JPH0569514A - Composite formed body, and manufacture and usage thereof - Google Patents

Composite formed body, and manufacture and usage thereof

Info

Publication number
JPH0569514A
JPH0569514A JP4034362A JP3436292A JPH0569514A JP H0569514 A JPH0569514 A JP H0569514A JP 4034362 A JP4034362 A JP 4034362A JP 3436292 A JP3436292 A JP 3436292A JP H0569514 A JPH0569514 A JP H0569514A
Authority
JP
Japan
Prior art keywords
heating element
thermoplastic polymer
composite
fusion
composite molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034362A
Other languages
Japanese (ja)
Inventor
Shoji Suzuki
昭司 鈴木
Koichi Yanai
康一 柳井
Kinichi Okumura
欽一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP4034362A priority Critical patent/JPH0569514A/en
Publication of JPH0569514A publication Critical patent/JPH0569514A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • B29D23/003Pipe joints, e.g. straight joints
    • B29D23/005Pipe joints, e.g. straight joints provided with electrical wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3412Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3444Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
    • B29C65/3452Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip forming a sleeve, e.g. a wrap-around sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5223Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces
    • B29C66/52231Joining tubular articles for forming corner connections or elbows, e.g. for making V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3488Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being an electrically conductive polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3492Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings
    • B29L2031/243Elbows

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain composite formed body suitable for highly safe connecting member or the like by a method wherein both heat generating body made of electrically- conductive particle-containing thermoplastic polymer and base made of thermosetting polynorbornene-based resin, which has shape retention at the melting point of the thermoplastic polymer, are integrally formed. CONSTITUTION:The composite formed body concerned is produced by integrally forming both heat generating body 72 and base 71 together. The heat generating body 72 is made of electrically-conductive particle-containing thermoplastic polymer and power source 75 is connected to ring electrodes 73. On the other hand, the base 71 is made of thermosetting polynorbornene-based resin, which has shape retention at the melting point of the thermoplastic polymer. Further, on the surface opposite to the laminate interface between the heat generating body 72 and the base 71, fusion layer 74 made of thermoplastic polymer is formed integrally or in tight contact with the heat generating body. Furthermore, at the manufacturing of the composite formed body concerned, in the interior of a mold, in which the heat generating body 72 or the composite body of the body 72 and the fusion layer 74 is housed, reaction stock liquid containing norbornene-based monomer and metathetical catalyst is fed and hardened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱体を有する複合成
形体に関し、さらに詳しくは、熱可塑性ポリマー製成形
体の接合、封止、補強などに好適な複合成形体と、その
製造方法および使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite molded article having a heating element, and more specifically, to a composite molded article suitable for joining, sealing, reinforcing, etc. of a thermoplastic polymer molded article, and a method for producing the same. Regarding usage.

【0002】[0002]

【従来の技術】ポリエチレンに代表されるオレフィン系
ポリマー製パイプの継手やシール材(封止材)として、
オレフィン系ポリマーと融着可能な材料、例えば、同一
または同種のポリマーを用い、加熱融着させることによ
り接合または封止することは周知の技術である。そし
て、従来、螺線状に捲回した電熱線を埋設したポリマー
成形品からなるエレクトロフュージョン継手が知られて
おり、この電熱線に通電することにより継手とパイプの
接合部とを融着していた(特開平1−206026
号)。
2. Description of the Related Art As a joint or sealing material (sealing material) for an olefin polymer pipe typified by polyethylene,
It is a well-known technique to use an olefin polymer and a fusible material, for example, the same or the same kind of polymer, and to bond or seal by heat fusion. Then, conventionally, an electrofusion joint made of a polymer molded product in which a heating wire wound in a spiral shape is embedded is known, and the joint and the joint portion of the pipe are fused by energizing the heating wire. (Japanese Patent Laid-Open No. 1-206026
issue).

【0003】しかしながら、このエレクトロフュージョ
ン継手は、製造工程が煩雑であるため高価であり、しか
も多量に埋設された電熱線(多くの場合、ニクロム線等
の金属製)は、加熱融着時には必要であるが、その後は
長期的に見て、腐食性物質であること、ポリオレフィン
と接着しにくい材料であること、ポリマーとは異質で高
剛性であることから、それが埋設されたままで使用する
と、種々な使用条件に適応する継手の長期安定性(例え
ば、内部から流体が洩れる原因となる)の面から考える
と好ましくない。
However, this electrofusion joint is expensive because the manufacturing process is complicated, and a large amount of embedded heating wire (often made of metal such as nichrome wire) is not necessary at the time of heat fusion. However, after that, in the long term, it is a corrosive substance, it is a material that does not easily adhere to polyolefin, and it is different from polymer and has high rigidity, so if it is used as it is embedded, It is not preferable from the viewpoint of long-term stability (for example, causing fluid leakage from the inside) of the joint adapted to various usage conditions.

【0004】一方、熱硬化性ポリノルボルネン系樹脂と
ポリエチレンやポリプロピレンなどのオレフィン系樹脂
とがきわめて良好な接着性を有し、両者が一体化した複
合成形体の得られることは公知である(特開平1−31
6262号)。しかし、該公報には、導電性粒子を配合
したオレフィン系樹脂との複合成形体についての開示は
ない。
On the other hand, it is known that a thermosetting polynorbornene-based resin and an olefin-based resin such as polyethylene or polypropylene have extremely good adhesiveness, and a composite molded body in which both are integrated can be obtained (special feature: Kaihei 1-31
6262). However, this publication does not disclose a composite molded body with an olefin resin containing conductive particles.

【0005】また、形状記憶性樹脂製成形体の表面に、
導電性粒子を配合した合成樹脂、例えばポリウレタン樹
脂、ポリアクリル樹脂等を被覆して、それを加熱源とす
る方法が知られているが(特開平2−239930
号)、その製法は、成形体を導電性樹脂液に浸漬または
塗布する方法であり、工程が煩雑で、かつ、厚みのある
発熱体層を形成することができない。しかも、実用的な
抵抗値は、成形体1ユニット当たり1〜100kΩと大
きく、エレクトロフュージョン法の代替手段としては不
適当なものである。
Further, on the surface of the shape memory resin molded body,
A method is known in which a synthetic resin containing conductive particles, for example, a polyurethane resin or a polyacrylic resin is coated and used as a heating source (Japanese Patent Laid-Open No. Hei 2-239930).
No.), the manufacturing method is a method of immersing or applying a molded body in a conductive resin liquid, and the process is complicated and a thick heating element layer cannot be formed. In addition, the practical resistance value is as large as 1 to 100 kΩ per unit of the molded body, which is unsuitable as an alternative means of the electrofusion method.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、製造
方法が容易で、安全性の高い接合部材、封止部材または
補強部材等として好適な複合成形体を提供することにあ
る。また、本発明の目的は、接合部材等として用いた場
合に、短時間の通電で融着可能で施工作業の効率の良い
複合成形体を提供することにある。さらに、本発明の目
的は、熱可塑性ポリマー製パイプ等の被接合部材の材質
に合わせて、融着層を選択することができる複合成形体
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite molded body which is easy to manufacture and has a high safety and which is suitable as a joining member, a sealing member, a reinforcing member or the like. Further, an object of the present invention is to provide a composite molded article which, when used as a joining member or the like, can be fused by energization in a short time and has a high efficiency of construction work. Further, it is an object of the present invention to provide a composite molded body in which the fusion bonding layer can be selected according to the material of the members to be joined such as the thermoplastic polymer pipe.

【0007】本発明者らは、前記従来技術の有する問題
点を克服するために鋭意研究した結果、導電性粒子を含
有する熱可塑性ポリマーで構成された発熱体と、熱硬化
性ポリノルボルネン系樹脂で構成された基体とが一体に
成形されて成る複合成形体が上記目的を達成できること
を見出した。
The inventors of the present invention have conducted extensive studies to overcome the above-mentioned problems of the prior art, and as a result, a heating element made of a thermoplastic polymer containing conductive particles and a thermosetting polynorbornene resin. It has been found that the above-mentioned object can be achieved by a composite molded body formed by integrally molding a substrate constituted by.

【0008】この複合成形体は、予め形成した発熱体の
存在下に、金型内でノルボルネン系モノマーとメタセシ
ス触媒とを含有する反応原液を硬化させる反応射出成形
法(RIM法)により容易に得ることができる。また、
発熱体面上に、熱可塑性ポリマーからなる融着層を一体
化または密着して成形し、かつ、融着層の材質を同じ熱
可塑性ポリマーからなる被接合部材の材質に合わせるこ
とにより、強固な融着が可能となる。しかも、被接合部
材との融着は、複合成形体の発熱体または融着層で被接
合部材の接合部分を覆い、発熱体に通電するだけでよ
く、操作が簡単である。本発明の複合成形体は、種々の
形状をとることができ、接合部材のほか、封止部材や補
強部材など広範な分野で使用できる。本発明は、これら
の知見に基づいて完成するに至ったものである。
This composite molded body is easily obtained by a reaction injection molding method (RIM method) in which a reaction stock solution containing a norbornene-based monomer and a metathesis catalyst is cured in a mold in the presence of a preformed heating element. be able to. Also,
On the surface of the heating element, a fusion bonding layer made of a thermoplastic polymer is integrally or intimately molded, and by adjusting the material of the fusion bonding layer to the material of the joined member made of the same thermoplastic polymer, a strong fusion is obtained. You can wear it. In addition, the fusion with the members to be joined is performed simply by covering the joined portion of the members to be joined with the heating element or the fusion layer of the composite molded body and energizing the heating element. The composite molded article of the present invention can have various shapes and can be used in a wide range of fields such as a sealing member and a reinforcing member in addition to a joining member. The present invention has been completed based on these findings.

【0009】[0009]

【課題を解決するための手段】かくして、本発明によれ
ば、導電性粒子を含有する熱可塑性ポリマーで構成され
た発熱体(A)と、該熱可塑性ポリマーの融点において
形状保持性を有する熱硬化性ポリノルボルネン系樹脂で
構成された基体(B)とが、一体に成形されて成ること
を特徴とする複合成形体が提供される。発熱体(A)の
基体(B)との積層界面とは反対面に、さらに熱可塑性
ポリマーで構成された融着層(C)が一体化または密着
して成形されていてもよい。
Thus, according to the present invention, a heating element (A) composed of a thermoplastic polymer containing conductive particles, and a heat retaining shape at the melting point of the thermoplastic polymer. There is provided a composite molded body, which is formed by integrally molding a base (B) made of a curable polynorbornene-based resin. A fusion-bonding layer (C) made of a thermoplastic polymer may be formed integrally or in close contact with the surface of the heating element (A) opposite to the laminated interface with the substrate (B).

【0010】また、本発明によれば、発熱体(A)また
は発熱体(A)と融着層(C)との複合体を金型内に配
設し、金型内の空隙部に、ノルボルネン系モノマーとメ
タセシス触媒を含む反応原液を供給して硬化させること
により、発熱体(A)または融着層(C)を有する発熱
体(A)と、基体(B)とを一体に成形することを特徴
とする複合成形体の製造方法が提供される。さらに、本
発明によれば、前記複合成形体を用い、熱可塑性ポリマ
ーで形成された成形体の所定部分(D)を、発熱体
(A)または融着層(C)で覆い、次いで発熱体(A)
に通電して、発熱体(A)または融着層(C)と、該所
定部分(D)を融着させる複合成形体の使用方法が提供
される。
Further, according to the present invention, the heating element (A) or the composite of the heating element (A) and the fusion layer (C) is disposed in the mold, and the void is formed in the mold. By supplying and curing a reaction stock solution containing a norbornene-based monomer and a metathesis catalyst, the heating element (A) or the heating element (A) having the fusion layer (C) and the substrate (B) are integrally molded. A method for producing a composite molded body is provided. Furthermore, according to the present invention, using the composite molded body, a predetermined portion (D) of the molded body formed of a thermoplastic polymer is covered with a heating element (A) or a fusion bonding layer (C), and then the heating element. (A)
There is provided a method for using the composite molded body, which is obtained by energizing the heating element (A) or the fusion bonding layer (C) and fusing the predetermined portion (D) with electricity.

【0011】(基体と反応原液)本発明の複合成形体に
おいて、基体となるポリマーは、熱硬化性ポリノルボル
ネン系樹脂である。ポリノルボルネン系樹脂から成る成
形品は、互いに反応して速やかにポリマーを生成する2
種以上の低粘度原料を混合し、次いで、金型内に供給し
て型内で硬化させる反応射出成形(RIM)法やRTM
法、注型などにより製造することができる。例えば、反
応液として、活性剤とノルボルネン系モノマーを含む反
応液と、メタセシス触媒とノルボルネン系モノマーを含
む反応液とを用い、両液を混合して金型内に供給し、塊
状開環重合させるとポリノルボルネン系樹脂成形品が得
られる。RIM法によるポリノルボルネン系樹脂の成形
は、通常の熱可塑性樹脂の射出成形に比べ、射出圧力が
著しく低いため、安価で軽量の金型を使用でき、また、
金型内での原料の流動性がよいので、大型成形品や複雑
な形状の成形品を製造するのに好ましい。
(Substrate and Reaction Stock Solution) In the composite molded article of the present invention, the polymer serving as the substrate is a thermosetting polynorbornene resin. Molded articles made of polynorbornene-based resin react with each other to quickly produce a polymer. 2
A reaction injection molding (RIM) method or RTM in which one or more low-viscosity raw materials are mixed and then supplied into a mold and cured in the mold.
It can be manufactured by a method, casting, or the like. For example, as a reaction solution, a reaction solution containing an activator and a norbornene-based monomer and a reaction solution containing a metathesis catalyst and a norbornene-based monomer are used, and both solutions are mixed and supplied into a mold to perform bulk ring-opening polymerization. A polynorbornene-based resin molded product is obtained. Molding of polynorbornene-based resin by the RIM method has a significantly lower injection pressure than injection molding of ordinary thermoplastic resin, so an inexpensive and lightweight mold can be used.
Since the raw material has good fluidity in the mold, it is preferable for producing a large-sized molded product or a molded product having a complicated shape.

【0012】本発明において基材となるポリノルボルネ
ン系樹脂は、ノルボルネン環をもつものであればいずれ
でもよいが、三環体以上の多環ノルボルネン系モノマー
を用いて製造したものであることが特に好ましい。三環
体以上であることによって、ガラス転移温度や熱変形温
度の高い重合体が得られ複合材料として要求される耐熱
性を満たすことができる。また、本発明においては、生
成する重合体を熱硬化性とするために、全モノマー中の
少なくとも10重量%、好ましくは30重量%以上の架
橋性モノマーを使用する。
The polynorbornene-based resin used as the base material in the present invention may be any one as long as it has a norbornene ring, but it is particularly preferable that it is produced using a polycyclic norbornene-based monomer having three or more rings. preferable. When it is a tricyclic compound or more, a polymer having a high glass transition temperature or a high heat distortion temperature can be obtained and the heat resistance required as a composite material can be satisfied. Further, in the present invention, in order to make the resulting polymer thermosetting, at least 10% by weight, preferably 30% by weight or more of the total monomers is used as the crosslinking monomer.

【0013】ノルボルネン系モノマーとしては、2−ノ
ルボルネン、ノルボルナジエンなどの二環体、ジシクロ
ペンタジエンやジヒドロジシクロペンタジエンなどの三
環体、テトラシクロドデセンなどの四環体、トリシクロ
ペンタジエンなどの五環体、テトラシクロペンタジエン
などの七環体、これらのアルキル置換体(例えば、メチ
ル、エチル、プロピル、ブチル置換体など)、アルケニ
ル置換体(例えば、ビニル置換体など)、アルキリデン
置換体(例えば、エチリデン置換体など)、アリール置
換体(例えば、フェニル、トリル、ナフチル置換体な
ど)、エステル基、エーテル基、シアノ基、ハロゲン原
子などの極性基を有する置換体などが例示される。なか
でも、入手の容易さ、反応性、耐熱性等の見地から、三
環体ないし五環体が賞用される。
The norbornene-based monomer includes a bicyclic compound such as 2-norbornene and norbornadiene, a tricyclic compound such as dicyclopentadiene and dihydrodicyclopentadiene, a tetracyclic compound such as tetracyclododecene, and a pentacyclic compound such as tricyclopentadiene. Cyclic compounds, heptacyclic compounds such as tetracyclopentadiene, their alkyl-substituted compounds (eg, methyl, ethyl, propyl, butyl-substituted compounds), alkenyl-substituted compounds (eg, vinyl-substituted compounds), alkylidene-substituted compounds (eg, Examples thereof include ethylidene substitution products), aryl substitution products (eg, phenyl, tolyl, naphthyl substitution products, etc.), and substitution products having ester groups, ether groups, cyano groups, and polar groups such as halogen atoms. Among them, tricyclic or pentacyclic compounds are favored from the viewpoint of availability, reactivity, heat resistance and the like.

【0014】架橋性モノマーは、反応性の二重結合を2
個以上有する多環ノルボルネン系モノマーであり、その
具体例としてジシクロペンタジエン、トリシクロペンタ
ジエン、テトラシクロペンタジエンなどが例示される。
したがって、ノルボルネン系モノマーと架橋性モノマー
が同一である場合には格別他の架橋性モノマーを用いる
必要はない。これらのノルボルネン系モノマーは、それ
ぞれ単独で使用しても良いし、また、2種以上を混合し
て用いることもできる。
The crosslinkable monomer has two reactive double bonds.
It is a polycyclic norbornene-based monomer having at least one, and specific examples thereof include dicyclopentadiene, tricyclopentadiene, and tetracyclopentadiene.
Therefore, when the norbornene-based monomer and the crosslinkable monomer are the same, it is not necessary to use another crosslinkable monomer. These norbornene-based monomers may be used alone or in combination of two or more.

【0015】なお、上記のノルボルネン系モノマーの1
種以上と共に開環重合し得るシクロブテン、シクロペン
テン、シクロペンタジエン、シクロオクテン、シクロド
デセンなどの単環シクロオレフィンなどを、本発明の目
的を損なわない範囲で併用することができる。
One of the above norbornene-based monomers is used.
A monocyclic cycloolefin such as cyclobutene, cyclopentene, cyclopentadiene, cyclooctene, or cyclododecene, which can undergo ring-opening polymerization with one or more species, can be used in combination within a range not impairing the object of the present invention.

【0016】用いる触媒は、ノルボルネン系モノマーの
開環重合用触媒として公知のメタセシス触媒系であれば
いずれでもよく、具体例としては、タングステン、モリ
ブデン、タンタルなどのハロゲン化物、オキシハロゲン
化物、酸化物、有機アンモニウム塩などのメタセシス触
媒が挙げられ、また、活性剤(共触媒)の具体例として
は、アルキルアルミニウムハライド、アルコキシアルキ
ルアルミニウムハライド、アリールオキシアルキルアル
ミニウムハライド、有機スズ化合物などが挙げられる。
Any catalyst may be used as long as it is a metathesis catalyst system known as a catalyst for ring-opening polymerization of norbornene type monomers, and specific examples thereof include halides such as tungsten, molybdenum and tantalum, oxyhalides and oxides. , A metathesis catalyst such as an organic ammonium salt, and specific examples of the activator (cocatalyst) include an alkylaluminum halide, an alkoxyalkylaluminum halide, an aryloxyalkylaluminum halide, and an organic tin compound.

【0017】メタセシス触媒は、ノルボルネン系モノマ
ーの1モルに対し、通常、約0.01〜50ミリモル、
好ましくは0.1〜10ミリモルの範囲で用いられる。
活性剤は、メタセシス触媒成分に対して、モル比で0.
1〜200好ましくは2〜10の範囲で用いられる。メ
タセシス触媒および活性剤は、いずれもモノマーに溶解
して用いる方が好ましいが、生成物の性質を本質的に損
なわない範囲であれば少量の溶剤に懸濁または溶解させ
て用いてもよい。
The metathesis catalyst is usually used in an amount of about 0.01 to 50 mmol, based on 1 mol of the norbornene-based monomer.
It is preferably used in the range of 0.1 to 10 mmol.
The activator has a molar ratio of 0.
It is used in the range of 1 to 200, preferably 2 to 10. Both the metathesis catalyst and the activator are preferably used by dissolving them in the monomer, but they may be used by suspending or dissolving them in a small amount of solvent as long as the properties of the product are not substantially impaired.

【0018】ポリノルボルネン系樹脂の好ましい製造法
では、ノルボルネン系モノマーを二液に分けて別の容器
に入れ、一方にはメタセシス触媒を、他方には活性剤を
添加し、二種類の安定な反応液を調製する。この二種類
の反応液を混合し、次いで所定形状の金型または型枠
(両者を合せて金型という)中に注入し、そこで塊状に
よる開環重合を行なう。
In a preferred method for producing a polynorbornene-based resin, the norbornene-based monomer is divided into two liquids and placed in another container, a metathesis catalyst is added to one of them, and an activator is added to the other, and two stable reactions are carried out. Prepare the liquid. The two kinds of reaction liquids are mixed and then poured into a mold or a mold having a predetermined shape (both are collectively referred to as a mold), where ring-opening polymerization is performed in bulk.

【0019】金型温度は、通常、30℃以上、好ましく
は40〜200℃、特に好ましくは50〜130℃であ
る。重合反応に用いる成分類は、窒素ガスなどの不活性
ガス雰囲気下で貯蔵し、かつ操作することが好ましい。
金型の材質は、金属、樹脂、木、石膏などのいずれでも
よい。
The mold temperature is usually 30 ° C. or higher, preferably 40 to 200 ° C., particularly preferably 50 to 130 ° C. The components used in the polymerization reaction are preferably stored and manipulated under an atmosphere of an inert gas such as nitrogen gas.
The material of the mold may be any of metal, resin, wood, plaster and the like.

【0020】ポリノルボルネン系樹脂には、酸化防止
剤、充填材、補強材、発泡剤、顔料、着色剤、エラスト
マーなどの添加剤を配合することができる。これらの添
加剤は、通常、反応原液に溶解ないしは分散させて配合
する。
An additive such as an antioxidant, a filler, a reinforcing material, a foaming agent, a pigment, a coloring agent or an elastomer can be added to the polynorbornene resin. These additives are usually dissolved or dispersed in the reaction stock solution and blended.

【0021】基材を発泡体とするときは、発泡剤を反応
液に添加し、これを金型内に注入する。好ましい発泡剤
は、通常は液体で、容易に揮発する低沸点有機化合物、
例えば、ペンタン、ヘキサンなどの炭化水素、メチレン
クロライド、トリクロロフルオロメタン、ジクロロジフ
ルオロメタンなどのハロゲン化炭化水素など、これら低
沸点有機化合物を内包した熱膨張性マイクロカプセル、
あるいは窒素、アルゴンなどの不活性ガスが挙げられ
る。
When the base material is a foam, a foaming agent is added to the reaction solution, which is poured into a mold. Preferred blowing agents are usually liquid, low boiling organic compounds that volatilize easily,
For example, pentane, hydrocarbons such as hexane, methylene chloride, trichlorofluoromethane, halogenated hydrocarbons such as dichlorodifluoromethane, etc., thermally expandable microcapsules containing these low-boiling organic compounds,
Alternatively, an inert gas such as nitrogen or argon can be used.

【0022】(発熱体)熱可塑性ポリマー 本発明で発熱体のマトリックスポリマーとして用いる熱
可塑性ポリマーは、基材の熱硬化性ポリノルボルネン系
樹脂と一体成形可能で、かつ導電性粒子を配合したとき
に所定形状に成形可能なものであればよい。
(Heating Element) Thermoplastic Polymer The thermoplastic polymer used as the matrix polymer of the heating element in the present invention can be integrally molded with the thermosetting polynorbornene-based resin of the base material, and when it is blended with conductive particles. Any material that can be molded into a predetermined shape may be used.

【0023】このような熱可塑性ポリマーとしては、例
えば、高密度ポリエチレン(PE)、中密度PE、低密
度PE、超高分子量PE、エチレン−プロピレン共重合
体、エチレン−ブテン−1共重合体、ポリプロピレン
(PP)、ポリブテン−1、ポリペンテン−1、ポリ4
−メチルペンテン−1、エチレン−プロピレンゴム(E
PR)、エチレン−プロピレン−ジエン三元共重合体
(EPDM)、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリル酸エステル共重合体、エチレン−塩化ビニ
ル共重合体などのオレフィン系モノマーを主成分とする
オレフィン系ポリマー;ポリ塩化ビニル(PVC)など
のハロゲン化ビニル系ポリマー;ポリスチレンなどの芳
香族ビニル系ポリマー;これらのポリマーの塩素化物;
およびこれらの混合物などが挙げられる。
Examples of such a thermoplastic polymer include high density polyethylene (PE), medium density PE, low density PE, ultra high molecular weight PE, ethylene-propylene copolymer, ethylene-butene-1 copolymer, Polypropylene (PP), polybutene-1, polypentene-1, poly4
-Methylpentene-1, ethylene-propylene rubber (E
PR), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, ethylene-vinyl chloride copolymer and other olefin-based monomers as main components Olefin-based polymer; polyvinyl halide (PVC) and other halogenated polymers; polystyrene and other aromatic vinyl-based polymers; chlorinated products of these polymers;
And mixtures thereof.

【0024】混合物の具体例としては、例えば、高密度
PEと低密度PEの混合物、中密度PEと低密度PEの
混合物、高密度PEとエチレン−α−オレフィン共重合
体の混合物、低密度PEとエチレン−α−オレフィン共
重合体の混合物などが挙げられる。
Specific examples of the mixture include, for example, a mixture of high density PE and low density PE, a mixture of medium density PE and low density PE, a mixture of high density PE and ethylene-α-olefin copolymer, low density PE. And a mixture of ethylene-α-olefin copolymer and the like.

【0025】また、スチレンに代表される芳香族ビニル
化合物と、イソプレンやブタジエンなどの共役ジエンか
ら構成される各種ブロック共重合体、具体的には、S−
I型、S−B型、S−I−S型、S−B−S型、S−I
−S−I−S型などのブロック共重合体、これらの水素
化物、これらの混合物などの炭化水素系熱可塑性エラス
トマー;ポリブタジエン、ポリイソプレン、スチレン−
ブタジエン共重合体、クロロプレンゴム、ブチルゴムな
どの未加硫ゴム;等が挙げられる。これらの炭化水素系
熱可塑性エラストマーや未加硫ゴムは、上記オレフィン
系ポリマーなどと任意の割合で混合して使用することが
できる。これらの重合体の中でも、基材への密着性、一
体成形性、被接合部材への融着性などの観点から、オレ
フィン系ポリマーが好ましく、特にオレフィン系モノマ
ーのみで構成されるポリオレフィンが好ましい。
Further, various block copolymers composed of an aromatic vinyl compound typified by styrene and a conjugated diene such as isoprene and butadiene, specifically, S-
I type, S-B type, S-I-S type, S-B-S type, S-I
-S-IS type block copolymers, hydrides thereof, hydrocarbon-based thermoplastic elastomers such as mixtures thereof; polybutadiene, polyisoprene, styrene-
Unvulcanized rubber such as butadiene copolymer, chloroprene rubber and butyl rubber; and the like. These hydrocarbon-based thermoplastic elastomers and unvulcanized rubbers can be used as a mixture with the above-mentioned olefin-based polymer in an arbitrary ratio. Among these polymers, an olefin-based polymer is preferable, and a polyolefin composed of only an olefin-based monomer is particularly preferable, from the viewpoints of adhesion to a base material, integral moldability, and fusion property to a member to be joined.

【0026】また、これらの熱可塑性ポリマーには、酸
化チタン、炭酸カルシウム、水酸化アルミニウム、タル
クなどの充填剤、各種顔料や染料等の着色剤、酸化防止
剤、耐燃焼剤、紫外線吸収剤、防曇剤、帯電防止剤、石
油樹脂の如き接着性向上剤などを添加して改質したり、
着色したり、耐候性の向上を図ることができる。
Further, these thermoplastic polymers include fillers such as titanium oxide, calcium carbonate, aluminum hydroxide and talc, colorants such as various pigments and dyes, antioxidants, anti-combustion agents, ultraviolet absorbers, Anti-fog agent, antistatic agent, petroleum resin, etc.
It can be colored and the weather resistance can be improved.

【0027】導電性粒子 熱可塑性ポリマーに含有させる導電性粒子としては、例
えば、カーボンブラック、黒鉛粉末、金属粒子(銅、
鉄、ニッケルなどの粉末)、これらの混合物などを挙げ
ることができる。
Conductive Particles As the conductive particles to be contained in the thermoplastic polymer, for example, carbon black, graphite powder, metal particles (copper,
Powders of iron, nickel, etc.), mixtures thereof, and the like.

【0028】導電性粒子の配合量は、通電により発熱体
の均一な発熱が生ずる範囲内で適宜選択すればよいが、
通常は、発熱体の25℃での体積固有抵抗が5×102
Ω・cm以下、好ましくは1×102Ω・cm以下とな
るように選択され、体積固有抵抗が、低いほど発熱が容
易になる。例えば、カーボンブラックの中でも導電性に
優れているケッチェンブラック(Ketjen Bla
ck)の場合には、熱可塑性樹脂に対して、通常、5〜
35重量%、好ましくは10〜30重量%含有せしめ
る。
The amount of the conductive particles to be blended may be appropriately selected within the range where uniform heat generation of the heating element is generated by energization.
Normally, the volume resistivity of the heating element at 25 ° C is 5 x 10 2
It is selected to be Ω · cm or less, preferably 1 × 10 2 Ω · cm or less, and the lower the volume resistivity, the easier the heat generation. For example, among carbon blacks, Ketjen Bla has excellent conductivity.
In the case of ck), it is usually 5 to 5 with respect to the thermoplastic resin.
The content is 35% by weight, preferably 10 to 30% by weight.

【0029】発熱体 発熱体は、先ず、熱可塑性ポリマーと導電性粒子とを、
バンバリーミキサー、プラストミル、ミキシングロー
ル、加圧ニーダーなどにより溶融混練して、シート、リ
ボンまたはペレット化し、次いで、押出成形、射出成
形、ブロー成形、回転成形、圧縮成形などにより、管状
や板状などの所望の形状に成形する。
Heating Element The heating element first comprises a thermoplastic polymer and conductive particles.
Sheets, ribbons or pellets are melted and kneaded with a Banbury mixer, plastomill, mixing roll, pressure kneader, etc., and then extruded, injection-molded, blow-molded, rotational-molded, compression-molded, etc. Mold into the desired shape.

【0030】本発明で使用する発熱体は、25℃での体
積固有抵抗が5×102Ω・cm以下であることが好ま
しい。体積固有抵抗値が過度に大きいと、通電により不
均一な発熱が生じ融着不良の原因となる。
The heating element used in the present invention preferably has a volume resistivity at 25 ° C. of 5 × 10 2 Ω · cm or less. If the volume resistivity is excessively large, non-uniform heat generation occurs due to energization, which causes defective fusion.

【0031】(融着層)発熱体は、熱可塑性ポリマーで
構成された融着層と一体化または密着して成形されてい
てもよい。融着層を構成するポリマーは、発熱体と融着
可能なものであることが必要であり、一般には前記発熱
体を構成する熱可塑性ポリマーの中から適宜選択され
る。発熱体と融着層は、使用時の発熱で融着するため、
必ずしも予め一体化しておく必要はない。発熱体と融着
層とを一体化する場合は、例えば、加熱融着、共押出な
ど慣用の積層法が採用できる。融着層の材質は、接合や
封止などの場合において、融着の対象となる熱可塑性ポ
リマー製成形体と同一または類似のものを選択すること
により、強固な融着が可能となる。
(Fusion Layer) The heating element may be molded integrally or in close contact with the fusion layer composed of a thermoplastic polymer. The polymer constituting the fusion layer needs to be capable of being fused with the heating element, and is generally appropriately selected from the thermoplastic polymers constituting the heating element. Since the heating element and the fusion layer are fused by the heat generated during use,
It is not always necessary to integrate them in advance. When the heating element and the fusion bonding layer are integrated, for example, a conventional lamination method such as heat fusion or coextrusion can be adopted. In the case of joining or sealing, the material of the fusion layer is the same as or similar to that of the thermoplastic polymer molded body to be fused, so that strong fusion can be achieved.

【0032】また、発熱体は、多量の充填剤を含んでい
るので複雑な形状に加工しにくく、エルボやチーズ等が
成形できない場合がある。このようなとき、例えば、ブ
ロー成形で熱可塑性ポリマーからなるエルボ(融着層)
を作り、加熱を必要とする箇所の基体と融着層との間に
発熱体を配置して、一体化または密着して取り付けるこ
とにより解決することができる。
Further, since the heating element contains a large amount of filler, it is difficult to process it into a complicated shape, and there are cases in which the elbow, cheese, etc. cannot be molded. In such a case, for example, an elbow (fusion layer) made of a thermoplastic polymer by blow molding
Can be solved by arranging a heating element between the base and the fusion layer at a location requiring heating, and integrally or closely attaching them.

【0033】さらに、高純度水や高純度化学品などを移
送する場合、発熱体が直接液に接すると、液を汚染した
り、あるいは材質によっては発熱体が膨潤するなどの現
象を生じ、使用できないことがある。例えばガソリン用
容器やパイプでは、通常のポリエチレンでは膨潤しやす
いために、もっぱら超高分子量ポリエチレンが用いられ
ている。そこで、ガソリンと接触する部分の膨潤を防ぐ
ために、超高分子量ポリエチレンを融着層として用いる
ことが有効である。
Furthermore, when transferring high-purity water or high-purity chemicals, if the heating element comes into direct contact with the liquid, the liquid may be contaminated or the heating element may swell depending on the material used. There are things you can't do. For example, in gasoline containers and pipes, ultra-high molecular weight polyethylene is exclusively used because ordinary polyethylene easily swells. Therefore, it is effective to use ultra-high molecular weight polyethylene as the fusing layer in order to prevent the swelling of the portion in contact with gasoline.

【0034】このように不純物を含まないポリマーや接
触する液体に対する耐性のあるポリマーで形成された融
着層を設けることにより、パイプなどの被接合部材の材
質と、発熱体の材質との材質差を補うことができる。
By providing the fusion layer formed of the polymer containing no impurities or the polymer having resistance to the liquid to be contacted as described above, the material difference between the material of the joined member such as the pipe and the material of the heating element is provided. Can be supplemented.

【0035】(複合成形体)複合成形体は、発熱体また
は発熱体と融着層との複合体を金型内に配設し、金型内
の空隙部に、ノルボルネン系モノマーとメタセシス触媒
を含む反応原液を供給して硬化させることにより、発熱
体または融着層を有する発熱体と、熱硬化性ポリノルボ
ルネン系樹脂からなる基体とを一体に成形する方法によ
り製造することができる。
(Composite Molded Product) In the composite molded product, a heating element or a composite of a heating element and a fusion layer is arranged in a mold, and a norbornene-based monomer and a metathesis catalyst are placed in a void in the mold. It is possible to manufacture by a method of integrally molding a heating element or a heating element having a fusion layer and a substrate made of a thermosetting polynorbornene-based resin by supplying and curing a reaction stock solution containing the same.

【0036】複合成形体が、例えば、管継手などの管状
複合成形体である場合、予め成形した管状の発熱体を中
子として用い、このまわりを金型で囲って、金型内面と
発熱体の外周面とで形成される空隙部に、ノルボルネン
系モノマーとメタセシス触媒を含む反応原液を供給して
塊状開環重合を行なうことにより、発熱体と基体とが一
体化した複合成形体を得ることができる。また、複合成
形体が板状などの場合には、発熱体を金型内に載置し、
残余の空隙に反応原液を供給して塊状開環重合を行なえ
ばよい。発熱体が融着層を有する場合には、発熱体部分
と反応原液とが接触するように金型内に配置する。
When the composite molded body is, for example, a tubular composite molded body such as a pipe joint, a preformed tubular heating element is used as a core, and this is surrounded by a mold, and the inner surface of the mold and the heating element are surrounded. By supplying a reaction stock solution containing a norbornene-based monomer and a metathesis catalyst to the void formed by the outer peripheral surface of the polymer and performing bulk ring-opening polymerization, a composite molded body in which a heating element and a substrate are integrated is obtained. You can In addition, when the composite molded body has a plate shape or the like, the heating element is placed in the mold,
The reaction stock solution may be supplied to the remaining voids to perform bulk ring-opening polymerization. When the heating element has a fusion layer, it is placed in the mold so that the heating element portion and the reaction stock solution come into contact with each other.

【0037】本発明の複合成形体の形状は、特に限定さ
れず、例えば、管継手、ボードの接合部材、封止部材、
補強部材などの使用目的に応じて適宜定めることができ
る。本発明の複合成形体は、熱可塑性ポリマーで形成さ
れた成形体の所定部分を発熱体または融着層で覆い、発
熱体に通電して、発熱体または融着層と、該所定部分を
融着させる方法により、継手部材や封止部材、補強部材
などとして用いることができる。
The shape of the composite molded article of the present invention is not particularly limited and includes, for example, pipe joints, board joining members, sealing members,
It can be appropriately determined according to the purpose of use of the reinforcing member and the like. The composite molded article of the present invention covers a predetermined portion of a molded article formed of a thermoplastic polymer with a heating element or a fusion layer and energizes the heating element to melt the heating element or the fusion layer and the predetermined portion. Depending on the method of attachment, it can be used as a joint member, a sealing member, a reinforcing member, or the like.

【0038】例えば、オレフィン系ポリマーで形成され
た2本のパイプの継手部分を、発熱体または融着層を内
周面に設けた管状の複合成形体の中空部分に挿入し、次
いで発熱体に通電して、発熱体または融着層を加熱融着
すれば、接合されたパイプが得られる。この場合、発熱
体または融着層のポリマーを同じオレフィン系ポリマー
で形成しておけば、発熱体に通電した際に、パイプの外
周面も一部溶融し、しかも同じ材質であるため、強固に
融着する。発熱体と融着層が一体化していないもので
も、通電の際に両者の一体化が起こる。
For example, a joint portion of two pipes made of an olefin polymer is inserted into a hollow portion of a tubular composite molded body provided with an exothermic body or a fusion layer on the inner peripheral surface, and then the exothermic body is formed. When the heating element or the fusing layer is heated and fused by applying electricity, a joined pipe is obtained. In this case, if the heating element or the polymer of the fusing layer is formed of the same olefin-based polymer, when the heating element is energized, the outer peripheral surface of the pipe also partially melts, and since it is the same material, it becomes firm. Fuse together. Even if the heating element and the fusing layer are not integrated, they will be integrated when electricity is applied.

【0039】通電する手段としては、発熱体に通電用電
極を設けて、電源と接続できるようにすればよい。電極
材料は、発熱体の電気抵抗より低く、耐熱性のある、例
えば導電性塗料、導電性ペースト、銅に代表される導電
性金属などが好ましい。電極と発熱体との接触抵抗が高
いと局部発熱するので、これを低くするためには、細い
銅線を多数本使用するなどの方法で接触面積を広くする
ことが好ましい。
As a means for energizing, a heating element may be provided with an energizing electrode so that it can be connected to a power source. The electrode material is preferably an electrically conductive paint, an electrically conductive paste, or an electrically conductive metal typified by copper, which has a lower heat resistance than the electric resistance of the heating element. If the contact resistance between the electrode and the heating element is high, local heat is generated. Therefore, in order to reduce this, it is preferable to widen the contact area by using a number of thin copper wires.

【0040】通電用電極は、発熱体の昇温すべき箇所に
均一に電流が流れるように配置すればよい。例えば、管
状複合成形体(パイプ)の場合、発熱体の外周部(基体
との界面)に、パイプと平行に線状の電極2本を等間隔
に配置して通電するか(図1)、あるいはパイプの径の
大きさや発熱体の抵抗によって、その倍数の電極を等間
隔に配置し、両極端子より通電する。また、管状複合成
形体の発熱体の長さを基体より長くして、その端部をは
み出した形状に成形すると、発熱体の端部にリング状の
電極を配置することができる(図3)。この方法は、電
極の配置が容易であるため、施工現場で通電用電極を脱
着することができる。パイプの径が大きい場合、エルボ
やチーズなどの複雑な形状の場合には、発熱体の昇温す
べき箇所にリング状電極を等間隔に複数個配置し、両極
端子より通電してもよい(図7)。基体の熱硬化性ポリ
ノルボルネン系樹脂は、発熱体および融着層の溶融時
に、溶融せずに形状を保持できることが必要である。
The current-carrying electrodes may be arranged so that the current flows evenly through the heating element at the location where the temperature should be raised. For example, in the case of a tubular composite molded body (pipe), whether two linear electrodes are arranged at equal intervals parallel to the pipe on the outer peripheral portion (interface with the base) of the heating element to conduct electricity (Fig. 1). Alternatively, depending on the diameter of the pipe and the resistance of the heating element, multiple electrodes are arranged at equal intervals, and current is applied from the bipolar terminals. Further, if the length of the heating element of the tubular composite molded body is made longer than that of the substrate and the end portion of the heating element is formed to protrude, a ring-shaped electrode can be arranged at the end portion of the heating element (FIG. 3). .. In this method, the electrodes can be easily arranged, so that the energizing electrodes can be attached and detached at the construction site. When the diameter of the pipe is large, and in the case of a complicated shape such as an elbow or cheese, a plurality of ring-shaped electrodes may be arranged at equal intervals at locations where the temperature of the heating element should be raised, and current may be supplied from the bipolar terminals ( (Fig. 7). The thermosetting polynorbornene-based resin of the substrate is required to be able to retain its shape without melting when the heating element and the fusion layer are melted.

【0041】[0041]

【実施例】以下に実施例を挙げて本発明についてさらに
具体的に説明するが、本発明は、これらの実施例のみに
限定されるものではない。なお、以下の実施例におい
て、部および%は、特に断りのない限り重量基準であ
る。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the following examples, parts and% are based on weight unless otherwise specified.

【0042】[実施例1]低密度ポリエチレン(メルト
インデックス0.3、密度0.92、融点110℃)
に、導電性カーボンブラック(ケッチェンブラックE
C)を25%、バンバリーミキサーにて混合し、受ロー
ルでシート化した後、ペレットとした。
[Example 1] Low-density polyethylene (melt index 0.3, density 0.92, melting point 110 ° C)
Conductive carbon black (Ketjen Black E
25% of C) was mixed in a Banbury mixer, and a sheet was formed with a receiving roll, and then pelletized.

【0043】このペレットを押出成型機にて、外径36
mm、内径33mmのパイプ状に押し出し、長さ60m
mに切断して発熱体を作成した。この発熱体の表面に1
cm間隔で抵抗測定器(SOAR CORPORATI
ON製 ME−530型)の端子を圧着して抵抗値を測
定し、それを体積固有抵抗とした。その結果は53Ω・
cmであった。
The pellets were extruded with an outer diameter of 36
mm, inner diameter 33 mm, extruded into a pipe shape, length 60 m
A heating element was prepared by cutting into m. 1 on the surface of this heating element
Resistance measuring device at intervals of cm (SOAR COPORATORI
ON-made ME-530 type) terminals were crimped to measure the resistance value, which was taken as the volume resistivity. The result is 53Ω
It was cm.

【0044】図1に示すように、この発熱体2の両端に
銅製の電極端子3を接合したものをRIM成型の中子と
し、このまわりに内径41mm、外径80mmのアルミ
ニウム製円筒金型を上下の蓋を介して固定し、シールし
た。円筒と中子との空隙に反応原液を注入するための注
入口を上蓋に設けた。この組み立てた円筒全体を60℃
に加熱し、注入口より窒素ガスを流し、中子と円筒との
空隙部分を窒素ガスで置換した後、反応原液を注入し
た。
As shown in FIG. 1, a copper-made electrode terminal 3 is joined to both ends of the heating element 2 as a core for RIM molding, and an aluminum cylindrical mold having an inner diameter of 41 mm and an outer diameter of 80 mm is provided around the core. It was fixed via the upper and lower lids and sealed. An injection port for injecting the reaction stock solution was provided in the upper lid in the space between the cylinder and the core. The entire cylinder assembled at 60 ℃
The mixture was heated to, nitrogen gas was made to flow from the injection port, the gap between the core and the cylinder was replaced with nitrogen gas, and then the reaction stock solution was injected.

【0045】反応原液は、次の組成のものを用いた。す
なわち、ノルボルネン系モノマーとして、ジシクロペン
タジエン(DCP)75%と、シクロペンタジエン三量
体25%(対称型約20%と非対称型約80%の混合
物)を用い、これにスチレン−イソプレン−スチレンブ
ロック共重合体(クレイトン1170、シェル社製)を
5%とフェノール系の酸化防止剤であるイルガノックス
1010(チバガイギー社製)を2%溶解させ、これを
2つの容器に入れ、一方にはモノマーに対しジエチルア
ルミニウムクロリド(DEAC)を40ミリモル濃度、
n−プロパノールを44ミリモル濃度、四塩化ケイ素を
20ミリモル濃度となるように添加した。他方には、モ
ノマーに対しトリ(トリデシル)アンモニウムモリブデ
ートを10ミリモル濃度となるように添加した。両反応
液を1:1の容積比になるようにギヤーポンプによりパ
ワーミキサーに搬送し、前記注入口から金型内の空隙部
に注入した。
The reaction stock solution used had the following composition. That is, as the norbornene-based monomer, 75% of dicyclopentadiene (DCP) and 25% of cyclopentadiene trimer (a mixture of about 20% of symmetric type and about 80% of asymmetric type) were used, and styrene-isoprene-styrene block was used. 5% of a copolymer (Kreighton 1170, manufactured by Shell Co.) and 2% of a phenolic antioxidant Irganox 1010 (manufactured by Ciba Geigy Co., Ltd.) were dissolved and placed in two containers, one of which was used as a monomer. Diethyl aluminum chloride (DEAC) at a concentration of 40 mmol,
n-Propanol was added at a concentration of 44 mmol and silicon tetrachloride was added at a concentration of 20 mmol. On the other hand, tri (tridecyl) ammonium molybdate was added to the monomer so as to have a concentration of 10 mmol. Both reaction solutions were conveyed to a power mixer by a gear pump so that the volume ratio was 1: 1 and injected into the void portion in the mold through the injection port.

【0046】注入後約3分後に重合反応が完了した。円
筒金型の上下の蓋を外し図1に示すように、電極端子3
を装着した発熱体2を内周層とし、そのまわりに熱硬化
性ポリノルボルネン系樹脂からなる基体1が一体成型さ
れたスリーブ状のソケットが得られた。このソケットの
外周層と内周層とは、密着性に優れており、両者を引き
剥そうとしても引き剥すことはできなかった。なお、外
周層のポリノルボルネン系樹脂のTgは170℃であっ
た。
The polymerization reaction was completed about 3 minutes after the injection. As shown in FIG. 1, the upper and lower lids of the cylindrical mold are removed, and the electrode terminal 3
As a result, a sleeve-shaped socket was obtained in which the heating element 2 having the above was used as the inner peripheral layer, and the base 1 made of the thermosetting polynorbornene resin was integrally molded around the inner peripheral layer. The outer peripheral layer and the inner peripheral layer of this socket were excellent in adhesiveness and could not be peeled off even if they were to be peeled off. The Tg of the polynorbornene-based resin of the outer peripheral layer was 170 ° C.

【0047】図2に示すように、このソケットの両端よ
り、発熱体と同質の低密度ポリエチレン製パイプ4(外
径32.5mm、肉厚4mm、長さ80mm)2本をそ
れぞれ挿入し、発熱体2の両端の各2つの電極端子3に
電源5から30Vの交流電圧を2分間かけると、発熱体
2とパイプ4表面のポリエチレンが溶融接着してその一
部がソケットの縁にビードとして流れ出た。
As shown in FIG. 2, two low density polyethylene pipes 4 (outer diameter 32.5 mm, wall thickness 4 mm, length 80 mm) of the same quality as the heating element were inserted from both ends of this socket to generate heat. When an AC voltage of 30 V is applied from the power source 5 to each of the two electrode terminals 3 on both ends of the body 2 for 2 minutes, the heating element 2 and the polyethylene on the surface of the pipe 4 are melt-bonded and a part of them flows out to the edge of the socket as a bead. It was

【0048】かくして接合されたパイプとソケットを縦
に6等分に切断して試験用試料を作り、試料の端を引張
試験機のクランプに止めて50cm/分の速度で引張試
験を行なうと、各試料ともパイプの部分が延伸破壊し、
ソケットの部分は各層とも強靭に結合していた。
The pipe and socket thus joined were vertically cut into 6 equal parts to prepare a test sample, and the end of the sample was clamped to a clamp of a tensile tester to carry out a tensile test at a speed of 50 cm / min. In each sample, the pipe part was stretched and broken,
The socket portion was firmly bonded to each layer.

【0049】[実施例2]図3に示すように、発熱体3
2の両端を基材31より5mmはみ出すように成型し、
このはみ出した部分に銅製のリング電極33を円周に沿
って接合して端子を取り出すようにしたこと以外は、実
施例1と同様にして管状の複合成形体(ソケット)を作
成した。
[Embodiment 2] As shown in FIG.
Mold both ends of 2 so that they protrude 5 mm from the base material 31,
A tubular composite molded body (socket) was produced in the same manner as in Example 1 except that a copper ring electrode 33 was joined to the protruding portion along the circumference to take out the terminal.

【0050】実施例1と同様に、低密度ポリエチレン製
パイプ4をソケットの両端から挿入して、この電極に4
0Vの交流電圧を2分間かけると、発熱体32とパイプ
表面のポリエチレンが溶融接合(融着)され、その一部
がソケットの縁よりビードとして流れ出た。ついで、リ
ング電極をラジオペンチで切りはがした。接合されたパ
イプは、実施例1と同じ方法で接合強度を試したが、い
ずれもパイプ部分が延伸破壊し、ソケットの部分は各層
とも強靭に結合していた。
As in Example 1, the low density polyethylene pipe 4 was inserted from both ends of the socket, and 4 was inserted into this electrode.
When an alternating voltage of 0 V was applied for 2 minutes, the heating element 32 and the polyethylene on the surface of the pipe were melt-bonded (fused), and a part thereof flowed out as a bead from the edge of the socket. Then, the ring electrode was cut off with radio pliers. The jointed pipes were tested for joint strength in the same manner as in Example 1. However, in all cases, the pipe portion was stretched and broken, and the socket portion was strongly bonded to each layer.

【0051】[実施例3]低密度ポリエチレンに代え
て、ポリブテン(三井油化社製ポリブテン−1、P14
04C;メルトインデックス0.4、融点125℃)を
用いたこと以外は、実施例1と同様にして発熱体(体積
固有抵抗55Ω・cm)を作成し、同様に反応射出成型
によりソケットを作成した。
Example 3 Instead of low-density polyethylene, polybutene (polybutene-1, P14 manufactured by Mitsui Yuka Co., Ltd.) was used.
04C; melt index 0.4, melting point 125 ° C.) was used to prepare a heating element (volume specific resistance 55 Ω · cm) in the same manner as in Example 1 and to similarly prepare a socket by reaction injection molding. .

【0052】このソケットの両端より、発熱体と同質の
ポリブテン製パイプ(外径32.5mm、長さ80m
m)2本をそれぞれ挿入し、発熱体の両端の各2つの電
極端子に電源5から30Vの交流電圧を2分間かける
と、発熱体とパイプ表面のポリブテンが溶融接着してそ
の一部がソケットの縁にビードとして流れ出た。接合さ
れたパイプは、実施例1と同じ方法で接合強度を試した
が、いずれもパイプ部分が延伸破壊し、ソケットの部分
は各層とも強靭に結合していた。
From both ends of this socket, a polybutene pipe of the same quality as the heating element (outer diameter 32.5 mm, length 80 m)
m) Insert two of each, and apply an AC voltage of 5 to 30 V to the two electrode terminals at both ends of the heating element for 2 minutes, the heating element and the polybutene on the surface of the pipe are melted and adhered, and part of the socket Spilled as a bead on the edge of. The jointed pipes were tested for joint strength in the same manner as in Example 1. However, in all cases, the pipe portion was stretched and broken, and the socket portion was strongly bonded to each layer.

【0053】[実施例4]実施例1で作成した低密度ポ
リエチレンと導電性カーボンブラックとの混合物のペレ
ットを、厚み1mmのシートを作る金型に入れて180
℃で加圧プレスで圧縮成型し、シート状の発熱体を作成
した。このシートを長さ10cm、幅4cmに切り、こ
れを平面金型(割型の一方)内の平面にはりつけてか
ら、他方の割型を重ね、その空隙に窒素ガスを流して中
の空気を置換した。金型を60℃に加温してから、金型
内の空隙に実施例1で用いた反応原液を注入して、図5
に示すような発熱体シート52とポリノルボルネン系樹
脂からなる基体51が一体に成型された複合成形体を作
成した。
[Example 4] The pellets of the mixture of low-density polyethylene and conductive carbon black prepared in Example 1 were put into a mold for making a sheet having a thickness of 1 mm, and 180
It was compression-molded by a pressure press at ℃ to prepare a sheet-shaped heating element. This sheet is cut into a length of 10 cm and a width of 4 cm, and this is attached to a flat surface in a flat die (one of the split dies), then the other split die is overlapped, and nitrogen gas is flown into the void to remove the air inside. Replaced. After heating the mold to 60 ° C., the reaction stock solution used in Example 1 was injected into the void in the mold,
A composite molded body in which the heating element sheet 52 and the base body 51 made of polynorbornene-based resin as shown in (1) were integrally molded was prepared.

【0054】図6に示すように、発熱体52のはみ出し
ている部分に銅製の電極53を接合し、ついで発熱体と
同質の厚さ5mmの2枚のポリエチレン板54の接合部
の上に置き、軽く荷重を加えて、電極間に20Vの電圧
を40秒加えたところ、発熱体および発熱体に接するポ
リエチレン板の部分が溶融接合した。この融着した板状
の複合成形体をはがしたところ、ポリエチレン板の部分
が破壊した。
As shown in FIG. 6, a copper electrode 53 is joined to the protruding portion of the heating element 52, and then placed on the joining portion of two polyethylene plates 54 of the same quality as the heating element and having a thickness of 5 mm. When a load of light was applied and a voltage of 20 V was applied between the electrodes for 40 seconds, the heating element and the portion of the polyethylene plate in contact with the heating element were melt-bonded. When the fused plate-shaped composite molded body was peeled off, the polyethylene plate portion broke.

【0055】[実施例5]以下のようにして、高純度薬
液移送用ポリエチレンパイプのエルボ継手を作成した。
パイプと同質の無添加の低密度ポリエチレンを原料と
し、ブロー成形法で図7に示すエルボの融着層74(内
径36mm、外径39mm)を作り、この両開口部の淵
の外側に接するように実施例1と同質の発熱体のリング
(内径39mm、厚さ1.0mm、長さ35mm)72
をはめ込み、各々の発熱体の両側に銅製の通電用電極7
3を等間隔に取り付け、リード線を取り出し、各々の正
負極を取り付け端子としたものを中子とした。この外側
に、内径45mmのアルミニウム製のエルボの金型で覆
い、両開口部に蓋を取り付けることによって中子を固定
した。
[Embodiment 5] An elbow joint of a polyethylene pipe for transferring a high-purity chemical liquid was prepared in the following manner.
Using a low-density polyethylene with the same quality as the pipe as the raw material, a fusion molding layer 74 (inner diameter 36 mm, outer diameter 39 mm) of the elbow shown in FIG. 7 is made by blow molding so that it is in contact with the outsides of the both edges A ring of a heating element of the same quality as in Example 1 (inner diameter 39 mm, thickness 1.0 mm, length 35 mm) 72
Insert the copper current-carrying electrodes 7 on both sides of each heating element.
3 were attached at equal intervals, the lead wires were taken out, and each positive and negative electrode was attached to serve as a terminal, which was used as a core. The outside was covered with a die of an aluminum elbow having an inner diameter of 45 mm, and lids were attached to both openings to fix the core.

【0056】実施例1と同様にして、金型と中子との空
隙に反応原液を注入して重合させ、図7に示すようなエ
ルボの複合成形体を作成した。基体71と発熱体72は
一体化していた。また、基体71と融着層74の界面も
一体化していた。ただし、この段階では、発熱体72と
融着層74はまだ一体化していなかった。この両開口部
に低密度ポリエチレン製パイプを挿入して、各々の電極
端子より30Vの電圧で3分間電流を流したところ、エ
ルボ継手とパイプは溶融接着した。このとき、発熱体7
2と融着層74、融着層74とパイプとは、それぞれ相
互に完全に融着した。なお、パイプ挿入の前に、前記エ
ルボに上記と同一条件で通電したところ、発熱体72と
融着層74は完全に融着した。このエルボ継手も同様に
継手として使用可能である。
In the same manner as in Example 1, the reaction stock solution was injected into the space between the mold and the core and polymerized to prepare an elbow composite molding as shown in FIG. The base 71 and the heating element 72 were integrated. Further, the interface between the base 71 and the fusion layer 74 was also integrated. However, at this stage, the heating element 72 and the fusion bonding layer 74 were not yet integrated. Pipes made of low-density polyethylene were inserted into both openings, and a current was applied from each electrode terminal at a voltage of 30 V for 3 minutes, whereby the elbow joint and the pipe were melt-bonded. At this time, the heating element 7
2 and the fusion layer 74, and the fusion layer 74 and the pipe were completely fused to each other. When the elbow was energized under the same conditions as above before the pipe was inserted, the heating element 72 and the fusion layer 74 were completely fused. This elbow joint can also be used as a joint.

【0057】[実施例6]以下のようにして、耐ガソリ
ン製超高分子量ポリエチレン製パイプの継手を作成し
た。昭和電工(株)製超高分子量ポリエチレン(商品名
エースポリエチHD C4502)を外径25mm、厚
み1mm、長さ40mmに押出し、融着層を形成した。
その外側に、上記超高分子量ポリエチレン50%、住友
化学(株)製低密度ポリエチレン(商品名スミカセンF
101)50%の混合物に対し、導電性カーボンブラッ
ク(ケッチェンブラックEC)を25%混合したコンパ
ウンドで、内径25mm、厚み1mm、長さ40mmに
押出したスリーブをかぶせて中子とした。
Example 6 A gasoline resistant pipe made of ultra high molecular weight polyethylene pipe was prepared as follows. Ultrahigh molecular weight polyethylene (trade name Ace Polyeth HD C4502) manufactured by Showa Denko KK was extruded to an outer diameter of 25 mm, a thickness of 1 mm and a length of 40 mm to form a fusion layer.
On the outside, 50% of the above ultra high molecular weight polyethylene, low density polyethylene manufactured by Sumitomo Chemical Co., Ltd. (trade name Sumikasen F
101) A compound obtained by mixing 25% of conductive carbon black (Ketjen Black EC) with a 50% mixture was covered with an extruded sleeve having an inner diameter of 25 mm, a thickness of 1 mm and a length of 40 mm to form a core.

【0058】この中子の外側に、厚さ2mmの反応原液
を注入成形するためのアルミニウム製金型を、電極を取
り付けるためにスリーブの両端が5mmづつはみ出るよ
うにして、装着し、実施例1と同様にして、金型と中子
との空隙に反応原液を注入して重合させ、図8に示すよ
うな管状の複合成形体を作成した。基体81と発熱体8
2とは一体成形されていた。
On the outside of this core, an aluminum mold for injecting and molding a reaction stock solution having a thickness of 2 mm was mounted so that both ends of the sleeve were protruded by 5 mm to mount an electrode, and the first embodiment was used. In the same manner as above, the reaction stock solution was injected into the space between the mold and the core and polymerized to prepare a tubular composite molded body as shown in FIG. Base 81 and heating element 8
2 was integrally molded.

【0059】得られた継手の両開口部から、外径22.
5mm、厚み3mmの上記超高分子量ポリエチレン製パ
イプ86を継手の中央で接するように挿入した。継手の
両端にはみ出した発熱体の部分に、取り外し可能な銅製
のリング電極83をはめて、端子を取り出し、電源85
から30Vの交流電圧で3分間電流を流したところ、融
着層84およびパイプ86表面が融着した。冷却後、継
手部から縦に4つ割りにして実施例1と同様に引張試験
を行なった。その結果、十分な強度を示し、基体、発熱
体、融着層およびパイプは一体化し、ガソリンに接する
部分は全て超高分子量ポリエチレンで構成されていた。
From both openings of the obtained joint, the outer diameter 22.
The ultra-high molecular weight polyethylene pipe 86 having a thickness of 5 mm and a thickness of 3 mm was inserted so as to be in contact with the center of the joint. A removable copper ring electrode 83 is fitted to the heating element portion protruding from both ends of the joint, the terminal is taken out, and the power source 85
When a current was applied for 3 minutes with an alternating voltage of 30 V from 30 to 40 V, the surfaces of the fusion layer 84 and the pipe 86 were fused. After cooling, a tensile test was performed in the same manner as in Example 1 by dividing the joint portion into four vertically. As a result, it showed sufficient strength, the base body, the heating element, the fusion layer and the pipe were integrated, and the portion in contact with gasoline was composed of ultra-high molecular weight polyethylene.

【0060】[実施例7]低密度ポリエチレン(メルト
インデックス2.0、密度0.92)とエチレン−α−
オレフィン共重合体(メルトインデックス1.0、密度
0.87)を重量比で8:2に混合したものに、導電性
カーボンブラック(ケッチェンブラックEC)を30
%、バンバリーミキサーにて混合し、受ロールでシート
化した後、ペレット化した。
Example 7 Low-density polyethylene (melt index 2.0, density 0.92) and ethylene-α-
An olefin copolymer (melt index 1.0, density 0.87) was mixed in a weight ratio of 8: 2, and conductive carbon black (Ketjen Black EC) was added to 30 parts.
%, Mixed with a Banbury mixer, made into a sheet by a receiving roll, and then made into pellets.

【0061】このペレットを押出成型機にて、外径41
mm、内径35mmのパイプ状に押し出し発熱体を作成
した。実施例1と同様の反応射出成形法により、この発
熱体の外周囲に厚さ3mmのポリノルボルネン系樹脂を
一体化し、二層構造のパイプを作成した。得られたパイ
プを長さ50mmに切断し、図9に示すように、その両
端の開口部の内側に銅製で幅5mmの鍔付リング93を
圧入して発熱体に圧着して通電電極とし、この両電極の
一部に端子を取り付け継手とした。
These pellets were extruded with an outer diameter of 41
mm, an inner diameter of 35 mm was extruded into a pipe-shaped exothermic body. By a reaction injection molding method similar to that of Example 1, a polynorbornene-based resin having a thickness of 3 mm was integrated around the outer periphery of the heating element to form a pipe having a two-layer structure. The obtained pipe was cut into a length of 50 mm, and as shown in FIG. 9, a collar ring 93 made of copper and having a width of 5 mm was press-fitted inside the openings at both ends of the pipe to press it to a heating element to form a current-carrying electrode. A terminal was attached to a part of both electrodes to form a joint.

【0062】図10に示すように、この継手の両開口部
より、外径34mm、厚さ5mmの中密度PE製パイプ
94を継手の中央で合せるように挿入して設置した。継
手の端子より、電源95から先ず30Vの交流電圧で約
30秒間電流を流し、更に、15Vに電圧を落とし約2
00秒間電流を流した。継手の内層の発熱体と継手の両
開口部より挿入したポリエチレンパイプが融着接合し
た。
As shown in FIG. 10, pipes 94 made of medium density PE having an outer diameter of 34 mm and a thickness of 5 mm were inserted from both openings of the joint so as to be aligned at the center of the joint. From the terminal of the joint, a current is first supplied from the power source 95 with an alternating voltage of 30V for about 30 seconds, and then the voltage is reduced to 15V for about 2 seconds.
A current was applied for 00 seconds. The heating element in the inner layer of the joint and the polyethylene pipe inserted through both openings of the joint were fusion-bonded.

【0063】[0063]

【発明の効果】本発明によれば、安全性の高い接合部
材、封止部材または補強部材等として好適な複合成形体
を提供することができる。また、本発明の複合成形体
は、製造方法が容易で、しかも接合部材等として用いた
場合に、短時間の通電で融着可能であり、施工作業の効
率が良い。
According to the present invention, it is possible to provide a composite molded body suitable as a highly safe joining member, sealing member, reinforcing member, or the like. Further, the composite molded article of the present invention is easy to manufacture, and when it is used as a joining member or the like, it can be fused by energization for a short time, and the construction work efficiency is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合成形体の具体例を示す断面図であ
り、左図は縦方向の断面図、右図は横方向の断面図であ
る。
FIG. 1 is a cross-sectional view showing a specific example of a composite molded article of the present invention, in which the left figure is a vertical cross-section and the right figure is a horizontal cross-section.

【図2】本発明の複合成形体を熱可塑性樹脂製パイプの
接合部材として用いる場合の断面図である。
FIG. 2 is a cross-sectional view when the composite molded article of the present invention is used as a joining member for a thermoplastic resin pipe.

【図3】本発明の複合成形体の具体例を示す断面図であ
り、左図は縦方向の断面図、右図は横方向の断面図であ
る。
FIG. 3 is a cross-sectional view showing a specific example of the composite molded article of the present invention, in which the left figure is a longitudinal sectional view and the right figure is a lateral sectional view.

【図4】本発明の複合成形体を熱可塑性樹脂製パイプの
接合部材として用いる場合の断面図である。
FIG. 4 is a cross-sectional view when the composite molded article of the present invention is used as a joining member for a thermoplastic resin pipe.

【図5】本発明の複合成形体の具体例を示す断面図であ
り、左図は断面図、右図は正面図である。
FIG. 5 is a cross-sectional view showing a specific example of the composite molded article of the present invention, in which the left figure is a cross-sectional view and the right figure is a front view.

【図6】本発明の複合成形体をポリエチレン板に融着さ
せる図であり、左図は断面図、右図は正面図である。
FIG. 6 is a diagram in which the composite molded article of the present invention is fused to a polyethylene plate, the left diagram is a cross-sectional view, and the right diagram is a front view.

【図7】本発明のエルボ(基体、発熱体および融着層を
有する複合成形体)を示す断面図である。
FIG. 7 is a cross-sectional view showing an elbow (composite molded body having a substrate, a heating element and a fusion layer) of the present invention.

【図8】本発明の管継手(基体、発熱体および融着層を
有する複合成形体)を用いて、超高分子量ポリエチレン
製パイプを接合する例を示す断面図である。
FIG. 8 is a cross-sectional view showing an example of joining pipes made of ultra-high molecular weight polyethylene using the pipe joint of the present invention (composite molded product having a substrate, a heating element and a fusion layer).

【図9】本発明の管継手(基体、発熱体および融着層を
有する複合成形体)を示す断面図であり、左図は断面
図、右図は正面図である。
FIG. 9 is a cross-sectional view showing a pipe joint (composite molded article having a base, a heating element and a fusion layer) of the present invention, the left figure is a cross section and the right figure is a front view.

【図10】本発明の管継手(基体、発熱体および融着層
を有する複合成形体)を用いて、中密度ポリエチレン製
パイプを接合する例を示す断面図である。
FIG. 10 is a cross-sectional view showing an example of joining pipes made of medium-density polyethylene by using the pipe joint of the present invention (composite molded body having a base, a heating element and a fusion layer).

【符合の説明】[Explanation of sign]

1 基体 2 発熱体 3 電極端子 4 低密度ポリエチレン製パイプ 5 電源 31 基体 32 発熱体 33 リング電極 36 電源 51 基体 52 発熱体 53 電極 54 ポリエチレン板 56 電源 71 基体 72 発熱体 73 リング電極 74 融着層 75 電源 81 基体 82 発熱体 83 リング電極 84 融着層(超高分子量ポリエチレン製) 85 電源 86 超高分子量ポリエチレン製パイプ 91 基体 92 発熱体 93 鍔付リング電極 94 中密度リエチレン製パイプ 95 電源 1 Base 2 Heat generating element 3 Electrode terminal 4 Low-density polyethylene pipe 5 Power supply 31 Base 32 Heating element 33 Ring electrode 36 Power supply 51 Base 52 Heat generating element 53 Electrode 54 Polyethylene plate 56 Power supply 71 Base 72 Heat generating element 73 Ring electrode 74 Fusion layer 75 Power Supply 81 Base Material 82 Heating Element 83 Ring Electrode 84 Fusion Layer (Made of Ultra High Molecular Weight Polyethylene) 85 Power Supply 86 Ultra High Molecular Weight Polyethylene Pipe 91 Base Material 92 Heating Element 93 Collared Ring Electrode 94 Medium Density Polyethylene Pipe 95 Power Source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/20 Z 6122−4F // B29K 86:00 B29L 9:00 4F ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B32B 27/20 Z 6122-4F // B29K 86:00 B29L 9:00 4F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子を含有する熱可塑性ポリマー
で構成された発熱体(A)と、該熱可塑性ポリマーの融
点において形状保持性を有する熱硬化性ポリノルボルネ
ン系樹脂で構成された基体(B)とが、一体に成形され
て成ることを特徴とする複合成形体。
1. A heating element (A) composed of a thermoplastic polymer containing conductive particles, and a substrate (a thermosetting polynorbornene-based resin having shape retention at the melting point of the thermoplastic polymer (A). A composite molded body characterized by being integrally molded with B).
【請求項2】 請求項1記載の複合成形体の発熱体
(A)と基体(B)との積層界面とは反対面において、
さらに熱可塑性ポリマーで構成された融着層(C)が発
熱体(A)と一体化または密着して成形されて成る複合
成形体。
2. The surface of the composite molded article according to claim 1 opposite to the laminated interface between the heating element (A) and the substrate (B),
Furthermore, a composite molded body obtained by molding a fusion-bonding layer (C) composed of a thermoplastic polymer integrally with or in close contact with the heating element (A).
【請求項3】 発熱体(A)または発熱体(A)と融着
層(C)との複合体を金型内に配設し、金型内の空隙部
に、ノルボルネン系モノマーとメタセシス触媒を含む反
応原液を供給して硬化させることにより、発熱体(A)
または融着層(C)を有する発熱体(A)と、基体
(B)とを一体に成形することを特徴とする請求項1ま
たは2記載の複合成形体の製造方法。
3. A heating element (A) or a composite of the heating element (A) and a fusion layer (C) is disposed in a mold, and a norbornene-based monomer and a metathesis catalyst are placed in a void in the mold. The heating element (A) is obtained by supplying a reaction stock solution containing
Alternatively, the heating element (A) having the fusion-bonding layer (C) and the base body (B) are integrally molded, and the method for producing a composite molded article according to claim 1 or 2.
【請求項4】 熱可塑性ポリマーで形成された成形体の
所定部分(D)を、請求項1記載の複合成形体の発熱体
(A)または請求項2記載の複合成形体の融着層(C)
で覆い、発熱体(A)に通電して、発熱体(A)または
融着層(C)と、該所定部分(D)を融着させることを
特徴とする請求項1または2記載の複合成形体の使用方
法。
4. The heating element (A) of the composite molded body according to claim 1 or the fusion layer () of the composite molded body according to claim 2 in a predetermined portion (D) of the molded body formed of a thermoplastic polymer. C)
3. The composite according to claim 1 or 2, characterized in that the heating element (A) is energized to fuse the heating element (A) or the fusion layer (C) with the predetermined portion (D). How to use the molded product.
JP4034362A 1991-02-06 1992-01-23 Composite formed body, and manufacture and usage thereof Pending JPH0569514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034362A JPH0569514A (en) 1991-02-06 1992-01-23 Composite formed body, and manufacture and usage thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-35033 1991-02-06
JP3503391 1991-02-06
JP4034362A JPH0569514A (en) 1991-02-06 1992-01-23 Composite formed body, and manufacture and usage thereof

Publications (1)

Publication Number Publication Date
JPH0569514A true JPH0569514A (en) 1993-03-23

Family

ID=26373155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034362A Pending JPH0569514A (en) 1991-02-06 1992-01-23 Composite formed body, and manufacture and usage thereof

Country Status (1)

Country Link
JP (1) JPH0569514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171007A (en) * 1999-12-20 2001-06-26 Solar Giken:Kk Heat-fusion joining method for small-bore pipe of thermoplastic resin
KR100446313B1 (en) * 2001-06-20 2004-08-30 장홍근 Thermoplastic resin-laminated structure, preparing method and use thereof
JP2005098400A (en) * 2003-09-25 2005-04-14 Daikin Ind Ltd Joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171007A (en) * 1999-12-20 2001-06-26 Solar Giken:Kk Heat-fusion joining method for small-bore pipe of thermoplastic resin
KR100446313B1 (en) * 2001-06-20 2004-08-30 장홍근 Thermoplastic resin-laminated structure, preparing method and use thereof
JP2005098400A (en) * 2003-09-25 2005-04-14 Daikin Ind Ltd Joint

Similar Documents

Publication Publication Date Title
EP0498602A2 (en) Composite molding and production process and use thereof
US5286952A (en) Methods and devices which make use of conductive polymers to join articles
EP0347819B1 (en) Reinforced polymeric matrix
JPS60232932A (en) Heat-recoverable article
US20100206468A1 (en) Molded Product and Manufacturing Method Thereof
CN103222084A (en) Process for producing sealing film, and sealing film
AU616402B2 (en) Method of joining articles
JPH0569514A (en) Composite formed body, and manufacture and usage thereof
JPH04294115A (en) Shape-recoverable composite molded item, preparation thereof and method for using it
JPH0655641A (en) Fusion type connecting member
JP3118865B2 (en) Pipe with joint and manufacturing method thereof
JPH07323439A (en) Joined molding, and method for forming joint
JPH10138347A (en) Composite molding and its manufacture
JP2816868B2 (en) Hollow composite and method for producing the same
JPH06339996A (en) Electrode for electrofusion joint member and electrfusion joint member used therewith
JPH0615781A (en) Multilayered composite material and production thereof
JPH08270872A (en) Electric fusion connection member with cold zone
JP3298166B2 (en) Composite molded article and method for producing the same
JPH0623851A (en) Composite molded product
JPH08270871A (en) Electric fusion connection member with non-heating zone
JPH04292936A (en) Composite formed body and manufacture and usage thereof
JP2866397B2 (en) Hollow composite
JPH0315212A (en) Sealer or adhesive for cable and sealing or adhering method for cable
JPH09314596A (en) Manufacture of reaction injection molded article
JPH08270870A (en) Connection method for bodies to be connected by electro-fusion connection member