JPH08271246A - Distance measuring sensor - Google Patents

Distance measuring sensor

Info

Publication number
JPH08271246A
JPH08271246A JP7550695A JP7550695A JPH08271246A JP H08271246 A JPH08271246 A JP H08271246A JP 7550695 A JP7550695 A JP 7550695A JP 7550695 A JP7550695 A JP 7550695A JP H08271246 A JPH08271246 A JP H08271246A
Authority
JP
Japan
Prior art keywords
light
emitting element
reflected
light emitting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7550695A
Other languages
Japanese (ja)
Other versions
JP3270800B2 (en
Inventor
Takashi Takaoka
隆志 高岡
Shinya Kawanishi
信也 川西
Takatoshi Mizoguchi
隆敏 溝口
Kiyoshi Ebina
清志 蝦名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP07550695A priority Critical patent/JP3270800B2/en
Publication of JPH08271246A publication Critical patent/JPH08271246A/en
Application granted granted Critical
Publication of JP3270800B2 publication Critical patent/JP3270800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To provide a highly reliable distance measuring sensor by which accurate distance measurement can be performed even when a mirror reflecting object is provided on the surface of an object to be detected. CONSTITUTION: The sensor is provided with a light emitting element 1 and a light receiving part 7 for receiving a light which is directed from the element toward an object 4 to be detected and reflects on the object 4, and the object 4 is provided with a transmissive mirror reflecting part 8 on the irradiated surface side against the outgoing light from the element 1, and the part 7 outputs a signal corresponding to the irradiation position of the reflecting light. Deflection plates 15 and 16 are placed in front of both light outgoing side of the element 1 and light receiving side of the part 7 respectively, and the deflection axes of the plates 15 and 16 cross at a right angle with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測距センサに関し、特
に、被検出物(測距対象物)の表面に透過性の反射物等
が設けられており、この被検出物に光が照射された時の
反射光として乱反射光と鏡面反射光が同時に発生するよ
うな場合の測距に使用する測距センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring sensor, and in particular, a surface of an object to be detected (object to be measured) is provided with a transmissive reflector, and the object is irradiated with light. The present invention relates to a distance-measuring sensor used for distance-measuring when diffusely reflected light and specularly reflected light are simultaneously generated as reflected light.

【0002】[0002]

【従来の技術】従来の測距センサの構成について、図2
及び図3を参照して説明する。図2は従来の測距センサ
の使用状態を示す概念図、図3は図2の測距センサの各
出力特性図である。なお、ここでは測距センサの受光部
としてPSD(Position Sensitive Photodetector=半
導体位置検出素子)を使用する三角測距方式の場合をと
りあげて説明する。
2. Description of the Related Art FIG. 2 shows the structure of a conventional distance measuring sensor.
And FIG. 3 will be described. FIG. 2 is a conceptual diagram showing a usage state of the conventional distance measuring sensor, and FIG. 3 is an output characteristic diagram of the distance measuring sensor of FIG. Note that, here, a description will be given of a case of a triangulation distance measurement method using a PSD (Position Sensitive Photodetector) as a light receiving unit of the distance measurement sensor.

【0003】図2に示すように、発光素子1からの放射
光2は、レンズ3を通過して検出物4に到達し乱反射さ
れる。そして、この乱反射光の内、反射光5のみがレン
ズ6を通過して(レンズ6に入射する光路をたどるのは
反射光5のみのため)、PSD7に入射されることにな
る。PSD7は、入射する光スポットの位置により、信
号電流I1とI2のバランスが変化する。この光スポット
の位置は、検出物4とセンサ間の距離(L)によって変
化し、検出物4が遠くなると(Lが長くなると)、反射
光5は図1の点線(5’)のようになり、PSD7に入
射する光のスポット位置も変化する(I1寄りにな
る)。そして、PSD7に入射する光スポット位置の変
化に応じて変化するPSD7の信号電流I1とI2のバラ
ンスを信号処理することによって検出物4とセンサ間の
距離を検出することができる。
As shown in FIG. 2, the emitted light 2 from the light emitting element 1 passes through the lens 3 and reaches the detection object 4 and is diffusely reflected. Then, of the irregularly reflected light, only the reflected light 5 passes through the lens 6 (because only the reflected light 5 follows the optical path incident on the lens 6) and enters the PSD 7. In the PSD 7, the balance of the signal currents I 1 and I 2 changes depending on the position of the incident light spot. The position of this light spot changes depending on the distance (L) between the detection object 4 and the sensor, and when the detection object 4 becomes farther (L becomes longer), the reflected light 5 becomes like the dotted line (5 ′) in FIG. Then, the spot position of the light incident on the PSD 7 also changes (closer to I 1 ). Then, the distance between the detection object 4 and the sensor can be detected by signal processing the balance of the signal currents I 1 and I 2 of the PSD 7 which changes according to the change of the position of the light spot incident on the PSD 7.

【0004】図3(a)は、被検出物間までの距離とセ
ンサ出力との特性を示した図である。ここで、センサ出
力は信号電流I1、I2より得られたアナログ値をデジタ
ル変換して得た値である。図3(a)に示すように、距
離が遠くなるほど、A/D変換値は低下する特性となっ
ている。
FIG. 3 (a) is a diagram showing the characteristics of the distance to the object to be detected and the sensor output. Here, the sensor output is a value obtained by digitally converting an analog value obtained from the signal currents I 1 and I 2 . As shown in FIG. 3A, the A / D conversion value decreases as the distance increases.

【0005】また、検出物4が+θ°または−θ°傾い
て、反射光5の光路がレンズ6に入射しない別の方向に
ずれた場合の出力を考える。この場合、検出物4におけ
る放射光2の反射は乱反射となるため、仮に図2で示す
反射光5の光路がずれてPSD7に入射しなくなったと
しても、別の反射光がレンズ6に入射することとなり、
図3(b)に示すように大きな出力変動は生じない。
Consider also the output when the detected object 4 is tilted by + θ ° or −θ ° and the optical path of the reflected light 5 is deviated in another direction in which it does not enter the lens 6. In this case, the reflection of the radiated light 2 on the detected object 4 is irregular reflection, so that even if the optical path of the reflected light 5 shown in FIG. 2 shifts and does not enter the PSD 7, another reflected light enters the lens 6. That means
As shown in FIG. 3B, a large output fluctuation does not occur.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記の測距
センサの検出方法においては、検出物によっては下記の
ような問題点がある。以下、図4及び図5を参照して説
明する。図4及び図5はそれぞれ、従来の検出方法にお
ける問題点を説明するための概念図である。
However, the above-described detection method of the distance measuring sensor has the following problems depending on the detected object. Hereinafter, description will be made with reference to FIGS. 4 and 5. 4 and 5 are conceptual diagrams for explaining problems in the conventional detection method.

【0007】図4の場合、検出物4の表面には、透明フ
ィルム、ガラス等の透明な鏡面反射物8が形成されてい
るものとする。発光素子1からの放射光2は図1と同
様、レンズ3を介して検出物4に向かって放射され、一
部の光9は鏡面反射物8によって鏡面反射される。ま
た、残りの光は鏡面反射物8を通過して検出物4表面に
おいて乱反射される。そして、この乱反射光の一部の反
射光10がレンズ6を介してPSD7に入射される。
In the case of FIG. 4, it is assumed that a transparent specular reflector 8 such as a transparent film or glass is formed on the surface of the object 4 to be detected. The light 2 emitted from the light emitting element 1 is emitted toward the detection object 4 via the lens 3 as in FIG. 1, and a part of the light 9 is specularly reflected by the specular reflector 8. The remaining light passes through the specular reflector 8 and is diffusely reflected on the surface of the object 4 to be detected. Then, a part of the diffused reflected light 10 is incident on the PSD 7 via the lens 6.

【0008】ところで、発光素子1からの放射光は、レ
ンズ3があるために指向特性は鋭いものの、ある範囲で
の指向半値角が存在する。このため、レンズ3から出て
鏡面反射物8で正反射し、さらにレンズ6に入射する光
路をたどる光11(図中、点線で示す)が存在する。こ
の反射光11の放射強度は、この光が乱反射光であれば
測距に影響しない程度であるが、実際には鏡面反射物8
での全反射された光であるためにかなり高い放射強度を
有しており、測距に影響を与える。
By the way, the radiated light from the light emitting element 1 has a sharp directional characteristic due to the presence of the lens 3, but has a directional half-value angle within a certain range. Therefore, there is a light 11 (shown by a dotted line in the drawing) that is emitted from the lens 3, specularly reflected by the specular reflector 8, and further follows the optical path of incidence on the lens 6. The radiant intensity of the reflected light 11 does not affect the distance measurement if the light is diffusely reflected light, but in reality, the specular reflector 8
Since the light is totally reflected at, it has a considerably high radiant intensity and affects the distance measurement.

【0009】この結果、PSD7に対して、反射光10
と鏡面反射光11との2つの光が入射されることになる
ため、PSD7では、上記2つの光の重心位置で測距さ
れることになる。図4の例では、鏡面反射光11は反射
光10よりもPSD7のI1寄りに入射されるため、そ
の2つの光の重心位置もそちらにずれ、反射光10だけ
のときよりも出力が低くなり(即ち、検出物までの距離
が遠いと判断し)、本来のデータが得られない。
As a result, the reflected light 10 is transmitted to the PSD 7.
Since two lights, that is, and the specular reflected light 11, are incident, the PSD 7 measures the distance at the center of gravity of the two lights. In the example of FIG. 4, since the specular reflected light 11 is incident closer to I 1 of the PSD 7 than the reflected light 10, the barycentric positions of the two lights also deviate there, and the output is lower than when only the reflected light 10 is used. However, the original data cannot be obtained.

【0010】図5の場合も図4の場合と同様、検出物4
の表面には、透明フィルム、ガラス等の透明な鏡面反射
物8が形成されているものとする。そして、図5では、
検出物4がPSD7の長手方向の面に対して+θ°傾い
た状態にあるものとする。ここで、発光素子1からの放
射光2は、検出物4の前面の鏡面反射物8で鏡面反射さ
れるがPSD7には入射しない光12と、鏡面反射物8
を通過して検出物4で乱反射されPSD7に入射する光
13とに分かれる。
In the case of FIG. 5 as well as in the case of FIG.
A transparent specular reflector 8 such as a transparent film or glass is formed on the surface of the. And in FIG.
It is assumed that the detected object 4 is tilted by + θ ° with respect to the longitudinal surface of the PSD 7. Here, the emitted light 2 from the light emitting element 1 is specularly reflected by the specular reflector 8 on the front surface of the object to be detected 4, but is not incident on the PSD 7, and the specular reflector 8
Light 13 that passes through and is diffusely reflected by the detection object 4 and is incident on the PSD 7.

【0011】また、図3の場合と同様に、レンズ3から
出て鏡面反射物8で正反射し、さらにレンズ6に入射す
る光路をたどる光14(図中、点線で示す)が存在す
る。このため、PSD7に対して、反射光13と鏡面反
射光14との2つの光が入射されることになるため、P
SD7では、上記2つの光の重心位置で測距されること
になる。図4の例では、鏡面反射光14は反射光13よ
りもPSD7のI2寄りに入射されるため、その2つの
光の重心位置もそちらにずれ、反射光13だけのときよ
りも出力が高くなり(即ち、検出物までの距離が近いと
判断し)、本来のデータが得られない。
Further, as in the case of FIG. 3, there is a light 14 (shown by a dotted line in the drawing) that goes out of the lens 3, is specularly reflected by the specular reflector 8, and further follows the optical path of incidence on the lens 6. Therefore, two lights, the reflected light 13 and the specular reflected light 14, are incident on the PSD 7, and P
In SD7, the distance is measured at the center of gravity of the two lights. In the example of FIG. 4, since the specular reflection light 14 is incident on the I 2 side of the PSD 7 more than the reflection light 13, the barycentric positions of the two lights are also deviated there, and the output is higher than when only the reflection light 13 is used. (That is, it is determined that the distance to the detected object is short), the original data cannot be obtained.

【0012】図3(c)は検出物4の角度による出力特
性を示した概念図である。図3(c)に示すように、角
度が0°の時は出力が小さくなり(図4の場合に相当す
る)、角度が+θ°方向に大きく傾くに従って(図5の
場合に相当する)、出力が高くなる。しかし、ある+θ
1°を越えると鏡面反射光14がPSD7に入射しなく
なるので出力は安定する。同様に、検出物4が−θ°方
向に傾く場合でも同じ出力特性となる。
FIG. 3C is a conceptual diagram showing the output characteristics of the detected object 4 depending on the angle. As shown in FIG. 3C, when the angle is 0 °, the output becomes small (corresponding to the case of FIG. 4), and as the angle largely tilts in the + θ ° direction (corresponding to the case of FIG. 5), Output is high. But there is + θ
When the angle exceeds 1 °, the specularly reflected light 14 does not enter the PSD 7, so the output is stable. Similarly, the same output characteristics are obtained even when the detected object 4 is tilted in the -θ ° direction.

【0013】以上のように、例えば検出物表面に鏡面反
射物を設けられており、鏡面反射光と乱反射光が同時に
発生するような場合、正確ば距離測定ができない上、検
出物の傾きによって出力が大きく変動してしまうという
問題点があった。なお、上記実施例では、受光部として
PSDを使用した例を説明したが、例えば複数の受光チ
ップが配列された受光部等でも同様の現象が生じると考
えられる。
As described above, for example, when a specular reflection object is provided on the surface of the object to be detected and specular reflection light and diffuse reflection light are generated at the same time, accurate distance measurement is not possible, and the output is caused by the inclination of the object to be detected. However, there was a problem that the value fluctuated greatly. In the above embodiment, an example in which the PSD is used as the light receiving portion has been described, but it is considered that the same phenomenon occurs in a light receiving portion in which a plurality of light receiving chips are arranged, for example.

【0014】そこで、本発明の目的は、検出物表面に鏡
面反射物を設けたような場合であっても、正確な距離測
定が可能な高信頼性の測距センサを提供することにあ
る。
Therefore, an object of the present invention is to provide a highly reliable distance measuring sensor capable of accurate distance measurement even when a specular reflector is provided on the surface of an object to be detected.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、発光素子と、該発光素子から出射され被
検出物で反射された反射光を受光する受光部とを有し、
前記被検出物は前記発光素子からの出射光の照射面側に
透光性の鏡面反射部が設けられ、前記受光部は前記反射
光の照射位置に応じた信号を出力するよう構成された測
距センサにおいて、前記発光素子の出射面側及び前記受
光部の受光面側のそれぞれの前面に偏向板が配置され、
前記両偏向板は互いの偏向軸が90°交差するように配
置されてなることを特徴とする。
In order to achieve the above object, the present invention has a light emitting element and a light receiving section for receiving reflected light emitted from the light emitting element and reflected by an object to be detected,
The object to be detected is provided with a translucent specular reflection portion on the irradiation surface side of the light emitted from the light emitting element, and the light receiving portion is configured to output a signal according to the irradiation position of the reflected light. In the distance sensor, deflection plates are arranged on the front surfaces of the emission surface side of the light emitting element and the light receiving surface side of the light receiving unit,
The both deflection plates are arranged so that their deflection axes intersect each other by 90 °.

【0016】また、前記受光部としてPSD(Position
Sensitive Photodetector=半導体位置検出素子)を使
用してなることを特徴とする。
As the light receiving section, a PSD (Position)
It is characterized by using a Sensitive Photodetector.

【0017】また、前記発光素子として赤外発光素子を
使用するとともに、前記偏向板として赤外偏向板を使用
してなることを特徴とする。
An infrared light emitting element is used as the light emitting element, and an infrared deflecting plate is used as the deflecting plate.

【0018】[0018]

【作用】請求項1に記載の測距センサによれば、発光素
子の出射面側及び前記受光部の受光面側のそれぞれの前
面に偏向板が配置され、前記両偏向板は互いの偏向軸が
90°交差するように配置している。従って、発光素子
前面の偏向板を通過した光は、例えば縦方向の偏向が行
われる。その後、発光側偏向板を通過した光の一部は鏡
面反射部で正反射して受光部に向かうが、ここで受光部
の前面には前記発光側偏向板と偏向軸が90°交差した
偏向板を設けているので、上述の反射光はこの受光部側
の偏向板で光が阻止され、受光部には入射しない。
According to the distance-measuring sensor of the present invention, the deflection plates are arranged on the front surfaces of the emission surface side of the light emitting element and the light receiving surface side of the light receiving portion, respectively, and the both deflection plates have their respective deflection axes. Are arranged so that they intersect at 90 °. Therefore, the light passing through the deflector plate on the front surface of the light emitting element is vertically deflected, for example. After that, a part of the light passing through the light emitting side deflecting plate is specularly reflected by the specular reflecting portion and heads for the light receiving part. Here, on the front surface of the light receiving part, the light emitting side deflecting plate intersects the deflection axis by 90 ° Since the plate is provided, the above-mentioned reflected light is blocked by the deflection plate on the light receiving portion side and does not enter the light receiving portion.

【0019】一方、発光側偏向板を通過した光の一部は
鏡面反射部を通過して被検出部で乱反射し、受光部に向
かう。この光は乱反射光であるので、偏向されておら
ず、従って受光側偏向板の有無に関係なく受光部に到達
する。
On the other hand, a part of the light that has passed through the light-emission-side deflector passes through the specular reflection portion, is diffusely reflected by the detected portion, and goes to the light receiving portion. Since this light is irregularly reflected light, it is not deflected and therefore reaches the light receiving portion regardless of the presence or absence of the light-receiving side deflection plate.

【0020】つまり、鏡面反射部で鏡面反射した光は排
除され、被検出部で乱反射された光のみが受光部に入射
されるので、受光部に2つの光が入力されることはなく
なり、正確な位置検出ができる。被検出部が傾いた場合
でも、大きな出力変動が生じることはなく、安定した出
力特性を保証できる。
That is, since the light specularly reflected by the specular reflection portion is excluded and only the light diffusely reflected by the detected portion is incident on the light receiving portion, two light rays are not input to the light receiving portion, which is accurate. It can detect various positions. Even if the detected part is tilted, a large output fluctuation does not occur, and stable output characteristics can be guaranteed.

【0021】請求項2に記載の測距センサによれば、受
光部としてPSDを使用しているので、センサ全体の構
造を簡易にでき、且つ連続的なデータが得られ正確な位
置検出ができる。
According to the distance measuring sensor of the second aspect, since the PSD is used as the light receiving portion, the structure of the entire sensor can be simplified, and continuous data can be obtained for accurate position detection. .

【0022】請求項3に記載の測距センサによれば、発
光素子として赤外発光素子を使用するとともに、前記偏
向板として赤外偏向板を使用するので、センサへの外乱
光(可視光線等)を排除できるので、高精度の位置検出
ができる。
According to the distance measuring sensor of the third aspect, since the infrared light emitting element is used as the light emitting element and the infrared deflecting plate is used as the deflecting plate, ambient light (visible light etc.) to the sensor is used. ) Can be eliminated, the position can be detected with high accuracy.

【0023】[0023]

【実施例】本発明の一実施例について、図1を参照して
説明する。図1は本実施例による測距センサを説明する
ための概略図である。図2乃至図5に示した従来例と同
一機能部分には同一記号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram for explaining the distance measuring sensor according to the present embodiment. The same functional parts as those of the conventional example shown in FIGS. 2 to 5 are designated by the same symbols.

【0024】図1において、検出物4の前面には透明フ
ィルム、ガラス等の透明な鏡面反射物8が形成されてい
るものとする。そして、赤外発光素子1の前面には赤外
偏向板15が、また、受光素子6の前面には赤外偏向板
16が設けられている。ここで、赤外の発光素子を使用
するのは、外乱光によるノイズを避けるためである。
In FIG. 1, it is assumed that a transparent specular reflector 8 such as a transparent film or glass is formed on the front surface of the object 4 to be detected. An infrared deflection plate 15 is provided on the front surface of the infrared light emitting element 1, and an infrared deflection plate 16 is provided on the front surface of the light receiving element 6. Here, the reason why the infrared light emitting element is used is to avoid noise due to ambient light.

【0025】ここで、赤外偏向板15と16との偏向軸
は互いに90°軸交差するように配置されている。より
具体的には、赤外発光素子1からの放射光路上に設けら
れる赤外偏向板15は偏向軸が縦であり光の波の縦波の
みを偏向し通過できるように配置している。一方、反射
光路上に設けられる赤外偏向板16は偏向軸が横であ
り、光の波の横波のみ偏向し通過できるように配置して
いる。
Here, the deflection axes of the infrared deflection plates 15 and 16 are arranged so as to intersect each other by 90 °. More specifically, the infrared deflection plate 15 provided on the radiation optical path from the infrared light emitting element 1 has a vertical deflection axis and is arranged so that only the longitudinal wave of the light wave can be deflected and passed. On the other hand, the infrared deflection plate 16 provided on the reflected light path has a horizontal deflection axis and is arranged so that only the transverse wave of the light wave can be deflected and passed.

【0026】以上のような構成において、赤外発光素子
1から放射された光17はまず、レンズ3を通過する。
この時の光は縦波と横波の位相を有する光であるが、赤
外偏向板15を通過すると、この偏向板の偏向軸に伴い
縦波の片波の放射光18、19を含む放射光が検出物4
に向かって放射される。そして、放射光18の中心光は
検出物4に到達すると、まず鏡面反射物8で鏡面反射さ
れるが180°反転してPSD7には入射しない光20
と、鏡面反射物8が透明であるためそのまま透過し検出
物4にて乱反射される光21とに分かれる。この乱反射
光21は乱反射時に放射光時の光の波の位相を変化させ
てしまうため、乱反射光21の光の波の状態は縦波と横
波の混在した反射光となる。
In the above structure, the light 17 emitted from the infrared light emitting element 1 first passes through the lens 3.
The light at this time is light having a phase of a longitudinal wave and a transverse wave, but when passing through the infrared deflection plate 15, the emitted light including the one-sided emission light 18 and 19 of the longitudinal wave along with the deflection axis of this deflection plate. Is the detected object 4
Is radiated toward. When the central light of the emitted light 18 reaches the detection object 4, the light 20 is first specularly reflected by the specular reflection object 8 but is inverted by 180 ° and is not incident on the PSD 7.
And the light 21 that is transmitted as it is because the specular reflector 8 is transparent and is irregularly reflected by the detection object 4. Since the irregularly reflected light 21 changes the phase of the light wave at the time of radiated light at the time of irregular reflection, the light wave state of the irregularly reflected light 21 is reflected light in which longitudinal waves and transverse waves are mixed.

【0027】一方、放射光19の光は鏡面反射物8にて
鏡面反射するため鏡面反射光22は光の波の位相を保持
し反射するので、鏡面反射光22の波の状態は縦波のま
まの反射光となる。
On the other hand, since the radiated light 19 is specularly reflected by the specular reflector 8, the specularly reflected light 22 retains the phase of the wave of the light and is reflected. Therefore, the wave state of the specularly reflected light 22 is a longitudinal wave. It becomes the reflected light as it is.

【0028】この結果、入射光路上に設けられた赤外偏
光板16に到達した反射光21,22は、偏光板16が
横波の光のみ通過するように偏向軸を横にしているため
反射光21に混在する横波のみ通過し、反射光21に混
在していた縦波の光及び反射光22の縦波の光は赤外偏
光板16を通過できず、その時点で排除されてしまう。
よって、レンズ6を通過しPSD7に入射する光は乱反
射光21の横波の光のみとなる。
As a result, the reflected lights 21 and 22 that have reached the infrared polarization plate 16 provided on the incident optical path are reflected light because the polarization axes are set horizontally so that the polarization plate 16 passes only the transverse wave light. Only the transverse wave mixed in 21 passes, and the longitudinal wave light reflected in the reflected light 21 and the longitudinal wave light in the reflected light 22 cannot pass through the infrared polarization plate 16 and are eliminated at that time.
Therefore, the light that passes through the lens 6 and enters the PSD 7 is only the transverse wave light of the diffusely reflected light 21.

【0029】つまり、鏡面反射部8で鏡面反射した光は
排除され、検出物4で乱反射された光のみがPSD7に
入射されるので、従来のように受光部に2つの光が入力
されて光の重心位置のずれが生じるということはなくな
り、検出物4までの正確な距離検出ができる。検出物4
が傾いた場合でも、大きな出力変動が生じることはな
く、安定した出力特性を保証できる。
That is, the light specularly reflected by the specular reflector 8 is eliminated, and only the light diffusely reflected by the detected object 4 is incident on the PSD 7, so that two lights are input to the light receiver as in the conventional case. The position of the center of gravity of the is no longer displaced, and the accurate distance to the detection object 4 can be detected. Detected object 4
Even if is tilted, a large output fluctuation does not occur, and stable output characteristics can be guaranteed.

【0030】同様に検出物4がPSD7の長手方向に対
してある角度傾斜した場合でも、鏡面反射光は排除され
乱反射光のみPSD7に入射することになるので、正確
で且つ出力変動の少ない出力が得られる。
Similarly, even when the detected object 4 is tilted at an angle with respect to the longitudinal direction of the PSD 7, specularly reflected light is eliminated and only irregularly reflected light is incident on the PSD 7, so that an accurate output with little fluctuation in output can be obtained. can get.

【0031】なお、上記実施例では、受光部としてPS
D7を使用しており、連続的なデータが得られ正確な距
離測定が可能となるが、本発明はこのPSDを使用した
例に限らず、例えば複数の受光チップが配列された受光
部等を使用した場合にも適用できる。
In the above embodiment, the light receiving portion is PS
Since the D7 is used, continuous data can be obtained and accurate distance measurement can be performed. However, the present invention is not limited to the example using the PSD, and may be, for example, a light receiving unit in which a plurality of light receiving chips are arranged. It can also be applied when used.

【0032】[0032]

【発明の効果】本発明によれば、検出物表面に鏡面反射
物を設けたような場合であっても、正確な距離測定が可
能な高信頼性の測距センサを提供できる。
According to the present invention, it is possible to provide a highly reliable distance measuring sensor capable of accurate distance measurement even when a specular reflector is provided on the surface of an object to be detected.

【0033】請求項1の発明によれば、発光素子の出射
面側及び前記受光部の受光面側のそれぞれの前面に偏向
板が配置され、前記両偏向板は互いの偏向軸が90°交
差するように配置している。従って、不要光である鏡面
反射物での鏡面反射光は、受光面側の偏向板で阻止さ
れ、受光部には入射しない。一方、被検出部で乱反射さ
れた光は受光部に入射されるので、従来のように受光部
に2つの光が入力されることはなくなり、正確な位置検
出ができる。被検出部が傾いた場合でも、大きな出力変
動が生じることはなく、安定した出力特性を保証でき
る。
According to the first aspect of the present invention, the deflecting plates are disposed on the front surfaces of the light emitting surface of the light emitting element and the light receiving surface of the light receiving portion, respectively. It is arranged to. Therefore, the specular reflection light of the specular reflector which is the unnecessary light is blocked by the deflecting plate on the light receiving surface side and does not enter the light receiving portion. On the other hand, since the light diffusely reflected by the detected portion is incident on the light receiving portion, two lights are not input to the light receiving portion as in the conventional case, and accurate position detection can be performed. Even if the detected part is tilted, a large output fluctuation does not occur, and stable output characteristics can be guaranteed.

【0034】請求項2に記載の測距センサによれば、受
光部としてPSDを使用しているので、センサ全体の構
造を簡易にでき、且つ連続的なデータが得られ正確な位
置検出ができる。
According to the distance measuring sensor of the second aspect, since the PSD is used as the light receiving portion, the structure of the entire sensor can be simplified, and continuous data can be obtained for accurate position detection. .

【0035】請求項3に記載の測距センサによれば、発
光素子として赤外発光素子を使用するとともに、前記偏
向板として赤外偏向板を使用するので、センサへの外乱
光(可視光線が多い)を排除できるので、高精度の位置
検出ができる。
According to the distance measuring sensor of the third aspect, since the infrared light emitting element is used as the light emitting element and the infrared deflecting plate is used as the deflecting plate, the disturbance light (visible light Since many) can be excluded, highly accurate position detection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による測距センサを説明する
ための概念図である。
FIG. 1 is a conceptual diagram for explaining a distance measuring sensor according to an embodiment of the present invention.

【図2】従来例による測距センサを説明するための概念
図である。
FIG. 2 is a conceptual diagram for explaining a distance measuring sensor according to a conventional example.

【図3】(a)乃至(c)はそれぞれ、従来例の測距セ
ンサの各出力特性を示した図である。
3A to 3C are diagrams showing respective output characteristics of a conventional distance measuring sensor.

【図4】従来の測距センサによる問題点を説明するため
の図である。
FIG. 4 is a diagram for explaining a problem caused by a conventional distance measuring sensor.

【図5】従来の測距センサによる問題点を説明するため
の図である。
FIG. 5 is a diagram for explaining a problem caused by a conventional distance measuring sensor.

【符号の説明】[Explanation of symbols]

1 発光素子 4 被検出物 7 受光部(PSD) 8 鏡面反射部 15 偏向板(出射面側) 16 偏向板(受光面側) DESCRIPTION OF SYMBOLS 1 Light emitting element 4 Detected object 7 Light receiving part (PSD) 8 Specular reflection part 15 Deflection plate (emission surface side) 16 Deflection plate (light reception surface side)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蝦名 清志 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Shiina 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と、該発光素子から出射され被
検出物で反射された反射光を受光する受光部とを有し、
前記被検出物は前記発光素子からの出射光の照射面側に
透光性の鏡面反射部が設けられ、前記受光部は前記反射
光の照射位置に応じた信号を出力するよう構成された測
距センサにおいて、 前記発光素子の出射面側及び前記受光部の受光面側のそ
れぞれの前面に偏向板が配置され、前記両偏向板は互い
の偏向軸が90°交差するように配置されてなることを
特徴とする測距センサ。
1. A light emitting element, and a light receiving section for receiving reflected light emitted from the light emitting element and reflected by an object to be detected,
The object to be detected is provided with a translucent specular reflection portion on the irradiation surface side of the light emitted from the light emitting element, and the light receiving portion is configured to output a signal according to the irradiation position of the reflected light. In the distance sensor, deflection plates are arranged on the front surfaces of the emission surface side of the light emitting element and the light reception surface side of the light receiving unit, and the both deflection plates are arranged so that their deflection axes intersect each other by 90 °. Distance measuring sensor characterized in that.
【請求項2】 請求項1に記載の測距センサにおいて、
前記受光部としてPSD(Position Sensitive Photode
tector=半導体位置検出素子)を使用してなることを特
徴とする測距センサ。
2. The distance measuring sensor according to claim 1, wherein
As the light receiving unit, a PSD (Position Sensitive Photode)
tector = semiconductor position detecting element).
【請求項3】 請求項1または2に記載の測距センサに
おいて、前記発光素子として赤外発光素子を使用すると
ともに、前記偏向板として赤外偏向板を使用してなるこ
とを特徴とする測距センサ。
3. The distance measuring sensor according to claim 1, wherein an infrared light emitting element is used as the light emitting element, and an infrared deflecting plate is used as the deflecting plate. Distance sensor.
JP07550695A 1995-03-31 1995-03-31 Distance sensor Expired - Fee Related JP3270800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07550695A JP3270800B2 (en) 1995-03-31 1995-03-31 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07550695A JP3270800B2 (en) 1995-03-31 1995-03-31 Distance sensor

Publications (2)

Publication Number Publication Date
JPH08271246A true JPH08271246A (en) 1996-10-18
JP3270800B2 JP3270800B2 (en) 2002-04-02

Family

ID=13578203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07550695A Expired - Fee Related JP3270800B2 (en) 1995-03-31 1995-03-31 Distance sensor

Country Status (1)

Country Link
JP (1) JP3270800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273395A1 (en) * 2021-07-02 2023-01-05 美智纵横科技有限责任公司 Distance measurement apparatus and sweeping robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273395A1 (en) * 2021-07-02 2023-01-05 美智纵横科技有限责任公司 Distance measurement apparatus and sweeping robot

Also Published As

Publication number Publication date
JP3270800B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US7046378B2 (en) Device and method for the optical detection of objects
RU2186372C2 (en) Detector testing surface of object and process of surface test
KR100660952B1 (en) Laser scanner measurement system
KR20010014970A (en) Optical unit for detecting object and coordinate input apparatus using the same
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JPH0815413A (en) Distance measuring apparatus
JP2529691B2 (en) Optical distance measuring device and device for determining the position of a component on a support member
US4767934A (en) Active ranging system
US4325633A (en) Apparatus for determining of angle of incidence of electromagnetic energy
JP2589278Y2 (en) Apparatus for detecting an object in sheet form
US4385833A (en) Apparatus for reception and radiation of electromagnetic energy in predetermined fields of view
JPH08271246A (en) Distance measuring sensor
US5815272A (en) Filter for laser gaging system
JPS58106413A (en) Light reflecting sensor
US4866287A (en) Optical surface waviness measuring apparatus
JP2006258599A (en) Moving object detector and speed measuring instrument
JP2004037461A (en) Device for optically measuring distance
JPH08122058A (en) Object edge-position detecting sensor
JPH06222156A (en) Object detecting device
JP2001021650A (en) Position detection-type passage sensor
JPH09257470A (en) Optical displacement sensor
JPH045556A (en) Method and device for flaw inspection of surface of sphere
SU868348A1 (en) Device for checking surface roughness
JPS60135714A (en) Distance sensor
US7733506B2 (en) Optical tilt monitoring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120118

LAPS Cancellation because of no payment of annual fees