存性を示したグラフであ
る。
FIG. 6 is a graph showing sample thickness dependence in transmittance measurement of the ultra-precision transmittance measuring device according to the present invention.

【図7】 本発明による実施例1、合成石英ガラスの1
93nm分光透過率測定結果をプロットしたグラフであ
る。
FIG. 7: Example 1 according to the present invention, 1 of synthetic quartz glass
It is the graph which plotted the 93 nm spectral transmittance measurement result.

【図8】 本発明による実施例2、合成石英ガラスの1
93nm分光透過率測定結果をプロットしたグラフであ
る。
FIG. 8: Example 2 according to the present invention, 1 of synthetic quartz glass
It is the graph which plotted the 93 nm spectral transmittance measurement result.

【図9】 本発明による実施例3、合成石英ガラスの1
93nm分光透過率測定結果をプロットしたグラフであ
る。
FIG. 9: Example 3 according to the present invention, 1 of synthetic quartz glass
It is the graph which plotted the 93 nm spectral transmittance measurement result.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】向かい合う二面が研磨された光学素材の透
過率測定サンプルにおいて、各研磨面の測定波長の表面
損失が0.1%以下であることを特徴とする透過率測定
サンプル。
1. A transmittance measurement sample of an optical material having two opposite surfaces polished, wherein the surface loss at the measurement wavelength of each polished surface is 0.1% or less.
【請求項2】向かい合う二面が研磨された光学素材の透
過率測定サンプルにおいて、透過率測定前に研磨面を紫
外線洗浄することを特徴とする透過率測定サンプル。
2. A transmittance measurement sample of an optical material having two opposite surfaces polished, wherein the polished surface is washed with ultraviolet light before the transmittance measurement.
【請求項3】向かい合う二面が研磨された光学素材の透
過率測定サンプルにおいて、各研磨面の水に対する接触
角が10゜以下に相当する清浄度を有する事を特徴とす
る透過率測定サンプル。
3. A transmittance measurement sample of an optical material having two opposite surfaces polished, wherein the polishing surface has a cleanliness degree corresponding to a contact angle of water of 10 ° or less.
【請求項4】向かい合う二面を研磨し、酸素濃度5%以
上の処理雰囲気で紫外線洗浄することを特徴とする光学
素材の透過率測定サンプルの作製方法。
4. A method for producing a sample for measuring a transmittance of an optical material, which comprises polishing two surfaces facing each other and washing with ultraviolet light in a processing atmosphere having an oxygen concentration of 5% or more.
【請求項5】請求項4に記載の透過率サンプルの作製方
法において、前記紫外線洗浄の際の光源が、Hgランプ
である事を特徴とする透過率測定サンプルの作製方法。
5. The method for producing a transmittance sample according to claim 4, wherein the light source for the ultraviolet cleaning is an Hg lamp.
【請求項6】向かい合う二面が研磨され、該研磨面の測
定波長の表面損失が0.1%以下である光学素材の透過
率を、分光光度計により測定することを特徴とする透過
率の測定方法。
6. The transmittance of an optical material, which has two opposite surfaces polished and whose surface loss at the measurement wavelength of the polished surfaces is 0.1% or less, is measured by a spectrophotometer. Measuring method.
【請求項7】請求項6に記載の透過率の測定方法におい
て、前記分光光度計が平行ビ−ムを用いたものであるこ
とを特徴とする透過率の測定方法。
7. The method for measuring transmittance according to claim 6, wherein the spectrophotometer uses a parallel beam.
【請求項8】向かい合う二面が研磨され、且つ研磨面を
紫外線洗浄し、該研磨面の測定波長の表面損失が0.1
%以下である光学素材の透過率を、平行ビームを用いた
分光光度計により測定することを特徴とする透過率の測
定方法。
8. The two surfaces facing each other are polished, and the polished surface is cleaned with ultraviolet light, and the surface loss of the measured wavelength of the polished surface is 0.1.
A method for measuring the transmittance, wherein the transmittance of the optical material, which is less than or equal to%, is measured by a spectrophotometer using a parallel beam.
JP07017395A 1995-03-28 1995-03-28 Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance Expired - Lifetime JP3572425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07017395A JP3572425B2 (en) 1995-03-28 1995-03-28 Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07017395A JP3572425B2 (en) 1995-03-28 1995-03-28 Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance

Publications (2)

Publication Number Publication Date
JPH08271393A true JPH08271393A (en) 1996-10-18
JP3572425B2 JP3572425B2 (en) 2004-10-06

Family

ID=13423882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07017395A Expired - Lifetime JP3572425B2 (en) 1995-03-28 1995-03-28 Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance

Country Status (1)

Country Link
JP (1) JP3572425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335927A (en) * 1999-03-25 2000-12-05 Asahi Glass Co Ltd Synthetic quartz glass for optical part, its production and use threof
US6320661B1 (en) 1999-04-01 2001-11-20 Nikon Corporation Method for measuring transmittance of optical members for ultraviolent use, synthetic silica glass, and photolithography apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335927A (en) * 1999-03-25 2000-12-05 Asahi Glass Co Ltd Synthetic quartz glass for optical part, its production and use threof
US6320661B1 (en) 1999-04-01 2001-11-20 Nikon Corporation Method for measuring transmittance of optical members for ultraviolent use, synthetic silica glass, and photolithography apparatus using the same

Also Published As

Publication number Publication date
JP3572425B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
KR101409682B1 (en) Method for finishing surface of preliminary polished glass substrate
TWI406832B (en) Processing method of glass substrate, and highly flat and highly smooth glass substrate
CZ378297A3 (en) Removal of material by polarized radiation and due to the action of radiation on the bottom side
EP1240556B1 (en) Photolithography method, photolithography mask blanks, and method of making
JP3669378B2 (en) Optical material and manufacturing method thereof
JP4104338B2 (en) Synthetic quartz glass material for ArF exposure equipment
KR100521897B1 (en) Optical device manufacturing method
JP4051474B2 (en) Method for measuring transmittance of optical member for ultraviolet
EP2463245B1 (en) Synthesized quartz glass for optical component
JP3572425B2 (en) Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance
JP4032462B2 (en) UV optics
US20030160177A1 (en) UV optical fluoride crystal elements for lambda < 200nm laser lithography and methods therefor
JPH1187808A (en) Manufacture of optical element for arf excimer laser
JP2970330B2 (en) Method for measuring internal transmittance and adjusting spectrophotometer
JP4650460B2 (en) Method for manufacturing ultraviolet optical element
JP3627396B2 (en) Method and apparatus for measuring internal absorption coefficient of synthetic quartz glass
JPH10281992A (en) Method of measuring component concentration distribution and light transmissivity distribution thereof of optical material
JP2004522608A (en) Method of making light transmission type optical fluoride crystal
JP2001318049A (en) Light transmittance measuring method of synthetic quartz glass and optical device
WO2004015453A2 (en) Detection and making of ultralow lead contaminated uv optical fluoride crystals for < 200 nm lithography
WO2003080525A1 (en) Synthetic quartz glass member and process for producing the same
JP4701469B2 (en) Method for producing synthetic quartz glass for optical member
JP4321163B2 (en) Exposure master, exposure master inspection method and exposure method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150709

Year of fee payment: 11

EXPY Cancellation because of completion of term