JPH08270870A - Connection method for bodies to be connected by electro-fusion connection member - Google Patents

Connection method for bodies to be connected by electro-fusion connection member

Info

Publication number
JPH08270870A
JPH08270870A JP9595695A JP9595695A JPH08270870A JP H08270870 A JPH08270870 A JP H08270870A JP 9595695 A JP9595695 A JP 9595695A JP 9595695 A JP9595695 A JP 9595695A JP H08270870 A JPH08270870 A JP H08270870A
Authority
JP
Japan
Prior art keywords
heating element
temperature
fusion
heating body
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9595695A
Other languages
Japanese (ja)
Inventor
Yasushi Tanaka
靖司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP9595695A priority Critical patent/JPH08270870A/en
Publication of JPH08270870A publication Critical patent/JPH08270870A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To prevent abrupt rise in temperature of a heating body after the start of fusion and maintain a temperature range so as to realize a proper connected for a sufficient time by controlling, at a constant, a current to feed the heating body comprising thermoplastic resin containing conductive particles. CONSTITUTION: A heating body 2 of an electric-fusion connection member 1 comprises a thermoplastic resin which contains conductive particles at a specified density. Also the electric-fusion connection member 1 comprises the heating body 2, a base body 3 which covers the heating body 2 and gives a mechanical strength to the heating body 2, and insulates thermally and electrically from the outside, and a power supply electrode 4 which is fitted tightly and fixedly onto the outer periphery of the heating body 2. Then bodies to be connected 5 are inserted from opening ports located at both ends of the electric-fusion connection member 1. In addition, a fixed current power supply 6 is connected to the terminal 4 of the connection member, and a set current is passed. Thus, after current transmission is started from the fixed current power supply 6, the heating body 2 can reach a fusion start temperature in a relatively short time, and efficient heating and fusion can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性粒子を含有する
熱可塑性樹脂からなる発熱体の通電時における発熱を利
用して、熱可塑性樹脂製パイプ等の被接合体を接合する
接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method for joining objects to be joined, such as thermoplastic resin pipes, by utilizing heat generated when a heating element made of a thermoplastic resin containing conductive particles is energized. .

【0002】[0002]

【従来の技術】ポリエチレンなどの熱可塑性樹脂からな
るパイプ等の被接合体を接合するための継手あるいはシ
ール材として、様々な電気融着接合部材が知られてい
る。電気融着接合部材は通電により発熱する発熱体を内
蔵しており、これにより接合部材の一部及び被接合体の
一部を溶融させて、当該被接合体を溶融接合するもので
ある。
2. Description of the Related Art Various electrofusion-bonding members are known as joints or sealing materials for joining objects to be joined such as pipes made of thermoplastic resin such as polyethylene. The electric fusion bonding member has a built-in heating element that generates heat when energized, and thereby melts a part of the bonding member and a part of the object to be bonded, thereby melting and bonding the object to be bonded.

【0003】発熱体としては、接合部材中の融着層に埋
設した電熱線が代表的なものであるが、この形式の発熱
体では電熱線とその周囲の温度差が大きいため、融着層
の温度、従ってその溶融状態を正確に知ることが難し
く、また、接合されたパイプ等の接合部分の中に、使用
済みの電熱線が異物として残留するという難点がある。
As a heating element, a heating wire embedded in a fusion layer in a joining member is typically used. However, in this type of heating element, there is a large temperature difference between the heating wire and its surroundings, so that the fusion layer is formed. However, it is difficult to know the temperature and the melting state thereof accurately, and the used heating wire remains as a foreign substance in the joined portion of the joined pipe or the like.

【0004】発熱体の他の形式として、被接合体である
パイプ等と同一の熱可塑性樹脂にカーボンブラック等の
導電性粒子を混練し含有させたもの、つまり、導電性粒
子含有型発熱体がある。この形式の発熱体では、発熱体
自体が融着層を兼ね、さらに導電性粒子は微細粒子であ
るから融着層と完全に一体化しており、それらが接合後
のパイプ等の中で異物化することがないという特徴を有
する。
Another type of heating element is one in which conductive particles such as carbon black are kneaded and contained in the same thermoplastic resin as the pipe to be joined, that is, a heating element containing conductive particles. is there. In this type of heating element, the heating element itself also serves as the fusion layer, and since the conductive particles are fine particles, they are completely integrated with the fusion layer, and they become foreign matter in the pipe after joining. It has the feature that it does not.

【0005】導電性粒子含有型発熱体では、十分な接触
面積を確保できる給電用電極を発熱体の端部に取付けて
均一に給電することが必要である。もし給電用電極の接
触面積に局部的偏りがあったり、また接触面積自体が不
十分な場合は、局部的なオーバーヒートにより電極取付
部位が変形してしまうおそれがある。
In the conductive particle-containing heating element, it is necessary to attach a power feeding electrode capable of ensuring a sufficient contact area to the end portion of the heating element to uniformly feed power. If the contact area of the power supply electrode is locally biased, or if the contact area itself is insufficient, there is a risk that the electrode mounting portion will be deformed due to local overheating.

【0006】本願の出願人は、このような問題を解決す
るのに有効な幾つかの電気融着接合部材用電極について
提案している(例えば、特願平4−26226号、実願
平5−53055号等を参照)。
The applicant of the present application has proposed several electrodes for electric fusion bonding members which are effective in solving such a problem (for example, Japanese Patent Application No. 4-26226 and Japanese Patent Application No. 5-26226). -53055, etc.).

【0007】このように、適切な構造の給電用電極を用
いるという条件が満たされたとしても、なお、導電性粒
子含有型の発熱体に特有の、電気的特性の温度及び溶融
状態への依存性に由来する以下のような問題がある。
As described above, even if the condition of using the power-supplying electrode having an appropriate structure is satisfied, the dependence of the electrical characteristics on the temperature and the molten state, which is peculiar to the conductive particle-containing heating element, is still maintained. There are the following problems derived from sex.

【0008】図1は、導電性粒子配合型の発熱体の温度
−抵抗値の関係を定性的に説明する図である。ここに見
られるように、抵抗値は温度と共に増加し、溶融開始後
は急速に減少する。図2は、図1に示すような温度−抵
抗値特性を有する導電性粒子含有型の発熱体に一定電圧
を印加する場合に一般的に観察される、電流、温度、抵
抗値の時間的変化を示す説明図である。
FIG. 1 is a diagram for qualitatively explaining the temperature-resistance value relationship of a conductive particle-blended heating element. As can be seen, the resistance value increases with temperature and decreases rapidly after the onset of melting. FIG. 2 shows temporal changes in current, temperature, and resistance value, which are generally observed when a constant voltage is applied to a conductive particle-containing heating element having temperature-resistance value characteristics as shown in FIG. FIG.

【0009】当初、大きな電流が流れて発熱体の温度が
上昇すると、抵抗値が上昇して電流が流れ難くなる。し
かし、溶融開始温度到達後は抵抗値が急速に低下するの
で再び大きな電流が流れ、温度も急上昇する。そのた
め、適当な溶融状態が実現される温度範囲を急速に通過
してしまい、そのような温度範囲を捉えて電流をカット
して適当な融着状態のものを得ることが困難である。溶
融開始温度到達後の急激な温度上昇を抑制するには電圧
を下げればよいが、その場合は、溶融開始温度到達まで
に時間が掛かりすぎて作業効率が悪いことが問題であっ
た。
Initially, when a large current flows and the temperature of the heating element rises, the resistance value increases and it becomes difficult for the current to flow. However, after reaching the melting start temperature, the resistance value rapidly decreases, so that a large current flows again and the temperature also rapidly increases. Therefore, it rapidly passes through a temperature range in which a suitable molten state is realized, and it is difficult to obtain a suitable fused state by catching such a temperature range and cutting the current. In order to suppress the rapid temperature rise after reaching the melting start temperature, the voltage may be lowered, but in that case, it took a too long time to reach the melting start temperature, resulting in poor work efficiency.

【0010】この問題点を解決するには、原理適には、
何らかの方法で発熱体の内部温度を検出し、所定の温度
に到達した時点で電流をカットすればよい。例えば、温
度検出端を発熱体に埋め込み、検出温度信号によって電
流制御装置を作動させればよい。また、発熱体の温度に
より温度ヒューズを溶断させて電流をカットしてもよい
しかしこれらの方法には次のような難点があることが経
験されている。
To solve this problem, in principle,
The internal temperature of the heating element may be detected by some method and the current may be cut off when the temperature reaches a predetermined temperature. For example, the temperature detecting end may be embedded in the heating element, and the current control device may be operated by the detected temperature signal. Further, the thermal fuse may be blown to cut the current depending on the temperature of the heating element. However, it has been experienced that these methods have the following drawbacks.

【0011】温度検出端を埋め込むため、接合部材に発
熱体に達する温度検出孔を設けることは、接合部材に応
力集中箇所を作ることになり、接合部材の強度を低下さ
せるので好ましくない。
It is not preferable to provide a temperature detecting hole in the joining member to reach the heating element in order to embed the temperature detecting end, because a stress concentration portion is created in the joining member and the strength of the joining member is reduced.

【0012】適切な接合状態を確保するための電流制御
装置の設定温度の許容幅は狭く、かつ接合部材の温度特
性にはある程度のばらつきが避けられないため、多数の
接合部材に共通に適用可能な設定温度を定めることが困
難である。
Since the allowable range of the set temperature of the current control device for ensuring an appropriate joining state is narrow and the temperature characteristics of the joining members cannot be avoided to some extent, they can be commonly applied to many joining members. It is difficult to set a proper set temperature.

【0013】温度ヒューズによる方法では、溶断温度を
精度良く定めることが困難であると共に、温度ヒューズ
の取付け位置の影響が大きいため、その位置の選定が困
難である。また、適切な接合状態を実現するためには、
所定温度を一定時間維持する必要があり、そのため電流
をオン・オフ制御できることが望ましいが、温度ヒュー
ズが一旦溶断した後は、そのような制御を行うことは不
可能である。
In the method using the thermal fuse, it is difficult to determine the fusing temperature with high accuracy, and the mounting position of the thermal fuse has a great influence, so that it is difficult to select the position. In addition, in order to achieve an appropriate joining state,
It is necessary to maintain a predetermined temperature for a certain period of time, and therefore it is desirable that the current can be controlled to be turned on and off, but it is impossible to perform such control once the thermal fuse is blown.

【0014】[0014]

【発明が解決しようとする課題】本発明の課題は、導電
性粒子配合型の発熱体を有する電気融着接合部材により
熱可塑性樹脂製の被接合体を接合する方法おいて、発熱
体の溶融開始後の急激な温度上昇を防止して、適切な接
合状態が実現される温度範囲を十分な時間保持できるよ
うにし、これにより、高精度の温度制御を可能にし、よ
り安全で信頼性が高く作業効率の良い接合方法を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for joining a thermoplastic resin-made article to be joined by an electric fusion-bonding member having a conductive particle-blended type heating element. Prevents a rapid temperature rise after the start and keeps the temperature range where a proper bonding state is achieved for a sufficient time, which enables highly accurate temperature control, which is safer and more reliable. It is to provide a joining method with good work efficiency.

【0015】[0015]

【課題を解決するための手段】上記の課題は、前記発熱
体に供給する電流を一定に制御することにより解決され
る。
The above problems can be solved by controlling the current supplied to the heating element to a constant value.

【0016】[0016]

【作用】前述の通り、導電性粒子含有型発熱体の抵抗値
は温度と共に増大する。しかし定電圧電源から給電する
場合と異なり、定電流電源から給電する場合の供給電力
は発熱体の抵抗値に比例して増大するから、供給電力の
レベルが放熱ロスに比較して十分大きい場合は、発熱体
の温度上昇は次第に加速されることになる。従って、発
熱体の温度は急速に溶融開始温度に接近し、例えば、通
電開始直後の供給電力が同程度である定電圧電源を利用
する場合に比較して、より短時間で能率良く加熱を行う
ことができる。
As described above, the resistance value of the conductive particle-containing heating element increases with temperature. However, unlike the case where power is supplied from a constant voltage power supply, the power supply when powering from a constant current power supply increases in proportion to the resistance value of the heating element, so if the level of power supply is sufficiently higher than the heat dissipation loss. The temperature rise of the heating element will be gradually accelerated. Therefore, the temperature of the heating element rapidly approaches the melting start temperature, and for example, heating can be performed efficiently in a shorter time as compared with the case of using a constant voltage power supply whose power supply is almost the same immediately after the start of energization. be able to.

【0017】発熱体の温度が溶融開始温度に到達する
と、抵抗値は急激に減少し始める。従って、定電流電源
から給電する場合は供給電力が抵抗値の減少に伴って減
少するため、一転して発熱体の温度変化は緩慢になる。
しかし、放熱ロスを補う程度の電力供給は継続されるの
で、適切な接合状態が実現される温度範囲を一定時間安
定に維持することができる。
When the temperature of the heating element reaches the melting start temperature, the resistance value suddenly starts to decrease. Therefore, when power is supplied from the constant current power supply, the supplied power decreases as the resistance value decreases, so that the temperature change of the heating element becomes slower.
However, since the power supply to the extent of compensating for the heat radiation loss is continued, it is possible to stably maintain the temperature range in which an appropriate bonding state is realized for a certain time.

【0018】発熱体に供給する電流の大きさは、気温、
風速、日照等、接合部材を用いる施工環境に合わせて適
宜設定する。その際、発熱体の溶融開始温度到達後、適
切な接合状態が実現される温度範囲を一定時間維持でき
ることを目安にして供給電流を設定する。
The magnitude of the electric current supplied to the heating element is
Set as appropriate according to the construction environment in which the joining members are used, such as wind speed and sunshine. At that time, the supply current is set so that the temperature range in which an appropriate bonding state is realized can be maintained for a certain period of time after the melting start temperature of the heating element is reached.

【0019】(定電流電源)本発明に用いる定電流電源
は、出力電流の設定が可能で、所定の電力を供給できる
容量を備えるものでれば特に限定されない。例えば、図
4に概略ブロック図を示すものであってもよい。これ
は、電流検出回路からの出力信号により、制御回路の出
力パルスのデューティ比を変化させ、これによりスイッ
チング素子を含む電圧可変回路の出力電圧を制御するも
のである。
(Constant Current Power Supply) The constant current power supply used in the present invention is not particularly limited as long as it can set an output current and has a capacity capable of supplying a predetermined electric power. For example, a schematic block diagram may be shown in FIG. This is to change the duty ratio of the output pulse of the control circuit according to the output signal from the current detection circuit, thereby controlling the output voltage of the voltage variable circuit including the switching element.

【0020】(発熱体)本発明に用いる電気融着接合部
材の発熱体は、所定濃度で導電性粒子を含有する熱可塑
性樹脂からなる。
(Heating element) The heating element of the electric fusion bonding member used in the present invention is made of a thermoplastic resin containing conductive particles at a predetermined concentration.

【0021】発熱体に用いられる熱可塑性樹脂として
は、例えば、高密度ポリエチレン、中密度ポリエチレ
ン、低密度ポリエチレン、超高分子量ポリエチレン、エ
チレン−ブテン−1共重合体、ポリプロピレン、ポリブ
テン−1、ポリ−4−メチルペンテン−1、エチレン−
プロピレンゴム、エチレン−プロピレン−ジエン三元共
重合体、エチレン−酢酸ビニル共重合体、エチレン−ア
クリル酸エステル共重合体、エチレン−塩化ビニル共重
合体などのオレフィン系ポリマー;ポリスチレンなどの
芳香族ビニル系ポリマー;S−I型、S−S型、S−I
−S型、S−B−S型、S−I−S−I−S型など、ス
チレン(S)に代表される芳香族ビニル化合物とイソプ
レン(I)やブタジエン(B)などの共役ジエンから構
成されるブロック共重合体やこれらの水素添加化物など
の炭化水素系熱可塑性エラストマー;ポリブタジエン、
ポリイソプレン、スチレン−ブタジエン共重合体、クロ
ロプレンゴム、ブチルゴムなどの未加硫ゴム;などが例
示され、これらを混合して用いてもよい。
As the thermoplastic resin used for the heating element, for example, high density polyethylene, medium density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, ethylene-butene-1 copolymer, polypropylene, polybutene-1, poly- 4-methylpentene-1, ethylene-
Olefin polymers such as propylene rubber, ethylene-propylene-diene terpolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, ethylene-vinyl chloride copolymer; aromatic vinyl such as polystyrene -Based polymer; S-I type, S-S type, S-I
-S type, S-B-S type, S-I-S-I-S type, and other aromatic vinyl compounds represented by styrene (S) and conjugated dienes such as isoprene (I) and butadiene (B) Hydrocarbon-based thermoplastic elastomers such as composed block copolymers and hydrogenated products thereof; polybutadiene,
Examples include polyisoprene, styrene-butadiene copolymer, unvulcanized rubber such as chloroprene rubber and butyl rubber, and these may be used as a mixture.

【0022】これらの重合体の中でも、基体への密着
性、一体成型性、被接合部材への融着性などの観点か
ら、オレフィン系ポリマーが好ましく、特にオレフィン
系モノマーのみを重合した重合体や共重合体が好まし
い。
Among these polymers, an olefin polymer is preferable from the viewpoints of adhesion to a substrate, integral molding property, fusion property to a member to be joined, and the like. In particular, a polymer obtained by polymerizing only an olefin monomer or Copolymers are preferred.

【0023】導電性粒子としては、導電性カーボンブラ
ック、黒鉛粉末、金属粒子(銅、鉄、ニッケルなどの粉
末)やこれらの混合物等が例示される。
Examples of the conductive particles include conductive carbon black, graphite powder, metal particles (powder of copper, iron, nickel, etc.) and mixtures thereof.

【0024】発熱体の導電性粒子の含有量は、通常5重
量%以上、好ましくは10重量%以上、特に好ましくは
20重量%以上であり、また通常35重量%以下、好ま
しくは30重量%以下である。含有量が低すぎると電気
抵抗(体積抵抗率)が大きくなりすぎ、発熱量が小さく
なるため接合の作業効率が低下するか、または給電に必
要な電圧を高くしなければならない。含有量が多すぎる
と電気抵抗が低くなりすぎ、一時的に大電流が流れるの
で、電源装置の容量を大きくしなければならない。
The content of the conductive particles in the heating element is usually 5% by weight or more, preferably 10% by weight or more, particularly preferably 20% by weight or more, and usually 35% by weight or less, preferably 30% by weight or less. Is. If the content is too low, the electrical resistance (volume resistivity) becomes too large, and the amount of heat generation becomes small, so that the work efficiency of bonding is reduced, or the voltage required for power supply must be increased. If the content is too large, the electrical resistance becomes too low and a large current flows temporarily, so the capacity of the power supply device must be increased.

【0025】熱可塑性樹脂と導電性粒子の混合方法は特
に限定されず、バンバリーミキサー、プラストミル、ミ
キシングロール、加圧ニーダー、押出混合機などの処理
しやすい形状にして成形する。成形方法も特に限定され
ず、押出成型、射出成型、ブロー成型、回転成型、圧縮
成型などにより、管状や板状など所望の形状に成型す
る。
The method of mixing the thermoplastic resin and the electrically conductive particles is not particularly limited, and the thermoplastic resin and the conductive particles are molded into a shape that is easy to process, such as a Banbury mixer, plastomill, mixing roll, pressure kneader or extrusion mixer. The molding method is also not particularly limited, and a desired shape such as a tubular shape or a plate shape is formed by extrusion molding, injection molding, blow molding, rotational molding, compression molding, or the like.

【0026】(電極)発熱体に通電するために、発熱体
の発熱部分を挟んで、発熱体と十分な接触面積を有する
電極を設ける。電極は、発熱体に薄い金属板を貼り付け
る、銅製のリングをはめ込む、編組線を熱圧着する、な
どの方法で形成し、電極には通電時に電源を接続する端
子を設ける。なお、端子以外の部分を後述する基体で覆
って、感電や漏電の危険性を小さくすることが好まし
い。
(Electrode) In order to energize the heating element, an electrode having a sufficient contact area with the heating element is provided so as to sandwich the heating portion of the heating element. The electrodes are formed by a method such as sticking a thin metal plate to the heating element, fitting a copper ring, and thermocompression-bonding the braided wire. The electrodes are provided with terminals for connecting a power supply when energized. In addition, it is preferable to cover parts other than the terminals with a base body described later to reduce the risk of electric shock or electric leakage.

【0027】(基体)本発明で使用する電気融着接合部
材では、発熱体層の溶融時の形状保持性を目的として、
通常、決められた形状以外に変形したり接合温度で溶融
したりすることのない基体を有する。また基体を使用す
ると発熱体が外部と遮断されるため感電などの危険が小
さい、断熱効果によって発熱体の発する熱が逃げにくい
ため通電時間が短くてすむ、接合部位の補強、発熱体の
保護などの効果もある。
(Substrate) In the electrofusion-bonding member used in the present invention, the purpose is to maintain the shape of the heating element layer during melting.
Usually, it has a substrate that does not deform to a predetermined shape or melt at the bonding temperature. In addition, the use of a base body cuts off the heating element from the outside, so there is little danger of electric shock, etc. The heat generated by the heating element is difficult to escape due to the heat insulation effect, so the energization time can be shortened, the joint area is reinforced, and the heating element is protected. There is also the effect of.

【0028】基体を構成する樹脂としては、接合温度に
よっては用いられないものもあるが、架橋または非架橋
の高密度ポリエチレン、中密度ポリエチレン、低密度ポ
リエチレン、超高分子量ポリエチレン、エチレン−プロ
ピレン共重合体、エチレン−酢酸ビニル共重合体、エチ
レン−アクリル酸エステル共重合体、ポリプロピレン等
のポリオレフィン系樹脂; ポリノルボルネン系樹脂、
ポリウレタン系樹脂、エポキシ樹脂、ポリエステル樹脂
などの熱硬化性樹脂; 前記の炭化水素系熱可塑性エラ
ストマーと未加硫ゴムとの混合物; などが例示され
る。架橋する場合の架橋方法は限定されず、有機過酸化
物を用いた化学架橋法、シラン変成ポリオレフィンを用
いた水架橋法、電離性放射線を照射する照射架橋法など
を用いることができる。
Some resins constituting the substrate are not used depending on the bonding temperature, but crosslinked or non-crosslinked high density polyethylene, medium density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, ethylene-propylene copolymer Polyolefin resin such as polymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, polypropylene; polynorbornene resin,
Thermosetting resins such as polyurethane resins, epoxy resins, and polyester resins; mixtures of the above-mentioned hydrocarbon-based thermoplastic elastomer and unvulcanized rubber; and the like. The cross-linking method in the case of cross-linking is not limited, and a chemical cross-linking method using an organic peroxide, a water cross-linking method using a silane-modified polyolefin, an irradiation cross-linking method of irradiating with ionizing radiation, and the like can be used.

【0029】これらの中でも、例えばポリノルボルネン
系樹脂成形品やポリウレタン樹脂などの反応射出成形法
により製造される熱硬化性樹脂は、基体が容易に成形で
き、成形された基体が形状記憶性を有しているため、電
気融着接合部材を予め作業しやすい形状に変形してから
使用できることができる点で好ましい。ポリノルボルネ
ン系樹脂は、製造に用いる反応液の流動性が良好なた
め、反応射出成形法によって大型で複雑な形状のものも
製造できるので特に好ましい。
Among these, for example, a thermosetting resin produced by a reaction injection molding method such as a polynorbornene-based resin molded product or a polyurethane resin can be easily molded into a substrate, and the molded substrate has a shape memory property. Therefore, it is preferable that the electrofusion-bonding member can be used after being deformed in advance into a shape that is easy to work. The polynorbornene-based resin is particularly preferable because it has a good fluidity of the reaction liquid used for the production, and a large-sized and complicated shape can be produced by the reaction injection molding method.

【0030】(電気融着接合部材の形状)本発明におけ
る電気融着接合部材の形状は特に限定されず、パイプ
状、平板状など、管継手、封止部材、補強部材などの使
用目的に応じた形状にする。基体を用いる場合は、基体
と発熱体は、必要に応じて両者間に接着層を設けるなど
の方法により、通常、一体化されている。
(Shape of electrofusion-bonding member) The shape of the electrofusion-bonding member in the present invention is not particularly limited, and may be pipe-shaped, flat-plate-shaped or the like depending on the purpose of use such as pipe joints, sealing members, reinforcing members and the like. Shape. When a substrate is used, the substrate and the heating element are usually integrated by a method such as providing an adhesive layer between the two, if necessary.

【0031】なお、どの形状においても、発熱体と被接
合体の間に融着層を設けることがある。融着層は、発熱
体を構成する熱可塑性樹脂と被接合体の両方と融着しや
すい熱可塑性樹脂からなり、両者が直接には互いに融着
しにくい場合でも、良好な接合ができるようにするもの
である。発熱体を構成するのに用いることのできる各種
の熱可塑性樹脂の中から、発熱体と被接合体の両方と融
着しやすい樹脂を選択して用いる。
In any shape, a fusion layer may be provided between the heating element and the article to be joined. The fusing layer is made of a thermoplastic resin that easily fuses with both the thermoplastic resin that constitutes the heating element and the article to be joined, and enables good joining even when both are difficult to fuse directly with each other. To do. From various thermoplastic resins that can be used to form the heating element, a resin that is easily fused with both the heating element and the article to be joined is selected and used.

【0032】パイプ状をなす管継手の場合、その内径が
被接合体である管の外径と同じか、僅かに小さくなるよ
うに成形する。管継手の内径が被接合体の外径より大き
いと融着は不可能である。基体を有する場合は、パイプ
状の内層である発熱体を同じくパイプ状の外層である基
体が覆う構造になる。
In the case of a pipe-shaped pipe joint, the pipe is molded so that its inner diameter is the same as or slightly smaller than the outer diameter of the pipe to be joined. If the inner diameter of the pipe joint is larger than the outer diameter of the objects to be joined, fusion cannot be performed. In the case of having a substrate, the heating element, which is a pipe-shaped inner layer, is covered by the substrate, which is also a pipe-shaped outer layer.

【0033】(接合部材の製造方法)製造方法も特に限
定されない。例えば、ポリノルボルネン系樹脂から成る
基体を有する電気融着接合部材の場合は、所定の形状に
成形した発熱体を金型中に固定して、金型の内面と発熱
体の基体接触面との間に反応液を充填して反応させる反
応射出成形法によって製造できる。この場合、基体と発
熱体は、その接触面が反応熱によって融着して一体の成
形品となる。
(Manufacturing Method of Joining Member) The manufacturing method is not particularly limited. For example, in the case of an electrofusion-bonding member having a base made of polynorbornene-based resin, a heating element molded in a predetermined shape is fixed in a mold, and the inner surface of the mold and the base contact surface of the heating element are separated from each other. It can be manufactured by a reaction injection molding method in which a reaction solution is filled in the space to cause a reaction. In this case, the contact surfaces of the base body and the heating element are fused by reaction heat to form an integral molded article.

【0034】パイプ状の管継手の場合、管継手の中空部
分に被接合体を挿入して通電、融着させるが、前述のよ
うに、管継手の内径は被接合体である管の外径と同じ
か、僅かに小さくなるように成形されているから、実際
には、被接合体の挿入が困難な場合がある。このような
場合は、例えば、前述のポリノルボルネン系樹脂のよう
に形状記憶性のある樹脂で基体を形成しておき、管継手
を常温または加熱下で外力を加えて拡径すれば挿入作業
が容易になる。通電時に熱変形温度以上に基体が加熱さ
れると、基体の形状復帰により拡径前の内径に戻り、良
好な接合状態が得られる。
In the case of a pipe-shaped pipe joint, the body to be joined is inserted into the hollow portion of the pipe joint to energize and fuse it. As described above, the inner diameter of the pipe joint is the outer diameter of the pipe to be joined. Since it is formed to be the same as or slightly smaller than the above, it may be difficult to insert the article to be joined in practice. In such a case, for example, if the base is made of a resin having a shape memory property such as the above-mentioned polynorbornene-based resin, and the pipe joint is expanded by applying an external force at room temperature or under heating, the insertion work can be performed. It will be easier. When the base body is heated to a temperature higher than the thermal deformation temperature during energization, the shape of the base body returns to the inner diameter before the diameter expansion, and a good joining state is obtained.

【0035】(被接合体)本発明において接合される被
接合体は、熱可塑性樹脂からなるものである。熱可塑性
樹脂としては、接合部材の発熱体または融着層と融着で
きるものである限り特に限定されず、架橋した樹脂でも
よい。具体例としては、ポリエチレン、ポリプロピレ
ン、ポリブチレンなどのポリオレフィンが例示される。
好ましい被接合部材の具体例としては、非架橋ポリオレ
フィン層を最外層に有する架橋ポリエチレンパイプであ
る。通常、最外層の樹脂によって適切な接合状態が実現
される条件が決まる。例えば、最外層の樹脂が非架橋ポ
リエチレンの場合、200〜220℃の範囲に1分以上
維持できれば、発熱体との適切な接合状態が得られる。
(Object to be bonded) The object to be bonded in the present invention is made of a thermoplastic resin. The thermoplastic resin is not particularly limited as long as it can be fused to the heating element of the joining member or the fusion layer, and may be a crosslinked resin. Specific examples include polyolefins such as polyethylene, polypropylene and polybutylene.
A specific example of a preferable member to be joined is a crosslinked polyethylene pipe having a non-crosslinked polyolefin layer as the outermost layer. Usually, the resin of the outermost layer determines the conditions under which an appropriate bonding state is realized. For example, when the resin of the outermost layer is non-crosslinked polyethylene, if it can be maintained in the range of 200 to 220 ° C. for 1 minute or more, a proper bonding state with the heating element can be obtained.

【0036】[0036]

【実施例】以下に実施例と比較例を挙げ、添付図を参照
しつつ本発明を詳細に説明する。
EXAMPLES The present invention will be described in detail below with reference to the accompanying drawings by citing examples and comparative examples.

【0037】図3は、本実施例および比較例に用いた電
気融着接合部材1の構成を示す透視的斜視図である。電
気融着接合部材1は、導電性粒子を含有する熱可塑性樹
脂からなる発熱体2と、発熱体2を覆ってこれに機械的
強度を与える共に熱的、電気的に外部から絶縁すると基
体3と、発熱体2の外周に密着して巻付け固定された給
電用電極4とから成る。電気融着接合部材1の両端の開
口から被接合体5が挿入される。これら各構成要素につ
いて、以下に詳細に説明する。
FIG. 3 is a perspective view showing the construction of the electro-fusion-bonding member 1 used in this example and the comparative example. The electrofusion-bonding member 1 includes a heating element 2 made of a thermoplastic resin containing conductive particles, and a base 3 which covers the heating element 2 to give mechanical strength to the heating element 2 and which is thermally and electrically insulated from the outside. And a power supply electrode 4 that is wound around and fixed to the outer periphery of the heating element 2. The article 5 to be joined is inserted through the openings at both ends of the electrofusion-bonding member 1. Each of these components will be described in detail below.

【0038】(発熱体の成形)線状低密度ポリエチレン
70重量%、導電性カーボン・ブラック(ケッチェンブ
ラックEC)30重量%をバンバリー・ミキサーで混合
し、押し出し成形で内径125mm、厚さ3mmのパイ
プ状に成形した発熱体を得、長さ120mmに切断し
た。両端から夫々内側へ10mmの位置にパイプ状の発
熱体の外周を1周するように、2スケア・サイズの編組
線を熱板ロールを用いて溶融圧着した。さらに、各編組
線に端子をハンダ付けで取り付けた。2つの端子はパイ
プの軸と直角方向に取り付けた。
(Molding of heating element) 70% by weight of linear low-density polyethylene and 30% by weight of conductive carbon black (Ketjenblack EC) were mixed in a Banbury mixer, and extrusion molding was performed to obtain an inner diameter of 125 mm and a thickness of 3 mm. A pipe-shaped heating element was obtained and cut into a length of 120 mm. Two scare-sized braided wires were melt-pressed using a hot plate roll so as to make one round around the outer circumference of the pipe-shaped heating element at positions of 10 mm inward from both ends. Furthermore, terminals were attached to each braided wire by soldering. The two terminals were mounted perpendicular to the axis of the pipe.

【0039】かくして、通電断面積15.4平方センチ
メートル、パイプ状発熱部分の有効長10センチメート
ル、抵抗値約1.5オーム(20℃)の発熱体が得られ
た。
Thus, a heating element having a current-carrying cross-sectional area of 15.4 square cm, an effective length of the pipe-shaped heating portion of 10 cm, and a resistance value of about 1.5 ohm (20 ° C.) was obtained.

【0040】(基体の成形)ジシクロペンタジエン75
重量部と非対称型シクロペンタジエン三量体25重量部
を用い、これにスチレン−イソプレン−スチレン・ブロ
ック共重合体(クイントン1170、シェル製)5重量
部とフェノール系酸化防止剤(イルガノックス101
0、チバガイギー製)2重量部を溶解させたものを2つ
に分け、一方には、触媒成分の一部としてジエチルアル
ミニウムクロリド、n−プロパノール、四塩化ケイ素を
それぞれ40ミリモル、44ミリモル、20ミリモルの
濃度になるようにして反応原液とし、他方には、触媒成
分の一部としてトリ(トリデシル)アンモニウムモリブ
デートを10ミリモルの濃度になるようにしてもう一種
の反応原液とした。
(Formation of Substrate) Dicyclopentadiene 75
And 25 parts by weight of the asymmetric cyclopentadiene trimer, 5 parts by weight of a styrene-isoprene-styrene block copolymer (Quinton 1170, Shell) and a phenolic antioxidant (IRGANOX 101) were used.
(0, manufactured by Ciba Geigy) was dissolved in 2 parts and divided into two parts. One part was 40 mmol, 44 mmol and 20 mmol of diethylaluminum chloride, n-propanol and silicon tetrachloride, respectively, as a part of the catalyst component. To obtain a reaction stock solution, and on the other hand, tri (tridecyl) ammonium molybdate as a part of the catalyst component was prepared to a concentration of 10 mmol to prepare another reaction stock solution.

【0041】端子を取り付けたパイプ状発熱体を金型内
に固定し、外周表面と金型内面の間に前述の2種の反応
原液を衝突混合させたものを、混合後直ちに注入し、重
合反応が終了した後(注入後3分以上経過後)取り出し
て、反応射出成形によるジシクロペンタジエン系樹脂か
らなる厚さ5mmの基体を形成した電気融着接合部材を
得た。なお、この電気融着接合部材は、基体から前述の
端子が突出している。
A pipe-shaped heating element equipped with terminals was fixed in a mold, and a mixture of the above-mentioned two types of reaction stock solutions which had been impinged and mixed between the outer peripheral surface and the inner surface of the mold was injected immediately after mixing to carry out polymerization. After the reaction was completed (3 minutes or more after the injection), it was taken out to obtain an electrofusion-bonding member on which a 5 mm-thick substrate made of dicyclopentadiene-based resin was formed by reaction injection molding. In addition, in this electric fusion bonding member, the above-mentioned terminal projects from the base body.

【0042】(拡径、被接合体の挿入)このようにして
作成した電気融着接合部材両端の内径を、金属棒を用い
て約2%拡げ、非架橋ポリエチレンパイプ(外径125
mm)2本をそれぞれ、接合部材の両端から挿入し、中
央で両パイプの端部が接触するように固定した。なお、
一方のポリエチレンパイプの先端部分には熱電対を埋め
込み、ポリエチレンパイプと発熱体の接触面の温度を測
定できるようにした。
(Expansion of Diameter, Insertion of Objects to be Joined) The inner diameters of both ends of the electro-fusion-bonded member thus prepared were expanded by about 2% using metal rods, and a non-crosslinked polyethylene pipe (outer diameter 125
mm) were respectively inserted from both ends of the joining member and fixed so that the ends of both pipes were in contact with each other at the center. In addition,
A thermocouple was embedded in the tip of one polyethylene pipe so that the temperature of the contact surface between the polyethylene pipe and the heating element could be measured.

【0043】(通電)図4に概略の構成を示す定電流電
源6を、図5に示すように接合部材の端子4に接続し、
設定電流を20A、最高電圧を90Vに設定して通電し
た。
(Electrification) A constant current power source 6 having a schematic structure shown in FIG. 4 is connected to a terminal 4 of a joining member as shown in FIG.
The set current was set to 20 A and the maximum voltage was set to 90 V for energization.

【0044】供給電力は、通電開始直後に約0.8kW
を示し、その後増加して約40秒後に最大電力約1.8
kWを示した後、徐々に減少し、約45秒後に約1.5
kW、約60秒後に約0.8kWになった。通電開始後
約3分で通電を終了した。
The power supply is about 0.8 kW immediately after the start of energization.
The maximum power is about 1.8 after about 40 seconds after the increase.
After showing kW, it gradually decreases, and after about 45 seconds is about 1.5.
After about 60 seconds, it became about 0.8 kW. The energization was completed about 3 minutes after the energization was started.

【0045】前記の熱電対により測定した温度は、通電
開始後約45秒間はほぼ直線的に上昇して約120℃に
達し、それ以後は徐々に昇温速度が小さくなり、約10
0秒後から3分後にかけて200〜220℃に維持され
た。
The temperature measured by the thermocouple rises almost linearly for about 45 seconds after the start of energization and reaches about 120 ° C., after which the rate of temperature rise gradually decreases to about 10 ° C.
The temperature was maintained at 200 to 220 ° C from 0 seconds to 3 minutes.

【0046】図6は、上記の通電の状況を定性的に説明
する図である。図の横軸は通電開始後の経過時間を、縦
軸は温度、電圧、電流、抵抗をそれぞれ相対尺度で表示
している。また、図中の「溶融開始」と記した点線の位
置は、上記で電力の最大値が見られた通電開始後45秒
の時点に対応している。なお、前掲の図2とは、経過時
間の尺度を合致させて描いてあるので、比較すると両者
の挙動の違いが明かになる。
FIG. 6 is a diagram qualitatively explaining the above-mentioned energization state. The horizontal axis of the figure represents the elapsed time after the start of energization, and the vertical axis represents the temperature, voltage, current, and resistance on a relative scale. Further, the position of the dotted line marked "melting start" in the figure corresponds to the time point 45 seconds after the start of energization, at which the maximum value of the electric power was seen above. It should be noted that, since the scale of elapsed time is drawn in agreement with that of FIG. 2 described above, the difference in behavior between the two becomes clear by comparison.

【0047】(検査)通電終了後1日放置し、融着状態
などを検査したが、特に問題は認められなかった。
(Inspection) After the completion of energization, the sample was left for one day and inspected for a fused state. No particular problem was found.

【0048】(比較例)定電流電源の代わりに40Vの
定電圧電源を用いる以外は、上記実施例と同様の条件で
行った。
(Comparative Example) The same conditions as those in the above-described example were used except that a constant voltage power source of 40 V was used instead of the constant current power source.

【0049】消費電力は、通電開始直後に約0.8kW
を示し、その後減少し、約80秒後に0.3kWに低下
した後は急速に増大した。
The power consumption is about 0.8 kW immediately after the start of energization.
, Then decreased, and after about 80 seconds, decreased to 0.3 kW and then increased rapidly.

【0050】温度はほぼ直線的に上昇して約80秒後に
約120℃に達し、その後次第に昇温が加速し、約12
0秒後に300℃に達し、危険を感じて通電を停止し
た。
The temperature rises almost linearly and reaches about 120 ° C. after about 80 seconds, and thereafter the temperature rise gradually accelerates to about 12 ° C.
After 0 seconds, the temperature reached 300 ° C., and I felt a danger and stopped energizing.

【0051】なお、この比較例における通電状況の経過
は、前掲の図2に示したものとほぼ同様であった。
Incidentally, the progress of the energization state in this comparative example was almost the same as that shown in FIG.

【0052】通電終了後1日放置し、融着状態などを検
査したところ、発熱体層に分解によると考えられる空隙
が観察され、融着強度などの点で問題があった。
When the fusion state was inspected by leaving it for one day after the completion of energization, voids that were considered to be caused by decomposition were observed in the heating element layer, and there was a problem in terms of fusion strength.

【0053】[0053]

【発明の効果】本発明の、導電性粒子を含有する熱可塑
性樹脂からなる発熱体を有する電気融着接合部材による
接合方法によれば、定電流電源からの通電開始後、比較
的短時間で発熱体が溶融開始温度に到達することがで
き、能率のよい加熱・溶融を行うことができる。
EFFECTS OF THE INVENTION According to the joining method by the electric fusion joining member having the heating element made of the thermoplastic resin containing the conductive particles according to the present invention, it takes a relatively short time after the start of energization from the constant current power source. The heating element can reach the melting start temperature, and efficient heating and melting can be performed.

【0054】また本発明によれば、発熱体温度が溶融開
始温度に到達した後は、供給電力が自然に低下して過度
の温度上昇を生じることがなく、発熱体が被接合体の融
着に適する温度に到達することができる、安全で信頼性
の高い接合方法が提供される。
Further, according to the present invention, after the temperature of the heating element reaches the melting start temperature, the power supply does not naturally decrease and the temperature rises excessively, and the heating element is fused to the object to be joined. Provided is a safe and reliable joining method that can reach suitable temperature.

【0055】[0055]

【図面の簡単な説明】[Brief description of drawings]

【図1】電気融着接合部材の温度−抵抗値の関係を定性
的に説明する図である。
FIG. 1 is a diagram qualitatively illustrating a temperature-resistance value relationship of an electric fusion bonding member.

【図2】電気融着接合部材に電源電圧を一定にして給電
する場合の、温度、電流、抵抗値の時間的変化を定性的
に説明する図である。
FIG. 2 is a diagram qualitatively explaining temporal changes in temperature, current, and resistance value when power is supplied to the electric fusion bonding member at a constant power supply voltage.

【図3】実施例および比較例に用いる電気融着接合部材
の透視斜視図である。
FIG. 3 is a perspective view of an electric fusion bonding member used in Examples and Comparative Examples.

【図4】実施例に用いる定電流電源のブロック図であ
る。
FIG. 4 is a block diagram of a constant current power supply used in an embodiment.

【図5】実施例及び比較例に用いる電気回路の図であ
る。
FIG. 5 is a diagram of electric circuits used in Examples and Comparative Examples.

【図6】実施例において供給電流を一定にして給電する
場合の、温度、電圧、抵抗値の時間的変化を定性的に説
明する図である。
FIG. 6 is a diagram qualitatively illustrating temporal changes in temperature, voltage, and resistance value when power is supplied with a constant supply current in the example.

【符号の説明】[Explanation of symbols]

1…電気融着接合部材 2…発熱体 3…基体 4…電極 5…被接合体 6…電源装置 DESCRIPTION OF SYMBOLS 1 ... Electric fusion bonding member 2 ... Heating element 3 ... Base material 4 ... Electrode 5 ... To-be-bonded body 6 ... Power supply device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子を含有する熱可塑性樹脂から
なる発熱体を有する電気融着接合部材により熱可塑性樹
脂製の被接合体を接合する接合方法において、接合過程
中前記発熱体に供給する電流を一定に制御することを特
徴とする接合方法。
1. A joining method for joining an article to be joined made of a thermoplastic resin by an electric fusion-bonding member having a heating element made of a thermoplastic resin containing conductive particles, and supplying the article to the heating element during the joining process. A joining method characterized in that the current is controlled to be constant.
JP9595695A 1995-03-30 1995-03-30 Connection method for bodies to be connected by electro-fusion connection member Pending JPH08270870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9595695A JPH08270870A (en) 1995-03-30 1995-03-30 Connection method for bodies to be connected by electro-fusion connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9595695A JPH08270870A (en) 1995-03-30 1995-03-30 Connection method for bodies to be connected by electro-fusion connection member

Publications (1)

Publication Number Publication Date
JPH08270870A true JPH08270870A (en) 1996-10-15

Family

ID=14151701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9595695A Pending JPH08270870A (en) 1995-03-30 1995-03-30 Connection method for bodies to be connected by electro-fusion connection member

Country Status (1)

Country Link
JP (1) JPH08270870A (en)

Similar Documents

Publication Publication Date Title
US5286952A (en) Methods and devices which make use of conductive polymers to join articles
JPH0690964B2 (en) Method for manufacturing PTC element
JPH11176610A (en) Ptc element, protection device and circuit board
US3406055A (en) Welding method for cured polymeric compositions
JP2582886B2 (en) Article joining method
KR101016522B1 (en) A temperature fuse with the current fuse function is attached
EP0498602A2 (en) Composite molding and production process and use thereof
JP2000513074A (en) Electric welding pipe fittings
KR101797719B1 (en) Electro-fusion apparatus for plastic pipe
JPH08270870A (en) Connection method for bodies to be connected by electro-fusion connection member
JPH08270871A (en) Electric fusion connection member with non-heating zone
US10226898B2 (en) Method for connecting plastic pipes and structure for connecting the same
JPH04119848A (en) Method for manufacturing half-finished product with conductive plastic material layer
JPH08270872A (en) Electric fusion connection member with cold zone
JPH04308729A (en) Fusion bonding or sealing method and conductive fusing heating element
JPH04294115A (en) Shape-recoverable composite molded item, preparation thereof and method for using it
JPH0752258A (en) Power supply method for electrofusion joining member, electrode for the method, and joining member using it
JP4610807B2 (en) Thin fuse
JPH09280470A (en) Heating element for electric welding coupling and electrically welded coupling
JPH04292936A (en) Composite formed body and manufacture and usage thereof
JPH0569514A (en) Composite formed body, and manufacture and usage thereof
JP3754770B2 (en) Thin fuse
EP0420933A1 (en) Methods and devices which make use of conductive polymers to join articles.
JPH06234165A (en) Method for jointing polyolefin pipe
JPH04347094A (en) Insulation resistance wire for deposited joint