JPH08269562A - Grain-oriented silicon steel sheet reduced in magnetostriction and its production - Google Patents

Grain-oriented silicon steel sheet reduced in magnetostriction and its production

Info

Publication number
JPH08269562A
JPH08269562A JP7071271A JP7127195A JPH08269562A JP H08269562 A JPH08269562 A JP H08269562A JP 7071271 A JP7071271 A JP 7071271A JP 7127195 A JP7127195 A JP 7127195A JP H08269562 A JPH08269562 A JP H08269562A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
grain
magnetostriction
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7071271A
Other languages
Japanese (ja)
Inventor
Masao Yabumoto
政男 藪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7071271A priority Critical patent/JPH08269562A/en
Publication of JPH08269562A publication Critical patent/JPH08269562A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a product prepared by reducing magnetostriction in a grain-oriented silicon steel sheet after finish annealing and its production. CONSTITUTION: A magnetostriction value (peak-peak) is reduced at <=1.8T magnetic flux density by allowing internal microstrain to remain in a grain- oriented silicon steel sheet. The volume of 90deg magnetic domain at a magnetic flux density of 0T is increased by applying internal microstrain, and further, by decreasing the change in volume of 90deg magnetic domain at <=1.8T magnetic flux density in an alternating magnetic field, a magnetostriction value lower by >=5% as compared with the case after stress relief annealing can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器等の電磁応用機
器の鉄芯あるいは磁気シールド等に使用される方向性珪
素鋼板及びその製造方法に関するもので、特に。磁歪を
減少させることにより、かかる磁歪に起因する機器の騒
音・振動の低減を達成しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet used for an iron core or a magnetic shield of an electromagnetic application device such as a transformer and a method for producing the same, and more particularly to a grain-oriented silicon steel sheet. By reducing the magnetostriction, it is intended to reduce the noise and vibration of the device due to the magnetostriction.

【0002】[0002]

【従来の技術】方向性珪素鋼板は変圧器等の電磁応用機
器の鉄芯あるいは磁気シールド等に使用され、磁気特性
が優れていること、中でも鉄損が低いことが要望されて
きた。ところで、方向性珪素鋼板は、Siを2〜4%含
むスラブを熱間圧延、冷間圧延、中間焼鈍、脱炭焼鈍、
仕上焼鈍等のプロセスで処理することにより製造され
る。仕上焼鈍はコイル状で行われるため、仕上焼鈍後の
鋼板にはコイルセットがある。方向性珪素鋼板は変圧器
等の電磁応用機器の鉄芯として積層して使用されるの
で、その形状性が良好であることが重要であり、前記仕
上焼鈍時のコイルセットの矯正や側歪、中のび等の矯
正、いわゆる平坦化と称される形状矯正を行う必要があ
る。方向性珪素鋼板製品に仕上焼鈍時の冷却歪、コイル
セット矯正時等大きい内部歪が残留していると鉄損が劣
化するため、前記仕上焼鈍後の連続焼鈍において内部歪
を減少させる必要がある。この観点から、たとえば特開
昭61−159529号、特開昭61−174329号
公報にあるように、従来は鉄損低減の立場から、内部歪
を徹底的に解放することが製造における重要項目とされ
てきた。
2. Description of the Related Art Grain-oriented silicon steel sheets are used for iron cores or magnetic shields of electromagnetically applied equipment such as transformers, and it has been demanded that they have excellent magnetic properties, and especially low iron loss. By the way, as for the grain-oriented silicon steel sheet, a slab containing 2 to 4% of Si is hot-rolled, cold-rolled, intermediate-annealed, decarburized-annealed,
It is manufactured by processing by a process such as finish annealing. Since the finish annealing is performed in a coil shape, the steel sheet after the finish annealing has a coil set. Since the grain-oriented silicon steel sheet is used by being laminated as an iron core of electromagnetic application equipment such as a transformer, it is important that its shape property is good, and correction and lateral strain of the coil set during the finish annealing, It is necessary to carry out straightening of the shape, such as so-called flattening. If the cooling strain during finish annealing and large internal strain such as during coil set straightening remain in the grain-oriented silicon steel product, iron loss deteriorates, so it is necessary to reduce the internal strain during continuous annealing after the finish annealing. . From this point of view, as disclosed in JP-A-61-159529 and JP-A-61-174329, it has been an important item in manufacturing to completely release internal strain from the standpoint of reducing iron loss. It has been.

【0003】一方、環境問題の高揚とともに変圧器等の
電磁応用機器の騒音・振動を低減することが要請される
ようになり、これらの機器の鉄芯および磁気シールドに
使用される方向性珪素鋼板にも低鉄損とともに低騒音・
振動に適した材料が求められるようになった。
On the other hand, along with the heightening of environmental problems, there has been a demand for reducing noise and vibration of electromagnetically applied equipment such as transformers, and a grain-oriented silicon steel sheet used for the iron core and magnetic shield of these equipment. Low noise and low iron loss
Materials suitable for vibration have come to be demanded.

【0004】方向性珪素鋼板の磁歪の大きさは10-6
ーダーの非常に小さなものであるが、鉄芯等での騒音・
振動の原因として最も注目されている。磁歪を低減させ
る方法としては、Si含有量を増やす、2次再結晶粒を
(110)〔001〕方位に高度に揃える等の冶金学的
方法と張力被膜による鋼板への張力付与等が知られてい
る。また、方向性珪素鋼板の磁歪は内部歪が残留してい
ると一途に増大すると考えられ、上述した鉄損の低減と
同様に、内部歪を徹底的に解放することが製造における
重要項目とされてきた。
The magnitude of magnetostriction of the grain-oriented silicon steel sheet is very small, on the order of 10 -6 , but the noise from the iron core etc.
Most noticed as a cause of vibration. As a method of reducing the magnetostriction, a metallurgical method such as increasing the Si content and highly aligning the secondary recrystallized grains in the (110) [001] orientation, and applying tension to the steel sheet by a tension coating are known. ing. In addition, it is considered that the magnetostriction of grain-oriented silicon steel sheet increases only if the internal strain remains, and it is an important item in manufacturing to thoroughly release the internal strain, as in the above-mentioned reduction of iron loss. Came.

【0005】また、磁歪の大きさは前述したように非常
に小さく、方向性珪素鋼板製品の磁歪を計測すること自
体が困難であった。このため磁歪現象の研究は鉄損ほど
には進んでいなかった。この計測の問題は、特公平5−
085849号公報にある高精度の磁歪測定方法の開発
により容易となり、磁歪現象の詳細な解析が可能となっ
た。
The magnitude of magnetostriction is very small as described above, and it is difficult to measure the magnetostriction of grain-oriented silicon steel sheet products. For this reason, research on magnetostriction has not progressed as much as iron loss. The problem with this measurement is
The development of the high-precision magnetostriction measuring method disclosed in Japanese Patent No. 085849 facilitated the development and enabled detailed analysis of the magnetostriction phenomenon.

【0006】[0006]

【発明が解決しようとする課題】これまで、方向性珪素
鋼板の製品の磁歪は、焼鈍により内部歪を徹底的に解放
することにより最も低減されると考えられてきたが、本
発明者は磁歪と内部歪との関連を詳細に調べた結果、中
〜低磁束密度の励磁条件においては、微小の内部歪を残
留させたときに最も磁歪が小さくなることを見いだし
た。
It has been considered that the magnetostriction of grain oriented silicon steel products is most reduced by completely releasing the internal strain by annealing. However, the present inventors have found that As a result of detailed investigation of the relation between the internal strain and the internal strain, it was found that the magnetic strain becomes the smallest when a small internal strain is left under the excitation condition of medium to low magnetic flux density.

【0007】[0007]

【課題を解決するための手段】本発明はこの知見に基づ
いてなされたものであり、その要旨は仕上焼鈍された後
の方向性珪素鋼板に微量の内部歪を残留させることによ
る、中〜低磁束密度において磁歪の低い方向性電磁鋼板
製品の実現、および微量の内部歪を残留させる方法にあ
る。
The present invention has been made on the basis of this finding, and the gist thereof is to leave a small amount of internal strain in the grain-oriented silicon steel sheet after finish annealing and thereby obtain a medium to low level. It is a method of realizing a grain-oriented electrical steel sheet product having a low magnetostriction in the magnetic flux density and a method of leaving a small amount of internal strain.

【0008】以下に本発明を詳細に説明する。まず磁歪
現象について述べる。本発明者は磁歪現象を詳細に調
べ、磁歪を制御する方法について検討した。方向性珪素
鋼板に限らず強磁性体の磁歪現象は、磁化過程での磁区
構造の変化に大きく依存している。物性値として、3%
珪素鋼では磁歪定数はおよそ3×10-5であるが、通常
の方向性珪素鋼板製品の磁歪値はその1/10以下であ
ることが多い。これは方向性珪素鋼板をなす2次再結晶
粒が(110)〔001〕方位に極めて高度に揃ってい
るために、自発磁化方向が圧延方向にほぼ平行に向いた
180度磁区が鋼板体積の主要な部分を占めているため
である。この180度磁区は自発磁化の向きが〈00
1〉軸に向き且つ交互に反対方向を向くストライプ状の
磁区の集合構造であるが、それぞれの磁区はその自発磁
化方向に磁歪定数×3/2の割合だけ伸びている状態に
ある。励磁されて磁束が通るときには、隣接する180
度磁区の間の境界すなわち180度磁壁が動くが、18
0度磁区の総体積に変化がなければ励磁に伴う鋼板の伸
び、すなわち磁歪はゼロとなる。
The present invention will be described in detail below. First, the magnetostriction phenomenon will be described. The present inventor investigated the magnetostriction phenomenon in detail and studied a method of controlling the magnetostriction. The magnetostriction phenomenon of not only the grain-oriented silicon steel sheet but also the ferromagnetic substance largely depends on the change of the magnetic domain structure during the magnetization process. 3% as physical property value
Although the magnetostriction constant of silicon steel is about 3 × 10 −5 , the magnetostriction value of a normal grain oriented silicon steel sheet product is often 1/10 or less. This is because the secondary recrystallized grains forming the grain-oriented silicon steel sheet are extremely highly aligned with the (110) [001] orientation, so that the 180 degree magnetic domain in which the spontaneous magnetization direction is substantially parallel to the rolling direction is the steel plate volume. This is because it occupies a major part. In this 180 degree domain, the direction of spontaneous magnetization is <00.
1) It is an aggregate structure of stripe-shaped magnetic domains facing the axis and alternately facing the opposite directions, but each magnetic domain extends in the spontaneous magnetization direction by a ratio of magnetostriction constant × 3/2. When it is excited and the magnetic flux passes, the adjacent 180
The boundaries between the degrees magnetic domains, that is, the 180 degree domain walls move,
If there is no change in the total volume of the 0 degree magnetic domain, the elongation of the steel sheet due to the excitation, that is, the magnetostriction becomes zero.

【0009】しかし、実際の方向性珪素鋼板では、結晶
方位の(110)〔001〕方位からの変位が大きい部
分あるいは内部歪の大きい部分では、180度磁区の他
に90度磁区構造が含まれる。90度磁区の部分では圧
延方向への伸びがないため、励磁による磁化過程で90
度磁区の体積に増加あるいは減少が起こると、鋼板の圧
延方向の伸びはそれぞれ減少あるいは増加し、その結果
として磁歪が発生することになる。
However, in an actual grain-oriented silicon steel sheet, a 90-degree magnetic domain structure is included in addition to the 180-degree magnetic domain in the portion where the crystal orientation is largely displaced from the (110) [001] orientation or the portion where the internal strain is large. . Since there is no elongation in the rolling direction in the 90 degree domain, 90
When the volume of the magnetic domain increases or decreases, the elongation of the steel sheet in the rolling direction decreases or increases, and as a result, magnetostriction occurs.

【0010】180度磁区の自発磁化方向の〈001〉
結晶軸が鋼板表面と角度βを持つと、鋼板表面と裏面に
磁極が発生する。表裏面の磁極が作る静磁エネルギーを
打ち消す方向に、鋼板内部に〈100〉結晶軸あるいは
〈010〉結晶軸方向に自発磁化が向く90度磁区が発
生し、鋼板表面にはランセット磁区と呼ばれるダガー形
状をした180度磁区が現れる。また、鋼板に大きな内
部歪が残っている場合には、加工誘起磁気異方性により
鋼板内に90度磁区が大量に発生し、鋼板表面にはいわ
ゆるメーズ磁区、あるいは圧延方向と直角方向に細く伸
びた180度磁区が圧延方向に細かく密に並ぶ磁区構造
が現れる。
<001> in the spontaneous magnetization direction of the 180 degree magnetic domain
When the crystal axis forms an angle β with the surface of the steel sheet, magnetic poles are generated on the front surface and the back surface of the steel sheet. A 90 degree magnetic domain in which spontaneous magnetization is oriented in the <100> crystal axis or the <010> crystal axis direction is generated in the steel sheet in a direction of canceling the magnetostatic energy created by the front and back magnetic poles, and a dagger called a lancet magnetic domain is formed on the steel sheet surface. Shaped 180 degree magnetic domains appear. When a large internal strain remains in the steel sheet, a large amount of 90-degree magnetic domains are generated in the steel sheet due to the work-induced magnetic anisotropy, and the surface of the steel sheet is so-called maize magnetic domain, or thin in the direction perpendicular to the rolling direction. A magnetic domain structure appears in which the extended 180 degree magnetic domains are arranged finely and densely in the rolling direction.

【0011】方向性珪素鋼板の磁歪減少について図1を
用いて説明する。図1は歪取焼鈍を行い内部歪を解放し
た状態の0.23m厚の方向性珪素鋼板Hi−Bを、周
波数50Hz、磁束密度1.7Tの条件で励磁した場合の
磁歪ループの1例を示している。図1の縦軸は鋼板の圧
延方向の長さ変化であり、横軸は励磁磁束密度である。
図1中に、磁歪特性の評価指標として用いられる、o−
peak値とpeak−peak値の定義を示す。図2
に、0.35mmの方向性珪素鋼板におけるo−peak
値とpeak−peak値の磁束密度との関係の例を示
すが、およそ1.8T以下の低〜中磁束密度ではo−p
eak値の絶対値とpeak−peak値とは近い値を
示すが、1.9Tではpeak−peak値の方がo−
peak値の絶対値より大きくなる。これは、およそ
1.8T以上の磁束密度では磁区構造の変化により磁歪
ループの形が崩れるからである。本発明では鉄芯等の騒
音につながるのは磁歪振幅であるとの考え方から、磁歪
値はpeak−peak値で評価する。
The reduction of magnetostriction of grain-oriented silicon steel sheet will be described with reference to FIG. FIG. 1 shows an example of a magnetostrictive loop in the case where a 0.23 m thick grain-oriented silicon steel sheet Hi-B which has been subjected to strain relief annealing to release internal strain is excited at a frequency of 50 Hz and a magnetic flux density of 1.7 T. Shows. The vertical axis of FIG. 1 represents the change in length of the steel sheet in the rolling direction, and the horizontal axis represents the magnetic flux density for excitation.
In FIG. 1, o-, which is used as an evaluation index of the magnetostrictive characteristic,
The definitions of the peak value and the peak-peak value are shown. Figure 2
In addition, o-peak in 0.35 mm grain-oriented silicon steel sheet
An example of the relationship between the magnetic flux density and the magnetic flux density of the peak-peak value is shown, but at low to medium magnetic flux densities of about 1.8 T or less, op
The absolute value of the eak value and the peak-peak value are close to each other, but at 1.9T, the peak-peak value is o-.
It becomes larger than the absolute value of the peak value. This is because at a magnetic flux density of approximately 1.8 T or higher, the shape of the magnetostrictive loop collapses due to a change in magnetic domain structure. In the present invention, the magnetostriction value is evaluated by the peak-peak value from the idea that it is the magnetostriction amplitude that leads to noise such as the iron core.

【0012】磁歪を低減する方法を考えるために、図1
の磁歪ループを磁化過程の中での磁区構造の変化で説明
することを試みた。図1で磁束密度がゼロから正または
負に増加するとo−peak値は負の値となり鋼板の圧
延方向の長さが縮むことを示すが、これは鋼板表裏の静
磁エネルギーと90度磁区との関係で説明できる。鋼板
中の磁束密度が正または負に増加すると磁束の通る方向
の180度磁区幅は広がり、反対方向の磁区幅は狭くな
る。鋼板表面の磁極の符号が磁壁を挟んで反対となるた
め磁壁の近傍では表裏面間の静磁エネルギーは減少して
いる。しかし磁壁間隔が広がり、磁壁から離れた表面積
が増えるとこの部分で表裏面間の静磁エネルギーは増加
し、前述したようにこの静磁エネルギーを打ち消すよう
に90度磁区体積が増加して、鋼板は圧延方向に縮むこ
とになる。
To consider a method for reducing magnetostriction, FIG.
We attempted to explain the magnetostrictive loop in Fig. 3 by the change of the magnetic domain structure during the magnetization process. In FIG. 1, when the magnetic flux density increases from zero to positive or negative, the o-peak value becomes a negative value and the length in the rolling direction of the steel sheet shrinks. This is due to the magnetostatic energy of the front and back of the steel sheet and the 90 degree magnetic domain. Can be explained in relation to. When the magnetic flux density in the steel sheet increases positively or negatively, the 180 degree magnetic domain width in the direction in which the magnetic flux passes becomes wider and the magnetic domain width in the opposite direction becomes narrower. Since the signs of the magnetic poles on the surface of the steel sheet are opposite to each other across the domain wall, the magnetostatic energy between the front and back surfaces is reduced near the domain wall. However, when the domain wall spacing increases and the surface area away from the domain walls increases, the magnetostatic energy between the front and back surfaces increases at this portion, and as described above, the 90 ° domain volume increases so as to cancel this magnetostatic energy. Will shrink in the rolling direction.

【0013】図1に見られるように、一般的に磁歪ルー
プにはヒステリシス現象が見られるが、これは90度磁
区と180度磁区との境界である90度磁壁が磁界との
相互作用を受けることを考えることにより説明できる。
磁壁では鉄原子のスピンが磁壁を挟む一方の磁区のスピ
ンから他方の磁区のスピンへと回転している。このた
め、圧延方向の磁界を受けると180度磁壁では磁界の
方向に磁区幅を増やす方向に磁歪を動かす力が働き、9
0度磁壁では90度磁区の体積を減らす方向に90度磁
壁を動かす力が働く。さらに、磁界と磁束密度との間で
ヒステリシスがあるために、磁歪ループがヒステリシス
を示すと考えられる。また、磁束密度がおよそ1.8T
以上になると磁界強度が著しく大きくなるため、急速に
90度磁区体積が収縮して鋼板が伸び、磁歪のo−pe
ak値は急速に増加する。o−peak値が磁束の変化
の1周期(図1では50Hz)の間に、負値から正値に変
化する場合には、peak−peak値がo−peak
値の絶対値よりも大きい値をとることになる。
As shown in FIG. 1, a hysteresis phenomenon is generally observed in the magnetostrictive loop. This is because the 90-degree domain wall, which is the boundary between the 90-degree domain and the 180-degree domain, is interacted with the magnetic field. It can be explained by thinking.
In the domain wall, the spin of the iron atom rotates from the spin of one domain that sandwiches the domain wall to the spin of the other domain. Therefore, when a 180 ° domain wall receives a magnetic field in the rolling direction, a force acts to move the magnetostriction in the direction of increasing the domain width in the direction of the magnetic field.
In the 0 degree domain wall, a force to move the 90 degree domain wall acts in the direction of reducing the volume of the 90 degree domain. Furthermore, it is considered that the magnetostrictive loop exhibits hysteresis due to the hysteresis between the magnetic field and the magnetic flux density. Also, the magnetic flux density is about 1.8T.
Since the magnetic field strength increases remarkably when the above is reached, the 90 ° domain volume contracts rapidly and the steel sheet expands, resulting in magnetostrictive o-pe.
The ak value increases rapidly. When the o-peak value changes from a negative value to a positive value during one cycle of magnetic flux change (50 Hz in FIG. 1), the peak-peak value is the o-peak value.
The value will be larger than the absolute value.

【0014】以上の知見に基づくと、磁界強度が比較的
弱いおよそ1.8T以上の磁束密度での磁歪の原因は、
磁束の周期中での90度磁区の体積増加、すなわち磁束
密度ゼロにおける90度磁区体積から最大磁束密度での
90度磁区体積への増分にあるといえる。この90度磁
区の体積増加を小さくする方法に次の2つの方法が考え
られた。一つは、最大磁束密度での90度磁区体積を減
らす方法であり、結晶方位を(110)〔001〕に高
度に揃える冶金学的方法および皮膜張力により鋼板に面
張力を及ぼし誘導磁気異方性により鋼板面に垂直方向の
成分を持つ90度磁区を生成しにくくする方法がこれに
当たる。この方法は、従来鉄損を低減するためにとられ
てきた方法と同じである。もう一つは、磁束密度ゼロに
おける90度磁区の体積を増やす方法であり、本発明に
よるものである。
Based on the above knowledge, the cause of magnetostriction at a magnetic flux density of approximately 1.8 T or higher, where the magnetic field strength is relatively weak, is as follows.
It can be said that there is an increase in the volume of the 90-degree magnetic domain in the period of the magnetic flux, that is, an increase from the 90-degree magnetic domain volume at the zero magnetic flux density to the 90-degree magnetic domain volume at the maximum magnetic flux density. The following two methods were considered as methods for reducing the volume increase of the 90-degree magnetic domain. One is a method of reducing the 90-degree magnetic domain volume at the maximum magnetic flux density, which is a metallurgical method of highly aligning the crystal orientation to (110) [001] and a surface tension on the steel sheet by the film tension to induce magnetic anisotropy. This is a method of making it difficult to generate a 90-degree magnetic domain having a vertical component on the steel plate surface due to the property. This method is the same as the method conventionally used to reduce iron loss. The other is a method of increasing the volume of a 90 degree magnetic domain at a magnetic flux density of zero, which is according to the present invention.

【0015】磁束密度ゼロにおける90度磁区の体積を
増やす方法として、方向性珪素鋼板に圧縮応力をかける
方法をまず検討した。図3は、0.27mm厚の方向性珪
素鋼板Hi−Bの圧延方向に圧縮応力をかけたときの、
周波数50Hz、磁束密度1.7Tにおける磁歪値の変化
を測定した例である。圧縮力の増加とともにo−pea
k値は正値の方向に変化し、0.2kg/mm2 で正値とな
りさらに圧縮応力をかけると急速に正の大きな値となっ
た。同時にpeak−peak値では0.2kg/mm2
最小となった。しかし、圧縮応力を取り除くと元の磁歪
値に戻り、製品に圧縮応力をかけ続けることは困難であ
ることから実用的ではない。
As a method of increasing the volume of 90 degree magnetic domains at a zero magnetic flux density, a method of applying compressive stress to a grain-oriented silicon steel sheet was first examined. FIG. 3 shows a case where a compressive stress is applied in the rolling direction of a grain-oriented silicon steel sheet Hi-B having a thickness of 0.27 mm,
This is an example of measuring a change in magnetostriction value at a frequency of 50 Hz and a magnetic flux density of 1.7 T. O-pea with increasing compressive force
The k value changed to a positive value, and became a positive value at 0.2 kg / mm 2 , and when a compressive stress was further applied, it rapidly became a large positive value. At the same time, the peak-peak value was a minimum at 0.2 kg / mm 2 . However, when the compressive stress is removed, it returns to the original magnetostrictive value, and it is difficult to continuously apply the compressive stress to the product, which is not practical.

【0016】そこで、本発明では製品の磁歪を改善する
方法として、鋼板中に微小内部歪を残留させる方法を見
いだした。前述した方向性珪素鋼板の製造プロセスでの
平坦化焼鈍において、焼鈍温度、ライン張力およびライ
ン速度を変化させて試験を行ったところ、内部歪が残っ
ている状態で低〜中磁束密度において磁歪が小さい場合
があることがあり、歪取焼鈍すると磁歪o−peak値
が負値に増加して、磁歪値(peak−peak)が大
きくなった。このとき、高磁束密度(1.9T)での磁
歪値は歪取焼鈍前の値が小さい場合もあったが、多くの
場合は歪取焼鈍後の方が小さかった。内部歪を残留させ
た場合には90度磁区の方向への張力が働くため、磁束
密度ゼロすなわち180度磁区の磁区幅が同等に狭く表
裏面間の静磁エネルギーが低いときにも効率的に90度
磁区が発生しやすくなると考えられる。しかし、高磁束
密度では前述した強い磁界と磁壁との相互作用により9
0度磁区の圧縮が起きるために、依然磁歪が大きいと考
えられる。
Therefore, in the present invention, as a method of improving the magnetostriction of the product, a method of leaving a small internal strain in the steel sheet was found. In the flattening annealing in the manufacturing process of the grain-oriented silicon steel sheet described above, a test was performed by changing the annealing temperature, the line tension and the line speed, and the magnetostriction was observed in the low to medium magnetic flux density while the internal strain remained. It may be small in some cases, and upon strain relief annealing, the magnetostriction o-peak value increased to a negative value, and the magnetostriction value (peak-peak) increased. At this time, the magnetostriction value at high magnetic flux density (1.9 T) was sometimes small before stress relief annealing, but in many cases it was smaller after stress relief annealing. When the internal strain remains, tension acts in the direction of the 90 degree magnetic domain, so even when the magnetic flux density is zero, that is, the magnetic domain width of the 180 degree magnetic domain is equally narrow and the magnetostatic energy between the front and back surfaces is low, it is efficient. It is considered that 90-degree magnetic domains are likely to occur. However, at a high magnetic flux density, the interaction between the strong magnetic field and the domain wall described above causes
It is considered that the magnetostriction is still large because the 0 degree magnetic domain is compressed.

【0017】本発明の請求項1では、磁束密度を1.8
T以下と限定しているが、この理由は1.8T以下で磁
歪の最小の状態でも1.8T以上においては歪を解放し
た場合に比べ磁歪が大きくなる場合があるためである。
方向性珪素鋼板が使用される鉄芯等の設計磁束密度が
1.8T以下の場合も多いことからも、これらの用途に
おいて1.8T以下の磁歪値を最も低くすることが騒音
低減にとって有効である。また、焼鈍等により内部歪を
解放した場合に比べた磁歪の変化を5%としたのは、磁
歪測定精度を考慮したときの有意差をとったものであ
る。
In claim 1 of the present invention, the magnetic flux density is 1.8.
Although it is limited to T or less, the reason is that even in the state where the magnetostriction is 1.8 T or less and the minimum magnetostriction, the magnetostriction may be larger than the case where the strain is released at 1.8 T or more.
Since the design magnetic flux density of iron cores and the like for which grain-oriented silicon steel sheets are used is often 1.8T or less, it is effective for these applications to minimize the magnetostriction value of 1.8T or less for noise reduction. is there. Further, the reason why the change in magnetostriction is 5% as compared with the case where the internal strain is released by annealing or the like is that a significant difference is taken in consideration of the magnetostriction measurement accuracy.

【0018】請求項1の製品を製造する方法としては、
鋼板中に微小な内部歪を残留させる方法であれば特に拘
らないが、製造工程でのコストおよび歪量の制御での利
点を考えると、前述した平坦化焼鈍において歪を残す方
法(請求項2)、平坦化焼鈍の後に曲げ、引っ張り、圧
延、プレス、ショット投射等の手段により歪を導入する
方法(請求項3)およびその後に過度に入った内部歪を
調整するための焼鈍を行うこと(請求項4)が好まし
い。
As a method of manufacturing the product of claim 1,
It does not particularly matter as long as it is a method of leaving a minute internal strain in the steel sheet, but considering the advantages in cost and strain control in the manufacturing process, the method of leaving strain in the above-described flattening annealing (claim 2 ), A method of introducing strain by means such as bending, pulling, rolling, pressing, shot projection after flattening annealing (claim 3), and then performing annealing for adjusting excessive internal strain ( Claim 4) is preferred.

【0019】[0019]

【作用】本発明は以上のように、方向性珪素鋼板の中に
内部歪を残留させることにより磁束密度ゼロでの90度
磁区の体積を増加させることによって、励磁周期内での
90度磁区の体積変化を小さくして、磁歪値(peak
−peak)を低減するものである。
As described above, the present invention increases the volume of the 90-degree magnetic domain at the zero magnetic flux density by allowing the internal strain to remain in the grain-oriented silicon steel sheet. Magnetostriction value (peak
-Peak) is reduced.

【0020】[0020]

【実施例】次に実施例を述べる。 実施例1 コイル状で仕上焼鈍した0.30mm厚の方向性珪素鋼板
に絶縁皮膜を塗布し、実験用焼鈍炉にて平坦化焼鈍を施
した。このとき、炉温を800℃以下に制限することに
より内部歪を残留させた。この材料の磁歪値とこの材料
を850℃×4hrの歪取焼鈍した後の磁歪値を表1に示
す。比較例として炉温850℃とし、内部歪がほとんど
残留しない焼鈍条件で処理した材料の磁歪値を示す。
EXAMPLES Next, examples will be described. Example 1 A coil-shaped finish-annealed grain-oriented silicon steel sheet having a thickness of 0.30 mm was coated with an insulating film and flattened in a laboratory annealing furnace. At this time, the internal strain was left by limiting the furnace temperature to 800 ° C. or lower. Table 1 shows the magnetostriction value of this material and the magnetostriction value of the material after strain relief annealing at 850 ° C. for 4 hours. As a comparative example, the magnetostriction value of the material treated under the annealing condition in which the furnace temperature is 850 ° C. and almost no internal strain remains is shown.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 平坦化焼鈍後の0.35mm厚の方向性珪素鋼板を850
℃の炉内に入れて1kg/mm2 の張力をかけ、そのまま炉
外で空冷して内部歪を導入した。この材料について、8
00℃の炉温で焼鈍した後に磁歪を測定し、引き続き8
50℃と900℃に炉温を上げながら焼鈍を繰り返して
それぞれの焼鈍後の磁歪を測定した。その結果を図4に
示す。
Example 2 A grain-oriented silicon steel sheet having a thickness of 0.35 mm after the flattening annealing was 850
It was placed in a furnace at a temperature of 0 ° C., a tension of 1 kg / mm 2 was applied, and then it was air-cooled outside the furnace to introduce an internal strain. About this material, 8
The magnetostriction was measured after annealing at a furnace temperature of 00 ° C, and then 8
Annealing was repeated while raising the furnace temperature to 50 ° C. and 900 ° C., and the magnetostriction after each annealing was measured. FIG. 4 shows the results.

【0023】[0023]

【発明の効果】以上の実施例からも分かるように、本発
明に従い、方向性珪素鋼板に微小の内部歪を残留させる
ことにより、歪取焼鈍により内部歪を解放した場合に比
べ磁歪を5%以上低減させる効果が示された。
As can be seen from the above examples, according to the present invention, a small internal strain is left in the grain-oriented silicon steel sheet, so that the magnetostriction is 5% as compared with the case where the internal strain is released by stress relief annealing. The above effect was shown to be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】方向性珪素鋼板の磁歪ループの例を示す。FIG. 1 shows an example of a magnetostrictive loop of a grain-oriented silicon steel sheet.

【図2】方向性珪素鋼板の磁歪の励磁特性例を示す。FIG. 2 shows an example of magnetostrictive excitation characteristics of a grain-oriented silicon steel sheet.

【図3】方向性珪素鋼板に圧縮応力を与えたときの磁歪
の変化を示す。
FIG. 3 shows changes in magnetostriction when a compressive stress is applied to a grain-oriented silicon steel sheet.

【図4】内部歪を与えた方向性珪素鋼板の焼鈍温度の変
化による磁歪の変化を示す。
FIG. 4 shows a change in magnetostriction due to a change in annealing temperature of a grain-oriented silicon steel sheet having internal strain.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 仕上焼鈍後の方向性珪素鋼板に微小な内
部歪を残留させ、磁束密度1.8T以下における圧延方
向の磁歪値が、焼鈍等により内部歪を解放したときより
も、5%以上小さいことを特徴とする磁歪の低い方向性
珪素鋼板。
1. A magnetostriction value in the rolling direction at a magnetic flux density of 1.8 T or less is 5% more than that when the internal strain is released by annealing etc. by leaving a minute internal strain remaining in the grain-oriented silicon steel sheet after finish annealing. A grain-oriented silicon steel sheet having a low magnetostriction characterized by being smaller than the above.
【請求項2】 コイル状態で焼鈍したのちに平坦化焼鈍
を行う方向性珪素鋼板の製造方法において、かかる平坦
化焼鈍において微小な内部歪を残留させることを特徴と
する請求項1記載の方向性珪素鋼板の製造方法。
2. The directionality according to claim 1, wherein in the method for producing a grain-oriented silicon steel sheet, which comprises annealing in a coil state and then performing flattening annealing, a minute internal strain is left in such flattening annealing. Manufacturing method of silicon steel sheet.
【請求項3】 平坦化焼鈍された方向性珪素鋼板に曲
げ、引っ張り、圧延、プレスあるいはショット投射の加
工を加えることにより鋼板に微小内部歪を残留させるこ
とを特徴とする請求項1記載の方向性珪素鋼板の製造方
法。
3. The direction according to claim 1, wherein the flattened and annealed grain-oriented silicon steel sheet is subjected to bending, stretching, rolling, pressing or shot projection to leave a small internal strain in the steel sheet. For manufacturing a high-quality silicon steel sheet.
【請求項4】 平坦化焼鈍された方向性珪素鋼板に曲
げ、引っ張り、圧延、プレスあるいはショット投射の加
工を加えたのち焼鈍を行うことにより残留する内部歪量
を調整することを特徴とする請求項1記載の方向性珪素
鋼板の製造方法。
4. The residual internal strain amount is adjusted by performing bending, pulling, rolling, pressing, or shot projection processing on the grain-oriented silicon steel sheet that has been flattened and annealed, and then performing annealing. Item 1. A method for producing a grain-oriented silicon steel sheet according to Item 1.
JP7071271A 1995-03-29 1995-03-29 Grain-oriented silicon steel sheet reduced in magnetostriction and its production Pending JPH08269562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7071271A JPH08269562A (en) 1995-03-29 1995-03-29 Grain-oriented silicon steel sheet reduced in magnetostriction and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7071271A JPH08269562A (en) 1995-03-29 1995-03-29 Grain-oriented silicon steel sheet reduced in magnetostriction and its production

Publications (1)

Publication Number Publication Date
JPH08269562A true JPH08269562A (en) 1996-10-15

Family

ID=13455895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7071271A Pending JPH08269562A (en) 1995-03-29 1995-03-29 Grain-oriented silicon steel sheet reduced in magnetostriction and its production

Country Status (1)

Country Link
JP (1) JPH08269562A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160340A2 (en) * 2000-05-30 2001-12-05 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
JP2002069594A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp Silicon steel sheet for low-noise transformer
US6558479B2 (en) 2000-05-12 2003-05-06 Nippon Steel Corporation Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
JP2009231477A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Manufacturing method of transformer
JP2017128765A (en) * 2016-01-20 2017-07-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet, manufacturing method of oriented electromagnetic steel sheet, iron core for transformer or reactor and noise evaluation method
WO2019189859A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2019189857A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2020158732A1 (en) * 2019-01-28 2020-08-06 日本製鉄株式会社 Grain-oriented electrical steel sheet, and method of manufacturing same
KR20200125705A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
KR20200125706A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
WO2022203088A1 (en) * 2021-03-26 2022-09-29 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method thereof
CN115404329A (en) * 2022-08-24 2022-11-29 北冶功能材料(江苏)有限公司 Silicon steel strip and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558479B2 (en) 2000-05-12 2003-05-06 Nippon Steel Corporation Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
US6918966B2 (en) 2000-05-12 2005-07-19 Nippon Steel Corporation Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
EP1160340A2 (en) * 2000-05-30 2001-12-05 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
EP1160340A3 (en) * 2000-05-30 2003-11-26 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
JP2002069594A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp Silicon steel sheet for low-noise transformer
JP4585101B2 (en) * 2000-08-25 2010-11-24 新日本製鐵株式会社 Low noise transformer electrical steel sheet
JP2009231477A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Manufacturing method of transformer
JP2017128765A (en) * 2016-01-20 2017-07-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet, manufacturing method of oriented electromagnetic steel sheet, iron core for transformer or reactor and noise evaluation method
WO2019189859A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
WO2019189857A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Iron core for transformer
KR20200125705A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
KR20200125706A (en) 2018-03-30 2020-11-04 제이에프이 스틸 가부시키가이샤 Iron core for transformer
US11961647B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
US11961659B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
WO2020158732A1 (en) * 2019-01-28 2020-08-06 日本製鉄株式会社 Grain-oriented electrical steel sheet, and method of manufacturing same
JPWO2020158732A1 (en) * 2019-01-28 2021-11-25 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
WO2022203088A1 (en) * 2021-03-26 2022-09-29 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method thereof
CN115404329A (en) * 2022-08-24 2022-11-29 北冶功能材料(江苏)有限公司 Silicon steel strip and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101530450B1 (en) Grain oriented electrical steel sheet
KR20130020934A (en) Grain-oriented magnetic steel sheet and process for producing same
CA3086308C (en) Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
JPH08269562A (en) Grain-oriented silicon steel sheet reduced in magnetostriction and its production
EP1154025B1 (en) Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
JP2001192785A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
Banks et al. Dynamic magnetostriction and mechanical strain in oriented 3% silicon-iron sheet subject to combined longitudinal and transverse stresses
JP4216488B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH0578744A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property
JP7319523B2 (en) Oriented electrical steel sheet
US11495378B2 (en) Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JP3333798B2 (en) Grain-oriented electrical steel sheet with low iron loss
JP3500103B2 (en) Unidirectional electrical steel sheet for transformers
EP1160340B1 (en) Grain-oriented electrical steel sheet for low-noise transformer
Holt et al. The AC magnetostriction of 3.25-percent grain-oriented silicon-iron under combined longitudinal and normal compressive stress
JP2009127073A (en) Method for manufacturing double oriented silicon steel sheet
CN111748731A (en) Low-magnetostriction oriented silicon steel and manufacturing method thereof
US11984249B2 (en) Grain-oriented electrical steel sheet, wound transformer core using the same, and method for producing wound core
JPH08283918A (en) Low-noise grain oriented silicon steel sheet and laminated iron core
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JP4258853B2 (en) Low iron loss and low noise core
JPH0762501A (en) Grain-oriented silicon steel sheet having excellent magnetostrictive characteristic
JPH1187122A (en) Grain oriented magnetic steel sheet for low-noise transformer
JP2001181804A (en) Grain oriented silicon steel sheet for low noise transformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725