JPH10138347A - Composite molding and its manufacture - Google Patents

Composite molding and its manufacture

Info

Publication number
JPH10138347A
JPH10138347A JP8310103A JP31010396A JPH10138347A JP H10138347 A JPH10138347 A JP H10138347A JP 8310103 A JP8310103 A JP 8310103A JP 31010396 A JP31010396 A JP 31010396A JP H10138347 A JPH10138347 A JP H10138347A
Authority
JP
Japan
Prior art keywords
layer
layers
electromagnetic induction
base material
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8310103A
Other languages
Japanese (ja)
Inventor
Masayoshi Matsui
政義 松井
Yasushi Tanaka
靖司 田中
Kazuo Touho
和男 東保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP8310103A priority Critical patent/JPH10138347A/en
Publication of JPH10138347A publication Critical patent/JPH10138347A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • B29C66/8362Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/562Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a molding having excellent airtightness and water tightness of a connected surface and a container such as a tank to be manufactured by using the method. SOLUTION: The method for manufacturing a molding 100 having the step of connecting two or more molding constituting members 100a, 100b constituted by a multilayer resin having at least inner layers 12a, 12b and reaction injection molding resin layers 14a, 14b to one another at flange connecting surfaces comprises the steps of interposing a sheet material 15 including a conductive material between connecting surfaces of the layers 12a, 12b and applying a magnetic field to the connecting surfaces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2以上の成形体構
成部材を接合することにより得られる基材層と被覆層と
の二重層構造を有する複合成形体およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite molded article having a double layer structure of a base material layer and a coating layer obtained by joining two or more molded article constituent members, and a method for producing the same.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂からなる容器本体
の外周をポリノルボルネン系樹脂などの反応射出成形層
で被覆したタンクなどの容器が開発されつつあり、耐薬
品性および耐荷重性に優れていることから幅広い分野へ
の応用が期待されている。
2. Description of the Related Art Containers, such as tanks, in which the outer periphery of a container body made of a polyolefin resin is coated with a reaction injection molded layer of a polynorbornene resin, etc., are being developed and have excellent chemical resistance and load resistance. Is expected to be applied to a wide range of fields.

【0003】この種の容器は、予め成形されたポリオレ
フィン系樹脂からなる容器本体を金型内に固定し、金型
に形成されたキャビティにノルボルネン系モノマーなど
の反応樹脂原液を充填して塊状重合させることにより得
られる。
In this type of container, a container body made of a pre-formed polyolefin resin is fixed in a mold, and a cavity formed in the mold is filled with a reaction resin stock solution such as a norbornene-based monomer to form a bulk polymerization. To be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、大容量
の容器にあっては、一体に成形することが困難であるこ
とから、容器本体を2つ割にし、それぞれの外周面にポ
リノルボルネン系樹脂層を形成した後、これらを接合す
ることが試みられている。
However, since it is difficult to integrally mold a large-capacity container, the container body is divided into two parts, and a polynorbornene-based resin layer is formed on each outer peripheral surface. After forming these, it has been attempted to join them.

【0005】この場合、ポリオレフィン系樹脂層とポリ
ノルボルネン系樹脂層とを少なくとも含む多層構造の容
器構成部材を接合する。そして、接合面での気密性また
は水密性を確保するためには、ポリオレフィン系樹脂層
での融着が好ましいとされるが、ポリオレフィン系樹脂
同士を融着することはきわめて困難であった。
[0005] In this case, a container component having a multilayer structure including at least a polyolefin-based resin layer and a polynorbornene-based resin layer is joined. Then, in order to ensure airtightness or watertightness at the joint surface, it is considered that fusion with the polyolefin-based resin layer is preferable, but it has been extremely difficult to fuse the polyolefin-based resins together.

【0006】本発明は、このような実状に鑑みてなさ
れ、接合面の気密性および水密性に優れた複合成形体お
よびその製造方法を提供することを目的とする。
[0006] The present invention has been made in view of such circumstances, and has as its object to provide a composite molded article excellent in air-tightness and water-tightness of a joint surface and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る複合成形体は、基材層と、この基材層
の外周を覆う被覆層とを少なくとも有する2以上の成形
体構成部材が、接合面で互いに接合してある複合成形体
であって、前記基材層から成る接合面間が、これら接合
面間に介在された電磁誘導発熱体による発熱で接合して
ある。
In order to achieve the above object, a composite molded article according to the present invention comprises at least two molded articles each having at least a base layer and a coating layer covering the outer periphery of the base layer. The constituent members are composite molded bodies joined to each other at joint surfaces, and joints formed of the base material layers are joined by heat generated by an electromagnetic induction heating element interposed between the joint surfaces.

【0008】本発明に係る複合成形体の製造方法は、基
材層の外周を覆うように、被覆層を形成して成形体構成
部材を形成し、この成形体構成部材の接合面に位置する
基材層間に電磁誘導発熱体を介在させ、当該電磁誘導発
熱体を非接触式に電磁誘導加熱することにより、接合面
に位置する基材層同士または接着層を介して融着させる
ことを特徴とする。
In the method for producing a composite molded article according to the present invention, a coating layer is formed so as to cover the outer periphery of the base material layer to form a molded article constituting member, which is located on a joint surface of the molded article constituting member. An electromagnetic induction heating element is interposed between base material layers, and the electromagnetic induction heating element is subjected to electromagnetic induction heating in a non-contact manner so that the base material layers located on the bonding surface are fused to each other or via an adhesive layer. And

【0009】前記接合面は、フランジの接合面であるこ
とが好ましい。基材層 前記基材層が、単層、2層および3層のうちのいずれか
であることが好ましい。前記基材層は、無極性モノマー
を主成分とする重合体層を少なくとも含むことが好まし
い。この基材層は、無極性モノマーを主成分とする重合
体で形成された第1重合体層と、極性モノマーを主成分
とする重合体で形成された第2重合体層とを少なくとも
有することがさらに好ましい。また、基材層は、無極性
モノマーを主成分とする重合体で形成された二つの第1
重合体層間に、極性モノマーを主成分とする重合体で形
成された第2重合体層が介在された3層構造のものでも
良い。
Preferably, the joint surface is a flange joint surface. Substrate layer The substrate layer is preferably one of a single layer, two layers and three layers. The base layer preferably includes at least a polymer layer containing a nonpolar monomer as a main component. The base layer has at least a first polymer layer formed of a polymer mainly composed of a nonpolar monomer and a second polymer layer formed of a polymer mainly composed of a polar monomer. Is more preferred. In addition, the base material layer is formed of two first polymers formed of a polymer containing a nonpolar monomer as a main component.
It may have a three-layer structure in which a second polymer layer formed of a polymer containing a polar monomer as a main component is interposed between polymer layers.

【0010】前記第1重合体層は、無極性モノマーを主
成分とする重合体であり、通常、無極性モノマーが50
重量%超過、好ましくは70重量%以上、より好ましく
は90重量%以上の重合体で構成される。
The first polymer layer is a polymer containing a non-polar monomer as a main component.
More than 70% by weight, more preferably more than 90% by weight, more preferably more than 90% by weight of the polymer.

【0011】前記無極性モノマーとしては、たとえばエ
チレン、プロピレン、ブチレンなどのオレフィン類;ス
チレンなどの芳香族ビニル類;などが例示される。
Examples of the non-polar monomer include olefins such as ethylene, propylene and butylene; and aromatic vinyls such as styrene.

【0012】前記第1重合体層を形成する重合体の具体
例としては、ポリエチレン、ポリプロピレン、エチレン
−プロピレン共重合体などのポリオレフィン、ポリスチ
レン、エチレン・酢酸ビニル共重合体(エチレン50重
量%超過)から成る群から選ばれる一つであることが好
ましい。
Specific examples of the polymer forming the first polymer layer include polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymer, polystyrene, and ethylene / vinyl acetate copolymer (ethylene exceeding 50% by weight). Is preferably one selected from the group consisting of

【0013】前記第2重合体層は、極性モノマーを主成
分とする重合体、通常、極性モノマーが50重量%超
過、好ましくは55重量%以上、より好ましくは60重
量%以上の重合体で構成される。
The second polymer layer is composed of a polymer containing a polar monomer as a main component, usually a polymer containing the polar monomer in an amount of more than 50% by weight, preferably 55% by weight or more, more preferably 60% by weight or more. Is done.

【0014】極性モノマーとしては、たとえば塩化ビニ
ル、塩化ビニリデン、フッ化ビニリデン、ビニルアルコ
ール、アクリル酸エステル、メタクリル酸エステルなど
の極性基含有ビニルモノマー;多価カルボン酸、多価ア
ルコール、縮重合系モノマー;などが挙げられる。
Examples of the polar monomer include vinyl monomers having a polar group such as vinyl chloride, vinylidene chloride, vinylidene fluoride, vinyl alcohol, acrylates and methacrylates; polycarboxylic acids, polyalcohols, polycondensation monomers And the like.

【0015】第2重合体層を構成する重合体の具体例と
しては、たとえばポリアミド、ポリビニルアルコール
(PVA)、エチレン・ビニルアルコール共重合体(ビ
ニルアルコール50重量%超過)、ポリエステル、ポリ
塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデ
ンなどのハロゲン化物から成る群から選ばれる一つであ
ることが好ましい。多層フィルムから成る基材層の成形
方法は、特に限定されないが、多層押し出しブロー成形
法、多層インジェクションブロー成形法などが例示され
る。被覆層 本発明では、被覆層は、反応射出成形(RIM)法によ
って得られる反応射出成形樹脂層であることが好まし
い。基材層の補強効果に優れているからである。
Specific examples of the polymer constituting the second polymer layer include, for example, polyamide, polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer (more than 50% by weight of vinyl alcohol), polyester, polyvinyl chloride, It is preferably one selected from the group consisting of halides such as polyvinylidene chloride and polyvinylidene fluoride. The method of forming the base material layer composed of the multilayer film is not particularly limited, and examples thereof include a multilayer extrusion blow molding method and a multilayer injection blow molding method. Coating Layer In the present invention, the coating layer is preferably a reaction injection molded resin layer obtained by a reaction injection molding (RIM) method. This is because the base layer has an excellent reinforcing effect.

【0016】RIMに用いる反応原液としては、特に限
定されないが、ウレタン系、ウレア系、ナイロン系、エ
ポキシ系、不飽和ポリエステル系、フェノール系およ
び、ノルボルネン系などが挙げられ、特にポリノルボル
ネン系樹脂で構成されることが好ましい。該樹脂を構成
するための具体的なノルボルネン系モノマーとしては、
たとえばジシクロペンタジエンやジヒドロジシクロペン
タジエン、テトラシクロドデセン、トリシクロペンタジ
エン等のノルボルネン環を有するシクロオレフィンなど
である。
The stock solution used for the RIM is not particularly limited, but includes urethane-based, urea-based, nylon-based, epoxy-based, unsaturated polyester-based, phenol-based, and norbornene-based resins. Preferably, it is configured. Specific norbornene monomers for constituting the resin include:
For example, cycloolefin having a norbornene ring such as dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, and tricyclopentadiene is used.

【0017】メタセシス触媒は、たとえば六塩化タング
ステン、トリドデシルアンモニウムモリブデート、トリ
(トリデシル)アンモニウムモリブデート等のモリブデ
ン酸有機アンモニウム塩等のノルボルネン系モノマーの
塊状重合用触媒として公知のメタセシス触媒であれば特
に制限はないが、モリブデン酸有機アンモニウム塩が特
に好ましい。
The metathesis catalyst is a known metathesis catalyst as a catalyst for bulk polymerization of norbornene-based monomers such as organic ammonium molybdate such as tungsten hexachloride, tridodecyl ammonium molybdate and tri (tridecyl) ammonium molybdate. Although there is no particular limitation, organic ammonium molybdate is particularly preferred.

【0018】活性剤(共触媒)としては、たとえばエチ
ルアルミニウムジクロリド、ジエチルアルミニウムクロ
リド等のアルキルアルミニウムハライド、これらのアル
コキシアルキルアルミニウムハライド、有機スズ化合物
等が挙げられる。
Examples of the activator (cocatalyst) include alkylaluminum halides such as ethylaluminum dichloride and diethylaluminum chloride, alkoxyalkylaluminum halides thereof, and organotin compounds.

【0019】また、酸化防止剤、充填剤、顔料、着色
剤、発泡剤、難燃剤、摺動付与剤、エラストマー、ジシ
クロペンタジエン系熱重合樹脂およびその水添物など種
々の添加剤を配合することにより、得られるポリマーの
特性を改質することができる。酸化防止剤としては、フ
ェノール系、リン系、アミン系など各種のプラスチック
・ゴム用酸化防止剤がある。充填剤にはミルドガラス、
カーボンブラック、タルク、炭酸カルシウム、水酸化ア
ルミニウム、雲母などの無機質充填剤がある。エラスト
マーとしては、天然ゴム、ポリブタジエン、ポリイソプ
レン、スチレン−ブタジエン共重合体(SBR)、スチ
レン−ブタジエン−スチレンブロック共重合体(SB
S)、スチレン−イソプレン−スチレンブロック共重合
体(SIS)、エチレン−プロピレン−ジエンターポリ
マー(EPDM)、エチレン酢酸ビニル共重合体(EV
A)およびこれらの水素化物などがある。
Further, various additives such as an antioxidant, a filler, a pigment, a coloring agent, a foaming agent, a flame retardant, a sliding agent, an elastomer, a dicyclopentadiene-based thermopolymerized resin and a hydrogenated product thereof are blended. Thereby, the properties of the obtained polymer can be modified. As the antioxidant, there are various antioxidants for plastics / rubbers such as phenol type, phosphorus type and amine type. Filled with milled glass,
There are inorganic fillers such as carbon black, talc, calcium carbonate, aluminum hydroxide and mica. Examples of the elastomer include natural rubber, polybutadiene, polyisoprene, styrene-butadiene copolymer (SBR), and styrene-butadiene-styrene block copolymer (SB).
S), styrene-isoprene-styrene block copolymer (SIS), ethylene-propylene-diene terpolymer (EPDM), ethylene-vinyl acetate copolymer (EV
A) and hydrides thereof.

【0020】エラストマーの配合割合は、ノルボルネン
系モノマー100重量部に対して、1〜20重量部、好
ましくは2〜15重量部である。エラストマーの配合割
合が少ないと、可撓性が低下する。逆に、エラストマー
の配合割合が多すぎると、ガラス転移温度が低下し、か
つ、強度が低下するので好ましくない。
The proportion of the elastomer is 1 to 20 parts by weight, preferably 2 to 15 parts by weight, based on 100 parts by weight of the norbornene monomer. If the proportion of the elastomer is small, the flexibility is reduced. Conversely, if the proportion of the elastomer is too large, the glass transition temperature decreases and the strength decreases, which is not preferable.

【0021】反応射出成形を行うためには、反応射出成
形の前準備として、ノルボルネン系モノマー、メタセシ
ス触媒および活性剤を主材とする反応射出成形用材料を
ノルボルネン系モノマーとメタセシス触媒とよりなる液
と、前記のノルボルネン系モノマーと活性剤とよりなる
液との安定な2液に分けて別の容器に入れておく。な
お、添加剤は、通常、予め反応液のいずれか一方または
双方に混合しておく。
In order to carry out the reaction injection molding, as a preparation for the reaction injection molding, a reaction injection molding material mainly composed of a norbornene monomer, a metathesis catalyst and an activator is mixed with a liquid comprising a norbornene monomer and a metathesis catalyst. And a stable liquid consisting of the above-mentioned norbornene-based monomer and an activator, and put into another container. The additive is usually mixed in advance with one or both of the reaction solutions.

【0022】反応射出成形に際しては、2液を混合し、
次いで、この混合液を、ポリオレフィン系樹脂などから
なる基材層が固定されている金型のキャビティに注入
し、キャビティ内で塊状重合して、基材層の外側に反応
射出成形層が一体的に形成された成形体を得る。この反
応射出成形は、基材層を金型内に予めインサートして行
うので、インサート成形でもある。
At the time of reaction injection molding, two liquids are mixed,
Next, this mixed solution is injected into a cavity of a mold in which a base material layer made of a polyolefin resin or the like is fixed, and bulk polymerization is performed in the cavity, so that a reaction injection molding layer is integrally formed outside the base material layer. To obtain a molded article. Since this reaction injection molding is performed by inserting the base material layer into the mold in advance, it is also insert molding.

【0023】一般的成形条件としては、反応原液温度は
20〜80°C、反応原液の粘性は、たとえば、30°
Cにおいて、5cps〜3000cps好ましくは10
0cps〜1000cps程度である。
As general molding conditions, the temperature of the reaction solution is 20 to 80 ° C., and the viscosity of the reaction solution is, for example, 30 ° C.
In C, 5 cps to 3000 cps, preferably 10 cps
It is about 0 cps to 1000 cps.

【0024】かかる成形においては、補強材を予め金型
内に設置しておき、その中に反応液を供給して重合させ
ることにより強化ポリマー(成形品)を製造することが
できる。
In such molding, a reinforcing material (molded article) can be produced by placing a reinforcing material in a mold in advance and supplying a reaction liquid therein to polymerize.

【0025】補強材としては、例えば、ガラス繊維、ア
ラミド繊維、ビニロン繊維、カーボン繊維、超高分子量
ポリエチレン繊維、金属繊維、ポリプロピレン繊維、ア
ルミコーティングガラス繊維、木綿、アクリル繊維、ボ
ロン繊維、シリコンカーバイド繊維、アルミナ繊維など
を挙げることができる。また、チタン酸カリウムや硫酸
カルシウムなどのウィスカーも挙げることができる。さ
らに、これらの補強材は、長繊維状またはチョップドス
トランド状のものをマット化したもの、布状に織ったも
の、チョップ形状のままのものなど、種々の形状で使用
することができる。これらの補強材は、その表面をシラ
ンカップリング材等のカップリング剤で処理したもの
が、樹脂との密着性を向上させる上で好ましい。配合量
は、特に制限はないが、通常10重量%以上、好ましく
は20〜60重量%である。
Examples of the reinforcing material include glass fiber, aramid fiber, vinylon fiber, carbon fiber, ultra high molecular weight polyethylene fiber, metal fiber, polypropylene fiber, aluminum coated glass fiber, cotton, acrylic fiber, boron fiber, and silicon carbide fiber. , Alumina fibers and the like. Also, whiskers such as potassium titanate and calcium sulfate can be used. Furthermore, these reinforcing materials can be used in various shapes, such as those obtained by matting a long fiber or chopped strand, those woven into a cloth, and those remaining in a chopped shape. It is preferable that the surface of these reinforcing materials is treated with a coupling agent such as a silane coupling material in order to improve the adhesion to the resin. The amount is not particularly limited, but is usually 10% by weight or more, preferably 20 to 60% by weight.

【0026】ノルボルネン系樹脂層を形成する場合の金
型温度は、十分にノルボルネン系樹脂の重合反応が維持
でき、かつ基材層を構成する樹脂(たとえばポリオレフ
ィン系樹脂)が熱変形しない温度範囲である。好ましく
は10°C以上、より好ましくは30°C以上、さらに
好ましくは40°C以上、かつ好ましくは150°C以
下、より好ましくは120°C以下、さらに好ましくは
100°C以下である。低すぎればノルボルネン系単量
体の重合反応が維持できず、高すぎれば、ポリオレフィ
ン系樹脂で構成される基材層が変形しやすいという問題
を有する。基材層が、例えばポリエチレンで構成されて
いる場合は、好ましくは90°C以下、より好ましくは
80°C以下、さらに好ましくは70°C以下にする。
The mold temperature for forming the norbornene-based resin layer is within a temperature range in which the polymerization reaction of the norbornene-based resin can be sufficiently maintained and the resin (for example, polyolefin-based resin) constituting the base material layer is not thermally deformed. is there. It is preferably at least 10 ° C, more preferably at least 30 ° C, still more preferably at least 40 ° C, and preferably at most 150 ° C, more preferably at most 120 ° C, even more preferably at most 100 ° C. If it is too low, the polymerization reaction of the norbornene-based monomer cannot be maintained, and if it is too high, there is a problem that the base material layer composed of the polyolefin-based resin is easily deformed. When the substrate layer is made of, for example, polyethylene, the temperature is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 70 ° C. or lower.

【0027】金型の温度制御は、金型内に熱媒体用の通
路を設け、熱媒体を流通させることなどにより行うこと
ができる。金型圧力は通常0.1〜100Kg/cm2
の範囲である。重合時間は、適宜選択すればよいが、通
常、反応液の注入終了後、30秒〜20分である。
The temperature of the mold can be controlled by providing a passage for the heat medium in the mold and circulating the heat medium. Mold pressure is usually 0.1-100 kg / cm 2
Range. The polymerization time may be appropriately selected, but is usually 30 seconds to 20 minutes after the completion of the injection of the reaction solution.

【0028】反応射出成形は、低粘度の反応液を用い、
比較的低温低圧で成形できるため、必ずしも剛性の高い
高価な金属製金型を用いる必要はなく、樹脂製金型、ま
たは単なる型枠であっても良い。金型内は不活性ガスで
シールし、重合反応に用いる成分類は窒素ガスなどの不
活性ガス雰囲気下で貯蔵し、かつ操作することが好まし
い。
In the reaction injection molding, a low-viscosity reaction solution is used.
Since molding can be performed at a relatively low temperature and low pressure, an expensive metal mold having high rigidity is not necessarily used, and a resin mold or a simple mold may be used. The inside of the mold is preferably sealed with an inert gas, and the components used for the polymerization reaction are preferably stored and operated under an atmosphere of an inert gas such as nitrogen gas.

【0029】基材層は、反応射出成形層を形成するため
のキャビティ内周面に接触させて配置させても良いが、
キャビティ内周面から所定間隔で配置されるように支持
体などを用いて配置することが好ましい。このような支
持体を用いて基材層を金型に固定する場合、その支持体
の形状は目的に応じた形状である限り特に限定されるこ
とはない。すなわち、支持体を取り付けた位置におい
て、基材層の外周面と金型の内周面との間隔が所定の寸
法になるように、基材層を金型に固定できればよい。
The substrate layer may be disposed in contact with the inner peripheral surface of the cavity for forming the reaction injection molded layer.
It is preferable to use a support or the like so as to be arranged at a predetermined interval from the inner peripheral surface of the cavity. When the substrate layer is fixed to a mold using such a support, the shape of the support is not particularly limited as long as the shape is suitable for the purpose. That is, it is only necessary that the base material layer can be fixed to the mold such that the distance between the outer peripheral surface of the base material layer and the inner peripheral surface of the mold becomes a predetermined dimension at the position where the support is attached.

【0030】ただし、支持体と基材層との接触面積が小
さすぎると、反応液を充填する際の浮力、挿入体の自重
などによって生じる面圧が高くなり、接触部分で挿入体
が窪みやすくなる。したがって、浮力の大きさ、支持体
の取り付け位置、支持体の取り付け個数、基材層の材質
および厚さなどに応じて基材層と支持体との接触面積を
考慮することが好ましい。支持体を用いて基材層を金型
に固定する場合、支持体の底面、すなわち支持体が基材
層および金型と接触する面は、それぞれ基材層および金
型の面形状に応じた形状とすることがより好ましい。例
えば、容器形状の基材層を固定する場合には、支持体の
一方の底面を基材層の曲面に応じた凹状曲面とし、他方
の底面を金型内周の曲面に応じた凸状曲面とする。ま
た、このような支持体は、基材層又は金型の何れかに貼
り付けられるが、その貼り付け手段は特に限定されな
い。例えば接着、粘着、融着などを挙げることができ
る。粘着で取り付ける場合には、粘着剤を用いる他、両
面粘着テープを用いてもよい。
However, if the contact area between the support and the base material layer is too small, the buoyancy when filling the reaction solution, the surface pressure generated by the weight of the insert, etc. increase, and the insert tends to be dented at the contact portion. Become. Therefore, it is preferable to consider the contact area between the substrate layer and the support according to the magnitude of the buoyancy, the mounting position of the support, the number of the support mounted, the material and the thickness of the substrate layer, and the like. When fixing the base material layer to the mold using the support, the bottom surface of the support, that is, the surface where the support comes into contact with the base material layer and the mold, according to the surface shape of the base material layer and the mold, respectively. More preferably, it is shaped. For example, when fixing a container-shaped substrate layer, one bottom surface of the support is a concave curved surface corresponding to the curved surface of the substrate layer, and the other bottom surface is a convex curved surface corresponding to the curved surface of the mold inner circumference. And In addition, such a support is attached to either the base material layer or the mold, but the attaching means is not particularly limited. For example, adhesion, adhesion, fusion and the like can be mentioned. In the case of attaching with adhesive, a double-sided adhesive tape may be used instead of using an adhesive.

【0031】基材層および被覆層の厚み 本発明において、基材層の厚みは、特に限定されない
が、厚さが均一なことが好ましい。厚さを均一にすると
複合成形体全体の強度にむらが少なくなるからである。
また、被覆層をポリノルボルネン系樹脂で構成する場合
には、基材層の厚みは、ノルボルネン系モノマーの反応
時の重合熱で熱変形しないために、1mm以上、好まし
くは2mm以上、より好ましくは2.5mm以上とす
る。また、基材層の厚さが厚すぎると成形性が低下する
ことから、7mm以下、好ましくは6mm以下、より好
ましくは5mm以下とする。
Thickness of Base Layer and Coating Layer In the present invention, the thickness of the base layer is not particularly limited, but is preferably uniform. This is because when the thickness is made uniform, the unevenness in the strength of the entire composite molded body is reduced.
When the coating layer is composed of a polynorbornene-based resin, the thickness of the base layer is 1 mm or more, preferably 2 mm or more, more preferably, because it is not thermally deformed by the heat of polymerization during the reaction of the norbornene-based monomer. 2.5 mm or more. Further, if the thickness of the base material layer is too large, the moldability is reduced. Therefore, the thickness is set to 7 mm or less, preferably 6 mm or less, more preferably 5 mm or less.

【0032】本発明において、被覆層の厚さは、特に限
定されないが、薄すぎると成形体が破損しやすいので、
2.5mm以上、好ましくは3.0mm以上、より好ま
しくは3.5mm以上とする。また、被覆層の厚さが厚
すぎると成形性が低下して時間がかかることから、15
mm以下、好ましくは13mm以下、より好ましくは1
2mm以下とする。
In the present invention, the thickness of the coating layer is not particularly limited.
2.5 mm or more, preferably 3.0 mm or more, more preferably 3.5 mm or more. Further, if the thickness of the coating layer is too large, the moldability decreases and it takes time,
mm or less, preferably 13 mm or less, more preferably 1 mm or less.
2 mm or less.

【0033】電磁誘導発熱体 本発明に係る電磁誘導発熱体の材料は、電磁誘導効果に
より発熱する材料であれば何れも適用できる。特に発熱
量が大きい導電性材料を用いると融着時間を短縮できる
ので好ましい。電磁誘導発熱体としては、たとえば金属
線、金属繊維、金属棒、金属板、金属メッシュ、金属粉
末などが用いられる。金属としては、たとえばステンレ
ス、ジルコニウム、鉄、アルミニウム、銅、真鍮などが
好ましく用いられる。
Electromagnetic induction heating element As the material of the electromagnetic induction heating element according to the present invention, any material can be used as long as it generates heat by the electromagnetic induction effect. In particular, it is preferable to use a conductive material having a large calorific value because the fusion time can be reduced. As the electromagnetic induction heating element, for example, a metal wire, a metal fiber, a metal rod, a metal plate, a metal mesh, a metal powder, or the like is used. As the metal, for example, stainless steel, zirconium, iron, aluminum, copper, brass and the like are preferably used.

【0034】電磁誘導発熱体を基材層から成る接合面に
介在させる方法としては、特に限定されないが、基材層
に含有させる方法、接合面である基材層の表面に張り付
ける方法、電磁誘導発熱体を含有させたシート材を接合
面間に介在させる方法などが例示されるが、シート材を
用いる方法が好ましい。
The method of interposing the electromagnetic induction heating element on the bonding surface composed of the base material layer is not particularly limited, but includes a method of including the material in the base material layer, a method of sticking to the surface of the base material layer as the bonding surface, A method in which a sheet material containing an induction heating element is interposed between bonding surfaces is exemplified, but a method using a sheet material is preferable.

【0035】シート材の材質は特に限定されず、基材層
との相溶性に富んだ材料からなることが好ましいが、こ
のシート材を基材層と同じ材料で構成すれば、融着性が
より高くなるので、気密性および水密性により優れた成
形体を得ることができる。
The material of the sheet material is not particularly limited, and it is preferable that the sheet material is made of a material having a high compatibility with the base material layer. Since it becomes higher, a molded article having better airtightness and watertightness can be obtained.

【0036】また、シート材の形状や構造も特に限定さ
れず、接合面全面が融着できる形状や構造であることが
好ましいが、接合面の形状や構造に応じて、シート材を
接合面に点在させることもできる。
The shape and structure of the sheet material are not particularly limited, and it is preferable that the shape and structure be such that the entire bonding surface can be fused. However, depending on the shape and structure of the bonding surface, the sheet material is formed on the bonding surface. It can be scattered.

【0037】電磁誘導加熱 電磁誘導加熱は、電磁誘導発熱体に対して非接触式に磁
界を印加することにより、電磁誘導発熱体に渦電流を流
し、これを発熱させるものであり、通常、コイルに高周
波を印加することにより、電磁誘導発熱体に高周波の磁
界を印加する。高周波の周波数は、好ましくは0.5k
Hz〜数十MHz、さらに好ましくは400kHz〜5
MHz、特に好ましくは800kHz〜2MHzであ
る。磁界発生用のコイルに供給する電力は、好ましくは
0.5〜50kW、さらに好ましくは5〜30kW、特
に好ましくは10〜20kWである。磁界を発生させる
コイルと電磁誘導発熱体との距離は近いほど好ましく
(発熱量が大きくなる)、被覆層の外部から磁界を印加
するので、被覆層にコイルを接触させることが好まし
い。コイルを用いた電磁誘導加熱の好ましい条件は、コ
イルの外径、電磁誘導発熱体の材質、コイルから電磁誘
導発熱体までの距離、コイルに供給される電力などの条
件により変化する。コイルの外径が大きくなるほど一度
に融着できる面積は広くなるが、同じ電力では磁束密度
が小さくなることから、消費電力が大きくなる傾向にあ
る。また、コイルから電磁誘導発熱体までの距離が短く
なるほど、少ない消費電力で融着が可能となる。さら
に、電磁誘導効果の大きな材質の電磁誘導発熱体を用い
れば、少ない消費電力で電磁誘導加熱が可能になる。
Electromagnetic induction heating Electromagnetic induction heating is a method of applying a magnetic field to an electromagnetic induction heating element in a non-contact manner to cause an eddy current to flow through the electromagnetic induction heating element to generate heat. To apply a high-frequency magnetic field to the electromagnetic induction heating element. The high frequency is preferably 0.5k
Hz to several tens of MHz, more preferably 400 kHz to 5
MHz, particularly preferably 800 kHz to 2 MHz. The electric power supplied to the magnetic field generating coil is preferably 0.5 to 50 kW, more preferably 5 to 30 kW, and particularly preferably 10 to 20 kW. It is preferable that the distance between the coil that generates the magnetic field and the electromagnetic induction heating element is short (the amount of heat generation is large). Since a magnetic field is applied from outside the coating layer, it is preferable that the coil be in contact with the coating layer. Preferred conditions for electromagnetic induction heating using a coil vary depending on conditions such as the outer diameter of the coil, the material of the electromagnetic induction heating element, the distance from the coil to the electromagnetic induction heating element, and the power supplied to the coil. As the outer diameter of the coil increases, the area that can be fused at one time increases, but the power consumption tends to increase because the magnetic flux density decreases with the same power. Further, the shorter the distance from the coil to the electromagnetic induction heating element, the smaller the power consumption, the more fusing is possible. Furthermore, if an electromagnetic induction heating element made of a material having a large electromagnetic induction effect is used, electromagnetic induction heating can be performed with low power consumption.

【0038】本発明では、電磁誘導加熱の際またはその
直後に、接合面相互を加圧することが好ましい。加圧
は、圧着用ローラなどで行うことができる。また、電磁
誘導加熱と併用して、被覆層および基材層を加熱する加
熱手段を用いても良い。加熱手段としては、面状発熱
体、ヒーターなどの発熱体などを例示することができ
る。ただし、この加熱は、被覆層の外側から行うため、
被覆層にダメージを与えない温度で行う必要がある。
In the present invention, it is preferable to pressurize the joint surfaces at the time of or immediately after the electromagnetic induction heating. Pressing can be performed with a pressure roller or the like. A heating means for heating the coating layer and the substrate layer may be used in combination with the electromagnetic induction heating. Examples of the heating unit include a planar heating element and a heating element such as a heater. However, since this heating is performed from the outside of the coating layer,
It is necessary to perform at a temperature that does not damage the coating layer.

【0039】[0039]

【作用】本発明に係る複合成形体およびその製造方法で
は、2以上の成形体構成部材を、基材層に形成された接
合面で互いに接合するに際し、接合面間に電磁誘導発熱
体を介在させ、この接合面に外部から磁界を印加して誘
導加熱する。このため、電磁誘導効果によって電磁誘導
発熱体に電流が流れて発熱し、これにより基材層から成
る接合面が溶融するので、当該接合面の融着が容易に達
成できる。なお、従来では、特に大型成形体の場合に、
接合面相互を加熱することは困難であったことから、接
合面の融着は困難であった。
According to the composite molded article and the method of manufacturing the same according to the present invention, an electromagnetic induction heating element is interposed between the joint faces when two or more molded article members are joined to each other at the joint faces formed on the base material layer. Then, a magnetic field is externally applied to the joint surface to perform induction heating. For this reason, an electric current flows through the electromagnetic induction heating element due to the electromagnetic induction effect to generate heat, thereby melting the bonding surface formed of the base material layer, so that fusion of the bonding surface can be easily achieved. Conventionally, especially in the case of a large molded body,
Since it was difficult to heat the bonding surfaces to each other, it was difficult to fuse the bonding surfaces.

【0040】特に、基材層を第1重合体層と第2重合体
層とで構成した場合には、第1重合体層が、主として耐
水性に優れ、第2重合体層が、主としてガスバリア性、
耐アルコール性、耐油性、耐有機溶剤性に優れているこ
とから、複合成形体を容器として用いる場合に好適であ
る。すなわち、容器の内容物として、たとえばクロロホ
ルム、アルコール、キシレン、MEK、ガソリン、灯油
などの有機溶剤を良好に貯蔵することができる。このよ
うな多層フィルムから成る基材層自体は、剛性および強
度が低く、大型容器または地下埋設容器などとしては使
えないが、本発明では、最外周に、耐衝撃性および機械
的強度に優れたポリノルボルネン系樹脂などの反応射出
成形樹脂から成る被覆層が形成してあるので、大型容器
または地下埋設容器などとしても用いることができる。
In particular, when the substrate layer is composed of the first polymer layer and the second polymer layer, the first polymer layer mainly has excellent water resistance, and the second polymer layer mainly has the gas barrier. sex,
Since it is excellent in alcohol resistance, oil resistance, and organic solvent resistance, it is suitable when a composite molded article is used as a container. That is, as a content of the container, for example, an organic solvent such as chloroform, alcohol, xylene, MEK, gasoline, and kerosene can be favorably stored. The substrate layer itself composed of such a multilayer film has low rigidity and strength, and cannot be used as a large container or a container buried underground, but in the present invention, the outermost periphery has excellent impact resistance and mechanical strength. Since a coating layer made of a reaction injection molding resin such as a polynorbornene-based resin is formed, it can be used as a large container or an underground container.

【0041】本発明においては、基材層が、第1重合体
層/第2重合体層/第1重合体層の3層構造になってい
る時に、ポリノルボルネン系樹脂との融着性に優れ、耐
有機溶剤性に優れ、且つ耐水性(有機溶剤の含有される
水に対する耐水性)に優れるので好適である。
In the present invention, when the base material layer has a three-layer structure of a first polymer layer / a second polymer layer / a first polymer layer, the base layer has an adhesive property with a polynorbornene resin. It is preferable because it is excellent in excellent organic solvent resistance and water resistance (water resistance to water containing an organic solvent).

【0042】本発明の成形体の製造方法において、接合
面に外部から磁界を印加するだけで接合面の融着が達成
できるが、接合面に磁界を印加する際に当該接合面を圧
着すれば、溶融中に接合面をより強固に融着できるの
で、気密性および水密性がより高まることになる。圧着
の具体的手段は特に限定されず、接合面全周に一定の圧
力を付加することが好ましいが、成形体あるいは接合面
の形状や構造に応じて、所定の間隔をもって接合面を圧
着することもできる。
In the method of manufacturing a molded article of the present invention, fusion of the bonding surface can be achieved only by applying a magnetic field to the bonding surface from the outside. However, when the magnetic field is applied to the bonding surface, the bonding surface can be crimped. Since the bonding surface can be more firmly fused during the melting, the airtightness and the watertightness are further improved. The specific means for crimping is not particularly limited, and it is preferable to apply a constant pressure to the entire periphery of the joint surface, but it is preferable to crimp the joint surface at predetermined intervals according to the shape or structure of the molded body or the joint surface. Can also.

【0043】本発明の複合成形体の製造方法は、各種の
成形体に適用できるが、本発明を容器の製造方法に適用
すれば、極めて破壊しにくい高耐久性、高耐衝撃性、高
耐薬品性の容器を得ることができる。このような容器内
に貯蔵できる液体としては、純水、水道水、汚水、灯
油、ガソリンなど、基材層を構成するポリオレフィン系
樹脂などを溶解しないものであれば特に限定されない。
また、浄化槽、水槽、池槽、埋設貯蔵槽などの土中埋設
用容器、タンクなどの地上設置用容器などのように、外
力が加わって変形するおそれがある用途や、内部に封入
された物質の漏洩や内部への浸透を防止する必要のある
各種用途に好適に用いられる。具体的な用途例として
は、灯油用埋設貯蔵槽として用い、埋設場所の地表を駐
車場などとして利用することなどができる。本発明の製
造方法により得られる容器は、材料自体が耐荷重性に優
れていることから、リブなどの補強部の数を削減するこ
とができるので成形性も向上する。
The method for producing a composite molded article of the present invention can be applied to various molded articles. However, if the present invention is applied to a method for producing a container, it is extremely durable, has high durability, high impact resistance, and high resistance to damage. A chemical container can be obtained. The liquid that can be stored in such a container is not particularly limited as long as it does not dissolve the polyolefin-based resin constituting the base material layer, such as pure water, tap water, sewage, kerosene, and gasoline.
In addition, applications that may be deformed by the application of external force, such as septic tanks, water tanks, pond tanks, underground containers such as buried storage tanks, and containers installed on the ground such as tanks, or substances enclosed inside It is suitably used for various applications that need to prevent leakage and penetration into the inside. As a specific application example, it can be used as a kerosene buried storage tank, and the surface of the buried place can be used as a parking lot or the like. Since the container itself obtained by the manufacturing method of the present invention is excellent in load-bearing properties, the number of reinforcing portions such as ribs can be reduced, so that moldability is also improved.

【0044】[0044]

【発明の実施の形態】以下、本発明に係る成形体(容
器)およびその製造方法を、図面に示す実施形態に基づ
き、詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a molded article (container) according to the present invention and a method for producing the same will be described in detail based on an embodiment shown in the drawings.

【0045】第1実施形態 図1(A)〜(D)は本発明に係る複合成形体の製造方
法の実施形態を説明するための断面図、図2は本発明の
複合成形体の製造方法の実施形態を説明するための図で
あって、図2(A)は金型全体を示す断面図、図2
(B)は反応樹脂のミキサーを示す要部断面図、図3
(A)および(B)は本発明に係る電磁誘導発熱体を含
むシート材の他の実施形態を示す要部断面図である。
First Embodiment FIGS. 1A to 1D are cross-sectional views for explaining an embodiment of a method for producing a composite molded article according to the present invention, and FIG. 2 is a method for producing a composite molded article according to the present invention. FIG. 2A is a cross-sectional view showing the entire mold, and FIG.
(B) is a sectional view of a main part showing a mixer for the reaction resin, and FIG.
(A) And (B) is principal part sectional drawing which shows other embodiment of the sheet material containing the electromagnetic induction heating element which concerns on this invention.

【0046】図1に示すように、本実施形態は、本発明
に係る複合成形体として2つ割の球状容器を構成した例
である。この容器100は、図1(D)に示すように、
半球状容器構成部材100a,100bを接合面16
a,16bで接合することにより構成されたもので、例
えば一方の容器構成部材100aに口部18が形成され
て、ここに図示しないソケット等が取り付けられる。
As shown in FIG. 1, the present embodiment is an example in which a two-piece spherical container is formed as a composite molded article according to the present invention. This container 100 is, as shown in FIG.
The hemispherical container components 100a, 100b are
a, 16b. For example, a port 18 is formed in one container component 100a, and a socket (not shown) or the like is attached here.

【0047】図1(B)に示すように、半球状容器構成
部材100a,100bは、それぞれ半球状の基材層1
2a,12bと、その外周を覆う被覆層14a,14b
とを有する。基材層12a,12bは、被覆層14a,
14bを構成するポリノルボルネン系樹脂との融着性が
良好な、例えばポリエチレン、ポリプロピレンなどのポ
リオレフィン系樹脂から構成され、真空成形法などによ
って、厚さが均一に成形されている。本実施形態のよう
に、基材層12a,12bの厚さを均一とすることで、
容器100全体の強度にむらが少なくなり、内部からの
圧力に対しても強く、また最小の表面積で容量が大きく
なるという利点がある。なお、基材層12a,12bの
成形方法は真空成形法にのみ限定されず、他の公知の成
形方法を適用することができる。
As shown in FIG. 1 (B), each of the hemispherical container constituent members 100a and 100b
2a, 12b and coating layers 14a, 14b covering the outer periphery thereof
And The base layers 12a, 12b are formed by coating layers 14a,
14b is made of, for example, a polyolefin-based resin such as polyethylene or polypropylene having a good fusion property with the polynorbornene-based resin constituting the resin 14b, and is formed to have a uniform thickness by a vacuum forming method or the like. By making the thicknesses of the base material layers 12a and 12b uniform as in the present embodiment,
There is an advantage that the strength of the entire container 100 is less uneven, that the container 100 is resistant to internal pressure, and that the capacity is increased with a minimum surface area. The forming method of the base layers 12a and 12b is not limited to the vacuum forming method, and other known forming methods can be applied.

【0048】それぞれの基材層12a,12bには、接
合面16a,16bが形成されており、ここに後述する
電磁誘導発熱体が含有されたテープ15が介装されて互
いに融着されるようになっている。
Bonding surfaces 16a, 16b are formed on the respective base layers 12a, 12b, and a tape 15 containing an electromagnetic induction heating element described later is interposed therebetween so that they are fused to each other. It has become.

【0049】一方、それぞれの基材層12a,12bの
外周面には被覆層14a,14bが形成され、この被覆
層14a,14bは、ノルボルネン系モノマーの反応射
出成形体で構成されている。被覆層14a,14bを、
反応射出成形法により得られるポリノルボルネン系樹脂
で構成することで、成形時の材料の粘性が著しく低いと
いう材料的特徴を利用して、基材層12a,12bを良
好に被覆成形し、一体成形し易いという利点を有する。
On the other hand, coating layers 14a and 14b are formed on the outer peripheral surfaces of the respective base layers 12a and 12b, and the coating layers 14a and 14b are made of a reaction injection molded article of a norbornene-based monomer. The coating layers 14a, 14b
By using a polynorbornene-based resin obtained by the reaction injection molding method, the base material layers 12a and 12b can be coated and molded satisfactorily by utilizing the material characteristic that the viscosity of the material at the time of molding is extremely low. It has the advantage of being easy to do.

【0050】本実施形態では、以下の工程により基材層
12a,12bの外周面に被覆層14a,14bが形成
される。
In this embodiment, the coating layers 14a and 14b are formed on the outer peripheral surfaces of the base layers 12a and 12b by the following steps.

【0051】まず、真空成形法により、図1(A)に示
すような基材層12a,12bをそれぞれ成形し、図示
はしないが口部18に金属ソケットなどを挿入して固定
する。このような基材層12a,12bを図2(A)に
示すように金型30,32にセットする。なお、図2
(A)は、基材層12bの外周面に被覆層14bを形成
する工程を示している。
First, the base layers 12a and 12b as shown in FIG. 1A are formed by a vacuum forming method, and a metal socket or the like is inserted into the opening 18 and fixed thereto (not shown). Such base material layers 12a and 12b are set in dies 30 and 32 as shown in FIG. Note that FIG.
(A) shows a step of forming a coating layer 14b on the outer peripheral surface of the base material layer 12b.

【0052】ここで、基材層12bと金型32の内周面
との間に、被覆層となるべきキャビティCを形成するた
めに、本実施形態では、金型32の内周面に円柱状の支
持体20を貼り付ける。支持体20は、被覆層と成るべ
き反応射出成形体との融着性に富んだポリエチレンで構
成される。
In this embodiment, in order to form a cavity C to be a coating layer between the base layer 12b and the inner peripheral surface of the mold 32, in the present embodiment, a circle is formed on the inner peripheral surface of the mold 32. The columnar support 20 is attached. The support 20 is made of polyethylene which is highly fusible with a reaction injection molded article to be formed into a coating layer.

【0053】これらの支持体20は、図2(A)に示す
ように、支持体20を取り付けた位置において、基材層
12bの外周面と金型32の内周面との間隔(すなわ
ち、キャビティCの隙間)が所定の寸法になるように、
基材層12bを金型32に固定するもので、支持体20
と基材層12bとの接触面積が小さすぎると、反応液を
充填する際の浮力、基材層12bの自重などによって生
じる面圧が高くなり、接触部分で基材層12bが窪みや
すくなるので、浮力の大きさ、支持体20の取り付け位
置、支持体20の取り付け個数、基材層12bの材質お
よび厚さなどに応じて、基材層12bと支持体20との
接触面積が考慮されている。
As shown in FIG. 2A, the distance between the outer peripheral surface of the base material layer 12b and the inner peripheral surface of the mold 32 (ie, at the position where the support 20 is attached) So that the gap between the cavities C) has a predetermined size.
The base material layer 12b is fixed to the mold 32, and the support 20
If the contact area between the substrate layer 12b and the substrate layer 12b is too small, the buoyancy when filling the reaction solution, the surface pressure generated by the weight of the substrate layer 12b, and the like increase, and the substrate layer 12b is easily depressed at the contact portion. The contact area between the base material layer 12b and the support 20 is taken into consideration according to the magnitude of the buoyancy, the mounting position of the support 20, the number of the support 20 mounted, the material and thickness of the base material layer 12b, and the like. I have.

【0054】また、支持体20の底面、すなわち支持体
20が基材層12bおよび金型32と接触する面は、そ
れぞれ基材層12bおよび金型32の面形状に応じた形
状とされている。すなわち、本実施形態では、支持体2
0の一方の底面を基材層12bの外周の球面に応じた凹
状球面とし、他方の底面を金型32内周の球面に応じた
凸状球面としている。このような支持体20を金型32
に貼り付ける手段は特に限定されないが、例えば接着、
粘着、融着などを挙げることができる。粘着で取り付け
る場合には、粘着剤を用いる他、両面粘着テープを用い
てもよい。なお、支持体20の高さはキャビティCの厚
さであり、目的とする容器構成部材100bの被覆層1
4bの厚さとなるが、所定の形状に形成された支持体2
0を金型32に強固に貼り付けることで、反応液の流入
によっても当該支持体20は基材層12bを強固に金型
30,32に固定するので、目標とする被覆層14bの
厚さを有する容器構成部材100bを得ることができ
る。なお、本実施形態では、支持体20を金型32に貼
り付けたが、基材層12b側に貼り付けることも可能で
ある。
The bottom surface of the support 20, that is, the surface where the support 20 comes into contact with the base layer 12b and the mold 32 has a shape corresponding to the surface shape of the base layer 12b and the mold 32, respectively. . That is, in the present embodiment, the support 2
0 has a concave spherical surface corresponding to the outer spherical surface of the base material layer 12b, and the other bottom surface has a convex spherical surface corresponding to the inner spherical surface of the mold 32. Such a support 20 is placed in a mold 32.
The means for attaching to is not particularly limited, for example, adhesion,
Adhesion, fusion and the like can be mentioned. In the case of attaching with adhesive, a double-sided adhesive tape may be used instead of using an adhesive. Note that the height of the support 20 is the thickness of the cavity C, and the coating layer 1 of the intended container constituent member 100b.
4b, the support 2 formed in a predetermined shape.
Since the support 20 firmly fixes the base material layer 12b to the molds 30 and 32 even by inflow of the reaction liquid, by firmly attaching the substrate layer 0 to the mold 32, the thickness of the target coating layer 14b is reduced. Can be obtained. In the present embodiment, the support 20 is attached to the mold 32, but may be attached to the base layer 12b.

【0055】このような支持体20を介して、図2
(A)に示すように基材層12bを金型30,32にセ
ットしたのち、ポリノルボルネン系樹脂からなる被覆層
14bを以下の成形装置を用いて反応射出成形法により
形成する。
FIG. 2 shows a state in which the support 20 is used.
As shown in (A), after setting the base material layer 12b in the molds 30 and 32, the coating layer 14b made of polynorbornene-based resin is formed by a reaction injection molding method using the following molding apparatus.

【0056】図2(A)および(B)に示すように、本
実施形態における成形装置は、上型30と下型32とを
有し、これらが相対的に接近離反可能に設けられてい
る。上型30および下型32のそれぞれには、容器構成
部材100bの外周面、すなわち被覆層14bの外周面
の形状に応じた成形面が形成されており、支持体20を
介して基材層12bを金型30,32内にセットする
と、図2(A)に示すように、支持体20の高さ分だけ
の隙間、すなわちキャビティCが形成されることにな
る。金型30,32の一方(図2(A)においては下型
32)には、反応液をキャビティCに注入するための注
入口34が形成されており、この注入口34にミキサー
40が設けられている。
As shown in FIGS. 2A and 2B, the molding apparatus according to the present embodiment has an upper mold 30 and a lower mold 32, which are provided so as to be relatively close to and separated from each other. . Each of the upper mold 30 and the lower mold 32 has a molding surface corresponding to the shape of the outer peripheral surface of the container constituent member 100b, that is, the outer peripheral surface of the coating layer 14b. Is set in the molds 30 and 32, a gap corresponding to the height of the support 20, that is, a cavity C is formed as shown in FIG. An injection port 34 for injecting the reaction liquid into the cavity C is formed in one of the molds 30 and 32 (the lower mold 32 in FIG. 2A), and a mixer 40 is provided in the injection port 34. Have been.

【0057】ミキサー40は、反応液Aと反応液Bとを
混合して吐出するもので、中央に進退ロッド42を有し
ている。そして、図2(A)に示す注入前の状態では、
進退ロッド42が前進することにより、反応液Aおよび
反応液Bはそれぞれ循環閉回路を循環し、混合されるこ
とはないが、図2(B)に示す注入時には、進退ロッド
42が後退することにより、反応液Aと反応液Bとがミ
キサー40内で混合し、注入口34を介してキャビティ
Cに充填される。
The mixer 40 mixes and discharges the reaction liquid A and the reaction liquid B, and has a moving rod 42 at the center. Then, in the state before the injection shown in FIG.
As the advancing / retreating rod 42 advances, the reaction liquid A and the reaction liquid B circulate in the respective circulation closed circuits and are not mixed. However, at the time of injection shown in FIG. Thereby, the reaction liquid A and the reaction liquid B are mixed in the mixer 40, and are filled into the cavity C via the injection port 34.

【0058】本実施形態では、被覆層14a,14bを
ポリノルボルネン系樹脂から構成するために、反応液A
としてノルボルネン系モノマーとメタセシス触媒とより
なる液を用い、反応液Bとして前記のノルボルネン系モ
ノマーと活性剤とよりなる液を用いる。
In this embodiment, since the coating layers 14a and 14b are made of polynorbornene resin, the reaction solution A
As the reaction liquid B, a liquid composed of the norbornene monomer and the activator is used.

【0059】これにより、図1(B)に示す容器構成部
材100a,100bがそれぞれ得られるが、次にこれ
らの容器構成部材100a,100bをその接合面16
a,16bで接合し、容器100を構成する。
As a result, the container members 100a and 100b shown in FIG. 1B are obtained, respectively. Next, these container members 100a and 100b are
a and 16b are joined to form the container 100.

【0060】このとき、本実施形態では、図1(C)に
示すように、電磁誘導発熱体としてのステンレス繊維が
練り込まれたポリオレフィン系樹脂製テープ15を接合
面16a,16bの一方の全周に貼り付ける。このテー
プ15は、基材層12a,12bを構成するポリオレフ
ィン系樹脂と同じ材質であることが好ましく、同材質の
中でも同じグレードであることがより好ましい。例え
ば、本実施形態では基材層をポリエチレンから構成して
いるので、テープ15もこのポリエチレンと同グレード
のポリエチレンから構成されている。
At this time, in this embodiment, as shown in FIG. 1C, a tape 15 made of a polyolefin-based resin into which stainless steel fibers are kneaded as an electromagnetic induction heating element is entirely bonded to one of the joining surfaces 16a and 16b. Paste around. The tape 15 is preferably made of the same material as the polyolefin-based resin constituting the base layers 12a and 12b, and more preferably the same grade among the same materials. For example, in the present embodiment, since the base layer is made of polyethylene, the tape 15 is also made of polyethylene of the same grade as this polyethylene.

【0061】なお、ステンレス繊維以外の電磁誘導発熱
体をテープ15中に混入することもできる。また、この
テープ15は粘着材などを用いて接合面16a,16b
の一方に貼り付けても良いが、図3(A)又は(B)に
示すように基材層12a,12bを成形する際に埋設し
ておくこともできる。あるいは、基材層12a,12b
を成形する際に接合面16a,16bの一方にテープ分
の凹部を形成しておき、容器構成部材100a,100
bを接合する際に、この凹部にテープ15を嵌め込んで
も良い。また、テープ15は粘着材を用いて接合面16
a,16bの一方に貼り付ける以外にも、加熱によって
部分的に融着させることもできる。また、接着性が落ち
る可能性もあるが、ポリオレフィン系樹脂製テープ15
を接合面16a,16bの両方の全周に貼り付けても良
い。
Incidentally, an electromagnetic induction heating element other than stainless steel fiber can be mixed into the tape 15. The tape 15 is bonded to the bonding surfaces 16a, 16b using an adhesive or the like.
However, as shown in FIG. 3 (A) or (B), it may be embedded when forming the base material layers 12a and 12b. Alternatively, the base material layers 12a, 12b
When forming the container, a concave portion corresponding to the tape is formed in one of the joining surfaces 16a and 16b, and the container constituting members 100a and 100b are formed.
When joining b, the tape 15 may be fitted into this recess. Further, the tape 15 is bonded to the bonding surface 16 using an adhesive.
In addition to attaching to one of a and 16b, partial fusion may be performed by heating. Further, although there is a possibility that the adhesiveness may decrease, the tape 15 made of polyolefin resin may be used.
May be attached to the entire periphery of both of the joining surfaces 16a and 16b.

【0062】図1(C)に示すように、一方の容器構成
部材100bの接合面16bにステンレス繊維入りポリ
エチレン製テープ15を貼り付けた後、2つの容器構成
部材100a,100bの接合面16a,16bを互い
に合わせ、この状態で、図1(D)に示すように、接合
面16a,16bの全周に、フランジ部の外部から磁界
発生用コイル19を近づけ、当該接合面16a,16b
に磁界を印加する。
As shown in FIG. 1 (C), after a polyethylene-made tape 15 containing stainless steel fiber is adhered to the joining surface 16b of one container constituting member 100b, the joining surfaces 16a, 100b of the two container constituting members 100a, 100b are joined. 1B, the magnetic field generating coil 19 is brought close to the entire periphery of the joining surfaces 16a, 16b from outside the flange portion, and as shown in FIG. 1D, the joining surfaces 16a, 16b
A magnetic field is applied to.

【0063】この磁界の作用により、接合面間に設けら
れたテープ15のステンレス繊維に電磁誘導効果による
電流が流れ、自己抵抗によって発熱することになる。そ
の結果、テープ15および接合面16a,16bが溶融
し始め、両接合面16a,16bが融着されることにな
る。
Due to the action of the magnetic field, a current due to the electromagnetic induction effect flows through the stainless fibers of the tape 15 provided between the joining surfaces, and heat is generated by self-resistance. As a result, the tape 15 and the joining surfaces 16a, 16b begin to melt, and the joining surfaces 16a, 16b are fused.

【0064】このように本実施形態の複合成形体の製造
方法によれば、電磁誘導により融着を行うようにしたの
で、従来より融着が困難であるとされているポリオレフ
ィン系樹脂同士の接合面であっても容易に、しかも気密
性および水密性に優れた融着を行うことができ、特に大
型の成形体構成部材を接合する場合に適用して好ましい
ものとなる。
As described above, according to the method of manufacturing a composite molded article of the present embodiment, the fusion is performed by electromagnetic induction, so that the bonding between polyolefin resins, which is conventionally considered to be difficult, is performed. Even in the case of a surface, fusion can be performed easily and with excellent air-tightness and water-tightness, and this is particularly preferable when applied to joining a large-sized molded component.

【0065】第2実施形態 本実施形態では、本発明に係る複合成形体の製造方法を
用いて、図4に示すような円筒形状の埋め込み型灯油タ
ンク200を製造する。この灯油タンク200は、タン
ク構成部材200a,200bをフランジ202a,2
02bで接合することにより構成されたもので、例えば
一方のタンク構成部材200aにノズル座201が形成
してあり、ここに図示しないノズル等が取り付けられ
る。なお、各タンク構成部材200a,200bには、
補強用リブ204a,204b,205a,205bが
一体に成形してある。
Second Embodiment In this embodiment, a cylindrical embedded kerosene tank 200 as shown in FIG. 4 is manufactured by using the method for manufacturing a composite molded body according to the present invention. In this kerosene tank 200, the tank constituent members 200a, 200b are connected to the flanges 202a, 2b.
For example, a nozzle seat 201 is formed on one of the tank constituent members 200a, and a nozzle (not shown) or the like is attached thereto. In addition, each tank constituent member 200a, 200b has
Reinforcing ribs 204a, 204b, 205a, 205b are integrally formed.

【0066】タンク構成部材200a,200bは、図
5(A)に示すように、それぞれ基材層212a,21
2bと、その外周を覆う被覆層214a,214bとを
有する。基材層212a,212bは、本実施形態で
は、図6(A)に示すように、第1重合体層208a,
208bと、第1重合体層208a,208bの外側に
直接または他の層(たとえば接着層)を介して積層さ
れ、第1重合体層208a,208bと相溶しない第2
重合体層209a,209bとを少なくとも有する多層
フィルムで構成してある。
As shown in FIG. 5A, the tank constituent members 200a and 200b are made of base material layers 212a and 21b, respectively.
2b and covering layers 214a and 214b covering the outer periphery thereof. In the present embodiment, as shown in FIG. 6A, the base material layers 212a and 212b are first polymer layers 208a and 212b.
The second polymer layer 208b is laminated directly or via another layer (for example, an adhesive layer) on the outside of the first polymer layers 208a and 208b and is not compatible with the first polymer layers 208a and 208b.
It is composed of a multilayer film having at least polymer layers 209a and 209b.

【0067】第1重合体層208a,208bとして
は、ポリオレフィン、ポリスチレン、エチレン・酢酸ビ
ニル共重合体(エチレン含有量50重量%超過)から成
る群から選ばれる一つであることが好ましい。第1重合
体層208a,208bは、主として耐水性に優れてい
る。第2重合体層209a,209bとしては、ポリア
ミド、ポリビニルアルコール(PVA)、エチレン・ビ
ニルアルコール共重合体(ビニルアルコール含有量50
重量%超過:EVOH)、ポリエステル、ポリ塩化ビニ
ル、ポリ塩化ビニリデン、ポリフッ化ビニリデンなどの
ハロゲン化物などから成る群から選ばれる一つであるこ
とが好ましい。第2重合体層209a,209bは、主
としてガスバリア性および耐油性に優れている。特にE
VOHは、湿度依存性が小さく、かなり良好なガスバリ
ア性を有するので、第2重合体層209a,209bと
して用いて好適である。
The first polymer layers 208a and 208b are preferably one selected from the group consisting of polyolefin, polystyrene, and ethylene / vinyl acetate copolymer (ethylene content exceeding 50% by weight). The first polymer layers 208a and 208b are mainly excellent in water resistance. As the second polymer layers 209a and 209b, polyamide, polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer (vinyl alcohol content 50
Exceeding by weight: EVOH), polyester, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and other halides. The second polymer layers 209a and 209b mainly have excellent gas barrier properties and oil resistance. Especially E
VOH is suitable for use as the second polymer layers 209a and 209b because it has a small humidity dependency and a fairly good gas barrier property.

【0068】第1重合体層208a,208bおよび第
2重合体層209a,209bの厚さは、特に限定され
ないが、それぞれ、25μm〜3mm 、10〜500μ
m程度が好ましい。
The thicknesses of the first polymer layers 208a and 208b and the second polymer layers 209a and 209b are not particularly limited, but are 25 μm to 3 mm and 10 to 500 μm, respectively.
m is preferable.

【0069】第1重合体層208a,208bと第2重
合体層209a,209bとの接着性に難点がある場合
には、熱融着性のある樹脂を少なくとも一方の層にブレ
ンドする方法や、各層間に接着樹脂を介在させれば良
い。前者の例としては、たとえばLDPE(底密度ポリ
エチレン)とEVOHとのブレンドを用いる多層押し出
しブロー成形がある。この場合、LDPEとEVOHと
の間には、ブレンド層が形成される。ブレンド層には、
LDPEとEVOHとの接着性を良好にするためのアイ
オノマーが添加されることが好ましい。後者の例として
は、接着剤として、無水マレイン酸変性ポリオレフィン
を用いる方法がある。ポリオレフィンと無水マレイン酸
変性ポリオレフィンは相溶性があり、接着性は良好であ
る。また、EVOHと無水マレイン酸変性ポリオレフィ
ンとの間では、EVOHの水酸基とグラフトされている
無水マレイン酸とが化学的に結合するものと考えられて
おり、接着性は良好である。
When there is a problem in the adhesiveness between the first polymer layers 208a, 208b and the second polymer layers 209a, 209b, a method of blending a resin having a heat-fusing property into at least one of the layers, An adhesive resin may be interposed between the layers. An example of the former is multilayer extrusion blow molding using, for example, a blend of LDPE (bottom density polyethylene) and EVOH. In this case, a blend layer is formed between LDPE and EVOH. In the blend layer,
It is preferable to add an ionomer for improving the adhesion between LDPE and EVOH. As an example of the latter, there is a method using a maleic anhydride-modified polyolefin as an adhesive. The polyolefin and the maleic anhydride-modified polyolefin are compatible and have good adhesion. In addition, between EVOH and the maleic anhydride-modified polyolefin, it is considered that the hydroxyl group of EVOH and the grafted maleic anhydride are chemically bonded, and the adhesion is good.

【0070】このような多層フィルムから成る基材層2
12a,212bは、多層押し出しブロー成形法あるい
は多層インジェクションブロー成形法により成形され
る。本実施形態では、被覆層214a,214bの一般
面の厚さは、特に限定されないが、薄すぎるとタンク2
00が破損しやすいので、2.5mm以上、好ましくは
3.0mm以上、より好ましくは3.5mm以上とす
る。また、被覆層214a,214bの厚さが厚すぎる
と成形性が低下して時間がかかることから、15mm以
下、好ましくは13mm以下、より好ましくは12mm
以下とする。一方、図4に示すリブ204a,204
b,205a,205baの高さは、好ましくは厚さの
100〜1200%であり、リブの幅は、好ましくは厚
さの50〜250%である。
The base layer 2 composed of such a multilayer film
12a and 212b are formed by a multilayer extrusion blow molding method or a multilayer injection blow molding method. In the present embodiment, the thickness of the general surfaces of the coating layers 214a and 214b is not particularly limited.
Since 00 is easily broken, the thickness is set to 2.5 mm or more, preferably 3.0 mm or more, and more preferably 3.5 mm or more. Further, if the thickness of the coating layers 214a and 214b is too large, the moldability decreases and it takes time, so the thickness is 15 mm or less, preferably 13 mm or less, more preferably 12 mm.
The following is assumed. On the other hand, ribs 204a, 204 shown in FIG.
The height of b, 205a, 205ba is preferably 100-1200% of the thickness, and the width of the rib is preferably 50-250% of the thickness.

【0071】本実施形態では、被覆層214a,214
bを、エラストマーで改質されたノルボルネン系モノマ
ーの開環重合体で構成してある。被覆層214a,21
4bを、反応射出成形法により得られるポリノルボルネ
ン系樹脂で構成することで、成形時の材料の粘性が著し
く低いという材料的特徴を利用して、基材層212a,
212bを良好に被覆成形し、一体成形し易いという利
点を有する。
In this embodiment, the coating layers 214a, 214
b is composed of a ring-opened polymer of a norbornene-based monomer modified with an elastomer. Covering layers 214a, 21
4b is made of a polynorbornene-based resin obtained by a reaction injection molding method, so that the base material layers 212a, 212a,
212b has an advantage that it is easily covered and molded, and it is easy to integrally mold.

【0072】次にこのタンク200の製造方法について
説明する。ただし、前記第1実施形態と同様な部分の記
載は一部省略する。本実施形態では、まず、多層フィル
ムで構成された基材層212a,212bを、ブロー成
形法などにより成形する。次に、基材層212a,21
2bを、前記第1実施形態と同様にして、金型内に配置
し、反応射出成形を行い、基材層212a,212bの
外側に、被覆層214a,214bを成形する。ただ
し、本実施形態において、基材層212a,212bの
外周面に位置する第2重合体層209a,209b(図
6(A)参照)とポリノルボルネン系樹脂から成る被覆
層214a,214bとの接着性に難点がある場合に
は、多層フィルムの第2重合体層209a,209bの
外周面に、接着剤層を塗布しておけば良い。
Next, a method of manufacturing the tank 200 will be described. However, description of the same parts as in the first embodiment is partially omitted. In the present embodiment, first, the base layers 212a and 212b formed of a multilayer film are formed by a blow molding method or the like. Next, the base material layers 212a, 21
2b is placed in a mold in the same manner as in the first embodiment, and reaction injection molding is performed to form coating layers 214a and 214b outside the base layers 212a and 212b. However, in the present embodiment, the adhesion between the second polymer layers 209a and 209b (see FIG. 6A) located on the outer peripheral surfaces of the base material layers 212a and 212b and the coating layers 214a and 214b made of polynorbornene-based resin. If there is a difficulty in the properties, an adhesive layer may be applied to the outer peripheral surfaces of the second polymer layers 209a and 209b of the multilayer film.

【0073】この場合の接着剤層としては、特に限定さ
れないが、接着性ポリオレフィン樹脂などが用いられ
る。接着性ポリオレフィン樹脂としては、具体的には、
たとえば日本石油化学(株)製の日石Nポリマーなどが
例示される。
The adhesive layer in this case is not particularly limited, but an adhesive polyolefin resin or the like is used. As the adhesive polyolefin resin, specifically,
For example, Nisseki N polymer manufactured by Nippon Petrochemical Co., Ltd. is exemplified.

【0074】このようにして、各タンク構成部材200
a,200bを成形した後、各構成部材のフランジ20
2a,202bを合わせ、それらの間に、図6(A)に
示すように、テープ15を介在させる。テープ15は、
フランジ202a,202b間を融着させるためのもの
で、電磁誘導発熱体としてのステンレス繊維が練り込ま
れたポリオレフィン系樹脂製テープで構成してある。
In this way, each tank component 200
a, 200b, the flange 20 of each component
2a and 202b are put together, and a tape 15 is interposed between them as shown in FIG. Tape 15
It is for fusing between the flanges 202a and 202b, and is made of a polyolefin resin tape into which stainless steel fibers are kneaded as an electromagnetic induction heating element.

【0075】2つの構成部材200a,200bのフラ
ンジ202a,202bの接合面を互いに合わせ、この
状態で、図6(A)に示すように、フランジ202a,
202bの全周に、フランジ部の外部(両側でもよい)
から磁界発生用コイル19を近づけ、当該接合面に磁界
を印加する。
The joining surfaces of the flanges 202a and 202b of the two constituent members 200a and 200b are aligned with each other, and in this state, as shown in FIG.
Outside of the flange (around both sides) around the entire circumference of 202b
, The magnetic field generating coil 19 is brought closer, and a magnetic field is applied to the joint surface.

【0076】この磁界の作用により、接合面間に設けら
れたテープ15のステンレス繊維に電磁誘導効果による
電流が流れ、自己抵抗によって発熱することになる。そ
の結果、テープ15および接合面を構成する第1重合体
層208a,208bが溶融し始め、両フランジの接合
面が良好に融着されることになる。なお、本実施形態で
は、図5(B)に示すように、フランジ202a,20
2bには、ボルト206およびナット207をさらに用
いて両フランジ202a,202bの接合を補助しても
良い。さらにまた、本実施形態では、図7に示すよう
に、一方のフランジ202aの先端部に、凸片220を
設け、フランジ202a,202b間の接合面を、外部
から隠すように構成しても良い。このように構成するこ
とで、外部から圧力などが作用した場合でも、その圧力
が接合面に直接作用することがなくなり、接合面の強度
がさらに向上する。
Due to the action of this magnetic field, a current due to the electromagnetic induction effect flows through the stainless fibers of the tape 15 provided between the joining surfaces, and heat is generated by self-resistance. As a result, the tape 15 and the first polymer layers 208a and 208b forming the joining surface start to melt, and the joining surface of both flanges is fused well. Note that, in the present embodiment, as shown in FIG.
2b, a bolt 206 and a nut 207 may be further used to assist in joining the two flanges 202a and 202b. Furthermore, in the present embodiment, as shown in FIG. 7, a convex piece 220 may be provided at the tip of one of the flanges 202a so that the joint surface between the flanges 202a and 202b is hidden from the outside. . With this configuration, even when a pressure or the like acts from the outside, the pressure does not directly act on the joining surface, and the strength of the joining surface is further improved.

【0077】第3実施形態 本実施形態では、図6(B)に示すように、前記第2実
施形態と同様に、基材層212a,212bを多層フィ
ルムで構成してある。図6(A)に示す実施形態と異な
る点は、第2重合体層209aと被覆層214a,21
4bとの間に、第3重合体層210a,210bを積層
してある点である。第3重合体層210a,210b
は、第1重合体層208a,208bと同様に、ポリオ
レフィン、ポリスチレン、エチレン・酢酸ビニル共重合
体(エチレン含有量50重量%超過)から成る群から選
ばれる一つであることが好ましいが、特にポリオレフィ
ンで構成されることが好ましい。第3重合体層210
a,210bの外側には、ポリノルボルネン系樹脂で構
成される被覆層が形成されることから、第3重合体層2
10a,210bをポリオレフィンで構成することで、
接着層を用いることなく、被覆層との融着を図ることが
できる。なお、第3重合体層210a,210bの厚さ
は、第1重合体層208a,208bの厚さと同程度で
良い。
Third Embodiment In the present embodiment, as shown in FIG. 6B, similarly to the second embodiment, the base layers 212a and 212b are formed of a multilayer film. The difference from the embodiment shown in FIG. 6A is that the second polymer layer 209a and the coating layers 214a, 21
4b, the third polymer layers 210a and 210b are laminated. Third polymer layers 210a, 210b
Is preferably one selected from the group consisting of polyolefin, polystyrene, and ethylene / vinyl acetate copolymer (ethylene content exceeding 50% by weight), like the first polymer layers 208a and 208b. It is preferred to be composed of polyolefin. Third polymer layer 210
Since a coating layer made of a polynorbornene-based resin is formed outside of the first and second polymer layers 2a and 210b,
By composing 10a, 210b with polyolefin,
The fusion with the coating layer can be achieved without using an adhesive layer. Note that the thickness of the third polymer layers 210a and 210b may be approximately the same as the thickness of the first polymer layers 208a and 208b.

【0078】第4実施形態 図8は、たとえば図5に示すタンク構成部材200a,
200bのフランジ202a,202b相互を、電磁誘
導加熱を行うために用いられる電磁誘導加熱装置の一例
を示す図である。
Fourth Embodiment FIG. 8 shows, for example, a tank component 200a shown in FIG.
It is a figure which shows an example of the electromagnetic induction heating apparatus used in order to perform electromagnetic induction heating between the flanges 202a and 202b of 200b.

【0079】図8に示すように、本実施形態の電磁誘導
加熱装置は、移動枠体230を有する。この移動枠体2
30には、電磁誘導のための磁界を発生するコイル19
が装着してあり、コイル19は、一方のフランジ202
bの被覆層214bに接触しながら移動可能になってい
る。コイル19は、被覆層214a側にも配置しても良
い。
As shown in FIG. 8, the electromagnetic induction heating device of the present embodiment has a moving frame 230. This moving frame 2
30 includes a coil 19 for generating a magnetic field for electromagnetic induction.
Is mounted, and the coil 19 is connected to one of the flanges 202.
b can be moved while being in contact with the coating layer 214b. The coil 19 may be arranged also on the side of the coating layer 214a.

【0080】このコイル19の両側に位置するように、
しかもフランジ202a,202bを挟み込むように、
送りローラ232および圧着用ローラ234が、移動枠
体230に保持してある。これらローラ232,234
は、それぞれスプリングなどにより、フランジ202
a,202bの被覆層214a,214bに押し付けら
れるように構成してあることが好ましい。特に、圧着用
ローラ234の押し付け力は、送りローラ232の押し
付け力よりも大きいことが好ましい。
In order to be located on both sides of the coil 19,
Moreover, so as to sandwich the flanges 202a and 202b,
The feed roller 232 and the pressure roller 234 are held by the movable frame 230. These rollers 232 and 234
Are respectively connected to the flange 202 by a spring or the like.
a, 202b is preferably pressed against the coating layers 214a, 214b. In particular, the pressing force of the pressure roller 234 is preferably greater than the pressing force of the feed roller 232.

【0081】移動枠体230は、ローラ232,234
およびコイル19と共に、フランジの長手方向に沿って
図8中矢印X方向に所定速度で移動する。このため、移
動枠体230を移動させながら、コイル19により高周
波磁界を発生させることで、電磁誘導発熱体を含むシー
ト材15を順次発熱させて溶融させることができる。ま
た、圧着用ローラ234によりフランジ部分の基材層2
12a,212b相互を密着させることができ、これら
は良好に融着する。
The moving frame 230 includes rollers 232 and 234
8 along with the coil 19 at a predetermined speed in the direction of arrow X in FIG. Therefore, by generating a high-frequency magnetic field by the coil 19 while moving the moving frame 230, the sheet materials 15 including the electromagnetic induction heating elements can be sequentially heated and melted. Further, the base material layer 2 of the flange portion is
12a and 212b can be brought into close contact with each other, and they fuse well.

【0082】なお、本発明は、上述した実施形態に限定
されず、本発明の範囲内で種々に改変することができ
る。
The present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the present invention.

【0083】[0083]

【実施例】以下、本発明をさらに具体化した実施例に基
づき、比較例と比較して説明するが、本発明は、これら
の実施例に限定されない。なお、以下の実施例はおよび
比較例において、部や%は、断わりのない限り重量基準
である。
EXAMPLES Hereinafter, the present invention will be described based on examples that further embody the present invention, in comparison with comparative examples. However, the present invention is not limited to these examples. In the following Examples and Comparative Examples, parts and percentages are by weight unless otherwise specified.

【0084】実施例1 本実施例では、まず最初に図1(A)に示す半球状の基
材層12a,12bを、真空成形により成形した。この
基材層12a,12bは、ポリエチレン樹脂(マテック
0368R、出光石油化学社製)で構成した。基材層1
2a,12bの内半径は、600mmであり、肉厚は平均
1.2mmであり、接合面16a,16bが形成されるフ
ランジの肉厚は2mmであり、接合面16a,16bの径
方向幅は、100mmであった。
Example 1 In this example, first, the hemispherical base material layers 12a and 12b shown in FIG. 1A were formed by vacuum forming. The base layers 12a and 12b were made of polyethylene resin (Matec 0368R, manufactured by Idemitsu Petrochemical Co., Ltd.). Base material layer 1
The inner radius of 2a, 12b is 600 mm, the thickness is 1.2 mm on average, the thickness of the flange on which the joint surfaces 16a, 16b are formed is 2 mm, and the radial width of the joint surfaces 16a, 16b is Was 100 mm.

【0085】これらの基材層12a,12bを、それぞ
れ図2に示すように、金型30,32内に配置し、基材
層12a,12bの外周面に、厚さ4mmのポリノルボル
ネン系樹脂から成る被覆層14aを反応射出成形により
形成した。
As shown in FIG. 2, the base layers 12a and 12b are placed in dies 30 and 32, respectively, and a 4 mm-thick polynorbornene-based resin is placed on the outer peripheral surfaces of the base layers 12a and 12b. Was formed by reaction injection molding.

【0086】反応射出成形に際しては、ジシクロペンタ
ジエン(DCPD)90%と、非対称型シクロペンタジ
エン3量体10%とから成るノルボルネン系モノマーを
2つの容器に入れ、一方にはモノマーに対しジエチルア
ルミニウムクロリド(DEAC)を40モル濃度、1,
3−ジクロロ−2−プロパノール(dcPrOH)48
モル濃度に成るように添加した(A液)。他方には、モ
ノマーに対し、トリ(トリデシル)アンモニウムモリブ
デートを10ミリモル濃度となるように添加した(B
液)。これらA液およびB液は、それぞれAタンクおよ
びBタンクに貯留した。
At the time of reaction injection molding, a norbornene-based monomer composed of 90% of dicyclopentadiene (DCPD) and 10% of an asymmetric cyclopentadiene trimer is placed in two containers, one of which is diethylaluminum chloride with respect to the monomer. (DEAC) at 40 molar concentration, 1,
3-dichloro-2-propanol (dcPrOH) 48
It was added so as to have a molar concentration (solution A). On the other hand, tri (tridecyl) ammonium molybdate was added to the monomer at a concentration of 10 mmol (B
liquid). These A liquid and B liquid were stored in A tank and B tank, respectively.

【0087】金型の内部に装着された温調配管に温水を
流すことで、金型の温度を30°Cに設定し、金型のキ
ャビティ内に、同容量のA液とB液とを混合して注入
し、約5分程度経過した後、金型内から基材層12a,
12bが一体化された被覆層14a,14bを有する容
器構成部材100a,100bを取り出した。
The temperature of the mold is set at 30 ° C. by flowing hot water through the temperature control pipe mounted inside the mold, and the same volumes of the solution A and the solution B are placed in the mold cavity. After about 5 minutes have passed after mixing and pouring, the base material layer 12a,
The container constituent members 100a and 100b having the coating layers 14a and 14b in which 12b was integrated were taken out.

【0088】次に、図1(C)に示すように、ステンレ
ス繊維が練り込まれたポリエチレン製テープ15を接合
面16a,16bの一方の全周に貼り付けた。テープ1
5としては、幅20mm、厚さ1mmで、全体重量を100
重量%とした場合に20重量%のステンレス繊維(繊維
径50μm )が含有してあるものを用いた。
Next, as shown in FIG. 1 (C), a polyethylene tape 15 into which stainless steel fibers were kneaded was attached to one entire circumference of the joining surfaces 16a and 16b. Tape 1
5 is 20 mm wide and 1 mm thick, and the total weight is 100
A fiber containing 20% by weight of stainless steel fibers (fiber diameter 50 μm) in terms of% by weight was used.

【0089】次に、2つの容器構成部材100a,10
0bの接合面16a,16bを互いに合わせ、この状態
で、図1(D)に示すように、接合面16a,16bの
全周に、フランジ部の外部から磁界発生用コイル19を
近づけ、当該接合面16a,16bに磁界を印加した。
コイル19に供給した電力は、10kWであり、1MH
zの高周波電圧を印加した。また、コイル19の外径
は、50mmであった。コイル19からシート材15まで
の距離は5mmであった。一回の電磁誘導加熱により融着
できる範囲は、コイル19の外径×テープ15の幅なの
で、コイル19を接合面の長手方向に沿って移動し、接
合面の全周を電磁誘導加熱により融着した。
Next, the two container constituent members 100a, 10a
1b, the magnetic field generating coil 19 is brought close to the entire periphery of the joining surfaces 16a and 16b from outside the flange portion, as shown in FIG. 1 (D). A magnetic field was applied to the surfaces 16a and 16b.
The power supplied to the coil 19 is 10 kW and 1 MH
A high frequency voltage of z was applied. The outer diameter of the coil 19 was 50 mm. The distance from the coil 19 to the sheet material 15 was 5 mm. Since the range that can be fused by one electromagnetic induction heating is the outer diameter of the coil 19 times the width of the tape 15, the coil 19 is moved along the longitudinal direction of the joining surface, and the entire periphery of the joining surface is fused by electromagnetic induction heating. I wore it.

【0090】このようにして得られた容器100の内部
に圧力6.9×104Paの水を封入し、接合面16
a,16bからの漏れを観察したところ、漏れは観察さ
れなかった。
Water having a pressure of 6.9 × 10 4 Pa was sealed in the inside of the container 100 thus obtained.
When leakage from a and 16b was observed, no leakage was observed.

【0091】実施例2 本実施例では、図1(A)に示す基材層12a,12b
を、第1重合体層と第2重合体層とから成る多層フィル
ムで構成した。第1重合体層として、ポリエチレン樹脂
(マチック0368R)を用い、第2重合体層として、
EVOHであるエバール(株式会社クラレの登録商標)
EF XL(エチレン32mol %品)を用いた。第1重
合体層と第2重合体層との接着を図るために、接着性ポ
リオレフィン樹脂である日石NポリマーR1200(M
FR(JIS−K−6760)2.0g/10min)
を用いた。
Embodiment 2 In this embodiment, the base material layers 12a and 12b shown in FIG.
Was composed of a multilayer film composed of a first polymer layer and a second polymer layer. As the first polymer layer, a polyethylene resin (Matic 0368R) was used, and as the second polymer layer,
EVAL, EVOH (registered trademark of Kuraray Co., Ltd.)
EF XL (ethylene 32 mol% product) was used. In order to achieve adhesion between the first polymer layer and the second polymer layer, Nisseki N-polymer R1200 (M
FR (JIS-K-6760) 2.0 g / 10 min)
Was used.

【0092】第1重合体層の厚さは、70μm であり、
第2重合体層の厚さは、30μm であった。容器本体の
形状に成形するために、多層押し出しブロー成形を用い
た。このようにして成形した基材層12a,12bを用
いて、前記実施例1と同様にして、容器100を成形
し、同様な試験を行った。接合面からの漏れを観察した
ところ、漏れは観察されなかった。
The thickness of the first polymer layer is 70 μm,
The thickness of the second polymer layer was 30 μm. Multilayer extrusion blow molding was used for molding into the shape of the container body. Using the base layers 12a and 12b thus formed, a container 100 was formed in the same manner as in Example 1 and a similar test was performed. When leakage from the joint surface was observed, no leakage was observed.

【0093】[0093]

【発明の効果】以上説明してきたように、本発明に係る
複合成形体の製造方法では、2以上の成形体構成部材
を、基材層に形成された接合面で互いに接合するに際
し、接合面間に電磁誘導発熱体を介在させ、この接合面
に外部から磁界を印加する。このため、電磁誘導効果に
よって電磁誘導発熱体に電流が流れて発熱し、これによ
りシート材および接合面が溶融するので、当該接合面の
融着が容易に達成できる。したがって、複合成形体を複
数の成形体構成部材から構成しても、気密性および水密
性に富んだ複合成形体を得ることができる。
As described above, in the method for manufacturing a composite molded body according to the present invention, when two or more molded body constituent members are joined to each other at the joint surface formed on the base material layer, An electromagnetic induction heating element is interposed therebetween, and a magnetic field is externally applied to this joint surface. For this reason, a current flows through the electromagnetic induction heating element due to the electromagnetic induction effect to generate heat, thereby melting the sheet material and the bonding surface, so that the bonding of the bonding surface can be easily achieved. Therefore, even when the composite molded body is composed of a plurality of molded body constituent members, a composite molded body with high airtightness and watertightness can be obtained.

【0094】特に、基材層が第1重合体層と2重合体層
とで構成されている場合には、基材層を構成する第1重
合体層が、主として耐水性に優れ、第2重合体層が、主
としてガスバリア性、耐油性、耐有機溶剤性に優れてい
ることから、本発明に係る複合成形体を容器として好適
に用いることができる。すなわち、容器の内容物とし
て、アルコール、クロロホルム、キシレン、MEK、ガ
ソリン、灯油などの有機溶剤を良好に貯蔵することがで
きる。このような多層フィルムから成る基材層自体は、
剛性および強度が低く、大型容器または地下埋設容器な
どとしては使えないが、本発明では、最外周に、耐衝撃
性および機械的強度に優れたポリノルボルネン系樹脂な
どの反応射出成形樹脂から成る被覆層が形成してあるの
で、大型容器または地下埋設容器などとしても用いるこ
とができる。
In particular, when the base material layer is composed of the first polymer layer and the second polymer layer, the first polymer layer constituting the base material layer mainly has excellent water resistance, Since the polymer layer mainly has excellent gas barrier properties, oil resistance, and organic solvent resistance, the composite molded article according to the present invention can be suitably used as a container. That is, organic solvents such as alcohol, chloroform, xylene, MEK, gasoline, and kerosene can be well stored as the contents of the container. The substrate layer itself composed of such a multilayer film is
Although it has low rigidity and strength and cannot be used as a large container or underground container, in the present invention, a coating made of a reaction injection molding resin such as a polynorbornene resin having excellent impact resistance and mechanical strength is provided on the outermost periphery. Since the layer is formed, it can be used as a large container or an underground container.

【0095】本発明の複合成形体の製造方法において、
接合面に外部から磁界を印加するだけで接合面の融着が
達成できるが、接合面に磁界を印加する際に当該接合面
を圧着すれば、溶融中に接合面をより強固に融着できる
ので、気密性および水密性がより高まることになる。
In the method for producing a composite molded article of the present invention,
Fusion of the bonding surface can be achieved only by applying a magnetic field to the bonding surface from the outside, but if the bonding surface is crimped when applying a magnetic field to the bonding surface, the bonding surface can be more firmly fused during melting. Therefore, the airtightness and the watertightness are further improved.

【0096】本発明に係る複合成形体の製造方法は、各
種の成形体に適用できるが、本発明を容器の製造方法に
適用すれば、極めて破壊しにくい高耐久性、高耐衝撃
性、高耐薬品性の容器を得ることができる。このような
容器内に貯蔵できる液体としては、純水、水道水、汚
水、灯油、ガソリンなど、基材層を構成するポリオレフ
ィン系樹脂などを溶解しないものであれば特に限定され
ない。また、浄化槽、水槽、池槽、埋設貯蔵槽などの土
中埋設用容器、タンクなどの地上設置用容器などのよう
に、外力が加わって変形するおそれがある用途や、内部
に封入された物質の漏洩や内部への浸透を防止する必要
のある各種用途に好適に用いられる。具体的な用途例と
しては、灯油用埋設貯蔵槽として用い、埋設場所の地表
を駐車場などとして利用することなどができる。特に、
接合面が気密性および水密性に富んでいるので、一体的
に成形し難い大型の成形体に適用して好ましい。また、
材料自体が耐荷重性に優れていることから、リブなどの
補強部の数を削減することができるので成形性も向上す
る。
The method for producing a composite molded article according to the present invention can be applied to various molded articles. However, if the present invention is applied to a method for producing a container, it is extremely resistant to breakage and has high durability, high impact resistance and high impact resistance. A chemically resistant container can be obtained. The liquid that can be stored in such a container is not particularly limited as long as it does not dissolve the polyolefin resin constituting the base material layer, such as pure water, tap water, sewage, kerosene, and gasoline. In addition, applications that may be deformed by the application of external force, such as septic tanks, water tanks, pond tanks, underground containers such as buried storage tanks, and containers installed on the ground such as tanks, or substances enclosed inside It is suitably used for various applications that need to prevent leakage and penetration into the inside. As a specific application example, it can be used as a kerosene buried storage tank, and the surface of the buried place can be used as a parking lot or the like. Especially,
Since the joint surface is rich in airtightness and watertightness, it is preferable to apply to a large-sized molded body that is difficult to integrally mold. Also,
Since the material itself is excellent in load resistance, the number of reinforcing portions such as ribs can be reduced, so that moldability is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は(A)〜(D)は本発明の複合成形体の
製造方法の実施形態を説明するための断面図である。
FIGS. 1A to 1D are cross-sectional views illustrating an embodiment of a method for producing a composite molded article according to the present invention.

【図2】図2は本発明の複合成形体の製造方法の実施形
態を説明するための図であって、(A)は金型全体を示
す断面図、(B)は反応樹脂のミキサーを示す要部断面
図である。
FIG. 2 is a view for explaining an embodiment of the method for producing a composite molded article according to the present invention, in which (A) is a cross-sectional view showing the entire mold, and (B) is a mixer of the reaction resin. It is an important section sectional view shown.

【図3】図3(A)および(B)は本発明に係る電磁誘
導発熱体を含むシート材の他の実施形態を示す要部断面
図である。
FIGS. 3A and 3B are cross-sectional views of a main part showing another embodiment of a sheet material including an electromagnetic induction heating element according to the present invention.

【図4】図4(A)〜(C)は本発明の製造方法で得ら
れるタンクの一例を示す平面図、正面図および側面図で
ある。
4 (A) to 4 (C) are a plan view, a front view and a side view showing an example of a tank obtained by the production method of the present invention.

【図5】図5(A),(B)は図4に示すフランジ部の
例を示す要部断面図である。
FIGS. 5A and 5B are cross-sectional views of a main part showing an example of a flange shown in FIG. 4;

【図6】図6(A),(B)は図5に示すフランジ部の
接合部の要部を示す断面図である。
6 (A) and 6 (B) are cross-sectional views showing a main part of a joining portion of a flange shown in FIG.

【図7】図7はフランジ部の接合部の他の例を示す要部
断面図である。
FIG. 7 is a cross-sectional view of a main part showing another example of a joint portion of a flange portion.

【図8】図8は、電磁誘導加熱を行うために用いられる
電磁誘導加熱装置の一例を示す図である
FIG. 8 is a diagram illustrating an example of an electromagnetic induction heating device used for performing electromagnetic induction heating.

【符号の説明】[Explanation of symbols]

100… 容器(複合成形体) 100a,100b…容器構成部材(成形体構成部材) 12a,12b… 基材層 14a,14b… 被覆層(反応射出成形樹脂層) 15…ステンレス繊維入りポリエチレン製テープ(電磁
誘導発熱体を含むシート材) 16a,16b…接合面 19…磁界発生用コイル 20… 支持体 30… 上型(金型) 32… 下型(金型) C… キャビティ 200… タンク(複合成形体) 200a,200b…タンク構成部材(成形体構成部
材) 208a,208b… 第1重合体層 209a,209b… 第2重合体層 210a,210b… 第3重合体層 212a,212b… 基材層 214a,214b… 被覆層(反応射出成形樹脂層)
Reference Signs List 100 container (composite molded article) 100a, 100b container component (molded component) 12a, 12b base layer 14a, 14b coating layer (reaction injection molded resin layer) 15 polyethylene tape containing stainless steel fiber ( 16a, 16b ... joining surface 19 ... coil for generating magnetic field 20 ... support 30 ... upper die (die) 32 ... lower die (die) C ... cavity 200 ... tank (composite molding) 200a, 200b ... tank constituent member (molded member) 208a, 208b ... first polymer layer 209a, 209b ... second polymer layer 210a, 210b ... third polymer layer 212a, 212b ... base material layer 214a , 214b ... coating layer (reaction injection molded resin layer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材層と、この基材層の外周を覆う被覆
層とを少なくとも有する2以上の成形体構成部材が、接
合面で互いに接合してある複合成形体であって、 前記基材層から成る接合面間が、これら接合面間に介在
された電磁誘導発熱体による発熱で接合してある複合成
形体。
1. A composite molded article in which two or more molded article constituent members having at least a base layer and a coating layer covering the outer periphery of the base layer are joined to each other at a joint surface, A composite molded article in which joining surfaces made of material layers are joined by heat generated by an electromagnetic induction heating element interposed between these joining surfaces.
【請求項2】 前記接合面が、フランジの接合面である
請求項1に記載の複合成形体。
2. The composite molded article according to claim 1, wherein the joining surface is a joining surface of a flange.
【請求項3】 前記基材層が、単層、2層および3層の
うちのいずれかである請求項1または2に記載の複合成
形体。
3. The composite molded article according to claim 1, wherein the base material layer is one of a single layer, two layers, and three layers.
【請求項4】 基材層の外周を覆うように、被覆層を形
成して成形体構成部材を形成し、 この成形体構成部材の接合面に位置する基材層間に電磁
誘導発熱体を介在させ、当該電磁誘導発熱体を非接触式
に電磁誘導加熱することにより、接合面に位置する基材
層同士または接着層を介して融着させる複合成形体の製
造方法。
4. A molding member is formed by forming a coating layer so as to cover the outer periphery of the substrate layer, and an electromagnetic induction heating element is interposed between the substrate layers located at the joining surface of the molding member. And heating the electromagnetic induction heating element in a non-contact manner by electromagnetic induction heating, thereby fusing the base material layers located on the bonding surface to each other or via an adhesive layer.
JP8310103A 1996-11-06 1996-11-06 Composite molding and its manufacture Pending JPH10138347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8310103A JPH10138347A (en) 1996-11-06 1996-11-06 Composite molding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8310103A JPH10138347A (en) 1996-11-06 1996-11-06 Composite molding and its manufacture

Publications (1)

Publication Number Publication Date
JPH10138347A true JPH10138347A (en) 1998-05-26

Family

ID=18001225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8310103A Pending JPH10138347A (en) 1996-11-06 1996-11-06 Composite molding and its manufacture

Country Status (1)

Country Link
JP (1) JPH10138347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056092A (en) * 2010-09-06 2012-03-22 Miyaden Co Ltd Apparatus and method for heat-welding resin member
JP2014205365A (en) * 2014-07-24 2014-10-30 株式会社ミヤデン Heat welding device for fuel tank
WO2016193198A1 (en) * 2015-06-01 2016-12-08 Kautex Textron Gmbh & Co. Kg Method for the induction welding of first and second moulded parts consisting of thermoplastic resin and container consisting of thermoplastic resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056092A (en) * 2010-09-06 2012-03-22 Miyaden Co Ltd Apparatus and method for heat-welding resin member
JP2014205365A (en) * 2014-07-24 2014-10-30 株式会社ミヤデン Heat welding device for fuel tank
WO2016193198A1 (en) * 2015-06-01 2016-12-08 Kautex Textron Gmbh & Co. Kg Method for the induction welding of first and second moulded parts consisting of thermoplastic resin and container consisting of thermoplastic resin

Similar Documents

Publication Publication Date Title
KR101494811B1 (en) Process for producing sealing film, and sealing film
US7955672B2 (en) Permeation-inhibiting members and multi-layer containers made by using the same
CN100591515C (en) Method for manufacturing pipe joint
JP4964365B2 (en) Thermoplastic multilayer hollow body and method for producing the same
AU2006201168A1 (en) Fuel tank component with weldable connector
US6764637B2 (en) Methods of joining polymers using ultrasonic energy
EP0498602A2 (en) Composite molding and production process and use thereof
CN100577462C (en) Permeation-inhibiting members and its laminated vessel of use
JPH10138347A (en) Composite molding and its manufacture
JP4078823B2 (en) Barrier multilayer hollow container and method for producing the same
JP4165055B2 (en) Barrier multilayer hollow container and method for producing the same
KR102110342B1 (en) Method for jointing waterproof sheet and waterproof sheet jointed by the method
JP4647453B2 (en) Transmission preventing member
JPH07323439A (en) Joined molding, and method for forming joint
JP4003432B2 (en) Barrier multilayer hollow container and method for producing the same
JPH04226314A (en) Pipe with joint and its manufacture
JPH0615781A (en) Multilayered composite material and production thereof
JPH04294115A (en) Shape-recoverable composite molded item, preparation thereof and method for using it
JPH0569514A (en) Composite formed body, and manufacture and usage thereof
JPH0655641A (en) Fusion type connecting member
US20240025167A1 (en) Methods To Directly Join Metals To Polymer/Polymer Composites Using Functionally Active Insert Layer
JPH06117595A (en) Branch pipe for pipe line
JP2866397B2 (en) Hollow composite
JP2001287307A (en) Composite molded object and method for manufacturing the same
JP2816868B2 (en) Hollow composite and method for producing the same