JPH08268748A - Manufacture of ni-zn base ferrite - Google Patents

Manufacture of ni-zn base ferrite

Info

Publication number
JPH08268748A
JPH08268748A JP7099530A JP9953095A JPH08268748A JP H08268748 A JPH08268748 A JP H08268748A JP 7099530 A JP7099530 A JP 7099530A JP 9953095 A JP9953095 A JP 9953095A JP H08268748 A JPH08268748 A JP H08268748A
Authority
JP
Japan
Prior art keywords
temp
time
ferrite
minutes
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7099530A
Other languages
Japanese (ja)
Other versions
JP2934589B2 (en
Inventor
Hitoshi Ueda
等 上田
Teruo Uchikawa
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7099530A priority Critical patent/JP2934589B2/en
Publication of JPH08268748A publication Critical patent/JPH08268748A/en
Application granted granted Critical
Publication of JP2934589B2 publication Critical patent/JP2934589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To manufacture a ferrite magnetic core having high sintered density and initial magnetic permeability even when the sintering time is short by using four stages consisting of a binder removal stage, a temp. rising stage, a constant temp. stage and a temp. lowering stage, for sintering the ferrite and specifying the total time of these four stages in the manufacture. CONSTITUTION: In this manufacture, the following four stages for sintering an Ni--Zn base ferrite are used: a binder removal stage in which the time required for raising the temp. from room temp. to 600 deg.C is adjusted to 3min to 5hr in order to prevent cracks from being generated; a temp. rising stage in which the time required for raising the temp. from 600 deg.C to the sintering temp. is adjusted to 18min to 5hr while preventing insufficiency of the magnetic properties and strength due to the densification and insufficient crystal growth of the ferrite from occurring; a constant temp. stage in which the time from the point that the temp. reaches the sintering temp. up to the point that lowering of the temp. is begun at is adjusted to 5min to 5hr; and a temp. lowering stage in which the time from the beginning point of the temp. lowering up to the point that the temp. is lowered to 150 deg.C at is adjusted to 24min to 3hr. At this time, the total time of these four stages is adjusted to 50min to 8hr. In this manufacture, a ferrite raw material powder which has a 4,500 to 15,000m<2> Kg BET specific surface arca and a 0.9 to 0.6μm average particle size is used, and the sintered compact contains at least two metal oxides such as oxides of Li and Mg.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、民生機器や通信機など
の高周波用軟磁性部品に使用されるフェライトの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ferrite used in high frequency soft magnetic parts such as consumer appliances and communication devices.

【0002】[0002]

【従来の技術】フェライトの焼成には、従来、バッチ式
焼成炉およびプッシャー式トンネル炉が用いられてき
た。バッチ式焼成炉は、焼成の1サイクル毎に炉内に成
形体を充填して炉を閉じ、所定のプログラムを設定して
焼成し、終了後炉を開いて焼成品を取り出す方式であ
る。このため、多量に製品を焼成する場合には効率的で
ない。これに対しプッシャー式トンネル炉は、成形体を
耐火物でできている台板上に積載し、これを炉の入り口
側から間欠的に1台板ずつ挿入して入炉させ、炉内を台
板が出口側に向かって送られ、焼成を終えて出てきた焼
成体を炉の出口で取り出す方式であり、工業的に生産さ
れているフェライトのほとんどはプッシャー式トンネル
炉で焼成されている。
2. Description of the Related Art Conventionally, a batch type firing furnace and a pusher type tunnel furnace have been used for firing ferrite. The batch-type firing furnace is a system in which a compact is filled into the furnace for each cycle of firing, the furnace is closed, a predetermined program is set and firing is performed, and after completion, the furnace is opened and a fired product is taken out. Therefore, it is not efficient when baking a large amount of products. On the other hand, in the pusher type tunnel furnace, the compacts are loaded on a base plate made of refractory, and one plate is intermittently inserted from the entrance side of the furnace to enter the furnace. This is a method in which a plate is sent toward the exit side, and after firing, the fired body that has come out is taken out at the exit of the furnace, and most of the industrially produced ferrite is fired in a pusher tunnel furnace.

【0003】[0003]

【発明が解決しようとする課題】近年、高周波用軟磁性
部品における低コスト、高品質の要求はますます強まっ
ており、これに使用されるフェライト磁心においても低
コスト、高品質化が望まれている。フェライトの製造に
おいて、焼成工程はかなりの時間を要する工程であり、
焼成工程の時間短縮が生産効率の改善につながるのは明
かである。しかしながら、焼成時間を短くするとフェラ
イト磁心の諸特性が劣化する恐れがあり、部品の信頼性
が損なわれる危険を伴う。本発明は、上記のことを鑑み
て、50分〜8時間という短い焼成時間でも、高い焼結
密度と初透磁率を有するフェライト磁心を得ることが可
能な、Ni―Zn系フェライトの製造方法を提供するこ
とを目的とする。
In recent years, demands for low cost and high quality in high frequency soft magnetic parts have been increasing, and it is desired that the ferrite cores used therefor be low cost and high quality. There is. In the production of ferrite, the firing process is a process that requires a considerable amount of time,
It is clear that shortening the firing process time leads to improved production efficiency. However, if the firing time is shortened, various characteristics of the ferrite core may be deteriorated, and the reliability of the parts may be impaired. In view of the above, the present invention provides a method for producing a Ni-Zn-based ferrite, which can obtain a ferrite core having a high sintering density and an initial permeability even with a short firing time of 50 minutes to 8 hours. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】本発明は、Ni―Zn系
フェライトの製造方法において、室温から600℃まで
の昇温時間を3分以上5時間以内とする脱バインダ工程
と、600℃から焼成温度に達するまでの昇温時間を1
8分以上5時間以内とする昇温工程と、焼成温度に達し
てから降温を開始するまでの時間を5分以上5時間以内
とする恒温工程と、さらに降温開始以降150℃までの
時間を24分以上3時間未満とする降温工程から成り、
かつ前記4工程の時間の総和を50分〜8時間とするも
のである。また、上記のNi―Zn系フェライトの製造
方法に用いられるフェライト原料粉のBET比表面積を
4500〜15000m2/kgとするものである。
The present invention relates to a method for producing a Ni—Zn-based ferrite, which includes a binder removal step of increasing the temperature from room temperature to 600 ° C. for 3 minutes to 5 hours, and firing from 600 ° C. The temperature rise time to reach the temperature is 1
A temperature raising step of 8 minutes or more and 5 hours or less, a constant temperature step of 5 minutes or more and 5 hours or less after reaching the firing temperature, and a time of 150 ° C. or more after starting the temperature reduction are 24 hours. It consists of a temperature lowering process for more than 3 minutes and less than 3 hours,
In addition, the total time of the four steps is set to 50 minutes to 8 hours. Further, the BET specific surface area of the ferrite raw material powder used in the method for producing the above Ni—Zn ferrite is set to 4500 to 15000 m 2 / kg.

【0005】[0005]

【作用】本発明において、フェライトの焼成時間を限定
した理由は、以下の通りである。脱バインダ工程におい
て、室温から600℃までの昇温時間が3分未満の場
合、脱バインダの反応が急激に進行するため、クラック
が発生する。昇温工程および恒温工程において、600
℃から焼成温度に達するまでの昇温時間が18分未満の
場合、あるいは焼成温度に達してから降温を開始するま
での時間が5分未満の場合、緻密化および結晶の成長が
不十分となり、十分な磁気特性および強度が得られなく
なる。降温工程において、降温開始以降150℃までの
時間が24分未満の場合、製品に残留応力が発生した
り、あるいは温度分布の不均一による変形が生じ、上記
と同様に特性が劣化する。前記4工程の時間の総和が8
時間を越える場合、生産効率の改善が不十分となる。よ
って、請求範囲に示す焼成時間が限定される。さらに好
ましくは、室温から600℃までの昇温時間を37分以
上1.5時間以内とする脱バインダ工程と、600℃か
ら焼成温度に達するまでの昇温時間を30分以上1時間
以内とする昇温工程と、焼成温度に達してから降温を開
始するまでの時間を13分以上1時間以内とする恒温工
程と、さらに降温開始以降150℃までの時間を40分
以上1.5時間以内とする降温工程から成り、かつ前記
4工程の時間の総和を120分〜5時間とするものであ
る。また、上記のフェライトの製造方法に用いられるフ
ェライト原料粉のBET比表面積が4500m2/kg
未満の場合、反応の速度が遅いために上記の焼成時間で
は十分な磁気特性および強度が得られなくなる。よっ
て、請求範囲に示すフェライト原料のBET比表面積が
限定される。さらに好ましくは、フェライト原料粉のB
ET比表面積を5000〜7000m2/kgとするも
のである。このBET比表面積が5000〜7000m
2/kgのフェライト原料粉の平均粒径は、空気透過法
による測定で0.9〜0.6μmである。なお、ここで言
うフェライト原料粉とは、粉砕後あるいは焼成前のフェ
ライト原料粉を意味する。本発明による技術が適用され
るフェライトは、主成分として、焼成後にLi、Mg、
Mn、Fe、Co、Ni、CuおよびZnの酸化物とな
る成分を少なくとも2種類以上含むフェライトを意味す
る。また上記成分以外に、副成分として、焼成後にB、
Al、Si、Ca、Ti、V、Cr、Zr、Nb、M
o、In、Sn、Ta、WおよびBiの酸化物となる成
分を含んでも良い。焼成に使用される炉は、本発明の条
件が満たされる焼成が可能であれば特に限定はしない
が、例えばローラハース式連続焼成炉を用いることが好
ましい。このローラハース式連続焼成炉では、炉内に多
数本装着された耐火物製のローラの上に成形体を積載し
た台板を載せ、このローラが回転することにより製品を
入り口から出口まで搬送する。このためプッシャー式ト
ンネル炉のような堅固な台板を必要とせず、軽量で薄い
台板で十分であることから、焼成中の製品の温度差が少
なく、製品の寸法および特性の面で著しく品質が安定す
る。また加熱方法についても、本発明の条件が満たされ
る焼成が可能であれば特に限定はせず、電気加熱方式、
ガス燃焼方式あるいは両方の方式を用いても構わない。
In the present invention, the reason for limiting the firing time of ferrite is as follows. In the binder removal step, when the temperature rise time from room temperature to 600 ° C. is less than 3 minutes, the reaction of binder removal rapidly progresses and cracks occur. 600 in the temperature raising step and the constant temperature step
If the temperature rising time from ℃ to reach the firing temperature is less than 18 minutes, or if the time from reaching the firing temperature to starting the temperature reduction is less than 5 minutes, densification and crystal growth become insufficient, Sufficient magnetic properties and strength cannot be obtained. In the temperature lowering step, if the time from the start of temperature lowering to 150 ° C. is less than 24 minutes, residual stress occurs in the product or deformation due to uneven temperature distribution occurs, and the characteristics deteriorate as in the above. The total time of the 4 steps is 8
If the time is exceeded, the improvement in production efficiency will be insufficient. Therefore, the firing time shown in the claims is limited. More preferably, the binder removal step is performed to increase the temperature from room temperature to 600 ° C. for 37 minutes or more and 1.5 hours or less, and the heating time for reaching the firing temperature from 600 ° C. is 30 minutes or more and 1 hour or less. A temperature raising step, a constant temperature step in which the time from the reaching of the firing temperature to the start of the temperature decrease is 13 minutes or more and within 1 hour, and a time from the start of the temperature decrease to 150 ° C. is 40 minutes or more and within 1.5 hours. And the total time of the four steps is 120 minutes to 5 hours. Further, the BET specific surface area of the ferrite raw material powder used in the above-mentioned ferrite manufacturing method is 4500 m 2 / kg.
If it is less than the above range, sufficient magnetic properties and strength cannot be obtained with the above firing time because the reaction rate is slow. Therefore, the BET specific surface area of the ferrite raw material shown in the claims is limited. More preferably, B of the ferrite raw material powder
The ET specific surface area is set to 5000 to 7000 m 2 / kg. This BET specific surface area is 5000-7000 m
The average particle size of the ferrite raw material powder of 2 / kg is 0.9 to 0.6 μm as measured by the air permeation method. The ferrite raw material powder mentioned here means the ferrite raw material powder after pulverization or before firing. The ferrite to which the technique according to the present invention is applied is mainly composed of Li, Mg, and
It means a ferrite containing at least two kinds of components which become oxides of Mn, Fe, Co, Ni, Cu and Zn. In addition to the above components, B as a sub-component after firing,
Al, Si, Ca, Ti, V, Cr, Zr, Nb, M
A component which becomes an oxide of o, In, Sn, Ta, W and Bi may be included. The furnace used for firing is not particularly limited as long as firing that satisfies the conditions of the present invention is possible, but it is preferable to use, for example, a roller hearth type continuous firing furnace. In this roller hearth type continuous firing furnace, a base plate on which a molded body is loaded is placed on a plurality of refractory rollers mounted in the furnace, and the products are conveyed from an inlet to an outlet by rotating the rollers. Therefore, it does not require a solid base plate such as a pusher type tunnel furnace, and a lightweight and thin base plate is sufficient.Therefore, the temperature difference of the product during firing is small, and the product size and characteristics are remarkably high. Is stable. Also, the heating method is not particularly limited as long as firing that satisfies the conditions of the present invention is possible, and an electric heating method,
A gas combustion method or both methods may be used.

【0006】[0006]

【実施例】以下に、本発明に係るフェライトの焼成方法
の実施例を詳細に説明する。まず、Fe23 49mo
l%、NiO 27mol%、CuO 6mol%およ
びZnO 18mol%相当量の酸化物原料粉末を秤量
し、これを振動ミルにて1時間混合し、電気炉を用いて
最高温度800℃で2時間仮焼した後、これを炉冷し、
40メッシュのふるいで解砕する。しかる後、所定量の
水と分散剤を添加したものを媒体撹拌ミルにて粉砕し、
これに原料に対して2wt%のバインダー(ポリビニル
アルコール)を加え、スプレードライヤにて造粒し、4
0メッシュのふるいにて整粒した顆粒を乾式圧縮成形機
と金型を用いて、外径16.8mm、内径8.5mm、
高さ5.4mmのリング状コアに成形圧1.5ton/
cm2で成形した。これをローラハース式連続焼成炉を
用いて、以下の6種類の焼成条件で焼成した。 焼成条件1 大気中、室温から600℃までを1分、600℃から1
136℃までを7分で昇温し、1136℃で2分間保持
した後、8分で150℃まで降温した(焼成時間18
分)。これを比較例1とする。 焼成条件2 大気中、室温から600℃までを3分、600℃から1
136℃までを7分で昇温し、1136℃で2分間保持
した後、8分で150℃まで降温した(焼成時間20
分)。これを比較例2とする。 焼成条件3 大気中、室温から600℃までを4.5分、600℃か
ら1130℃までを10.5分で昇温し、1130℃で
3分間保持した後、12分で150℃まで降温した(焼
成時間30分)。これを比較例3とする。 焼成条件4 大気中、室温から600℃までを3分、600℃から1
130℃までを18分で昇温し、1130℃で5分間保
持した後、24分で150℃まで降温した(焼成時間5
0分)。これを実施例1とする。 焼成条件5 大気中、室温から600℃までを37分、600℃から
1120℃までを30分で昇温し、1120℃で13分
間保持した後、40分で150℃まで降温した(焼成時
間120分)。これを実施例2とする。 焼成条件6 大気中、室温から600℃までを90分、600℃から
1120℃までを60分で昇温し、1120℃で60分
間保持した後、90分で150℃まで降温した(焼成時
間300分)。これを実施例3とする。また比較例とし
て、BET比表面積の異なるフェライト原料を作製し、
上記と同様の手順で造粒、成形したリング状コアを、ロ
ーラハース式連続焼成炉を用いて焼成条件5と同じ条件
で焼成した。これを比較例4とする。このようにして得
られた焼成体の焼結密度と初透磁率を測定した。それぞ
れ比較例1〜4および実施例1〜3とし、結果を表1に
示す。又、実施例1〜3及び比較例2〜3の初透磁率と
焼成時間の関係を図1に示す。
EXAMPLES Examples of the method for firing ferrite according to the present invention will be described in detail below. First, Fe 2 O 3 49mo
1%, NiO 27 mol%, CuO 6 mol% and ZnO 18 mol% equivalent oxide raw material powders were weighed, mixed for 1 hour in a vibration mill, and calcined at a maximum temperature of 800 ° C. for 2 hours using an electric furnace. After that, cool it in the furnace,
Crush with a 40-mesh sieve. After that, crushed with a medium stirring mill what added a predetermined amount of water and dispersant,
Add 2 wt% of binder (polyvinyl alcohol) to the raw material, granulate with a spray dryer, and
Using a dry compression molding machine and a die, the granules sized by a 0 mesh sieve were used, with an outer diameter of 16.8 mm, an inner diameter of 8.5 mm,
Molding pressure 1.5ton / on a ring-shaped core with a height of 5.4mm
It was molded in cm 2 . This was fired using a roller hearth continuous firing furnace under the following six firing conditions. Firing condition 1 In the air, room temperature to 600 ° C for 1 minute, 600 ° C to 1
The temperature was raised to 136 ° C. in 7 minutes, held at 1136 ° C. for 2 minutes, and then lowered to 150 ° C. in 8 minutes (calcination time 18
Minutes). This is referred to as Comparative Example 1. Firing condition 2 In the air, from room temperature to 600 ° C for 3 minutes, from 600 ° C to 1
The temperature was raised to 136 ° C. in 7 minutes, held at 1136 ° C. for 2 minutes, and then lowered to 150 ° C. in 8 minutes (calcination time 20
Minutes). This is Comparative Example 2. Firing condition 3 In the air, the temperature was raised from room temperature to 600 ° C in 4.5 minutes, from 600 ° C to 1130 ° C in 10.5 minutes, held at 1130 ° C for 3 minutes, and then lowered to 150 ° C in 12 minutes. (Baking time 30 minutes). This is Comparative Example 3. Firing condition 4 In the air, room temperature to 600 ° C for 3 minutes, 600 ° C to 1
The temperature was raised to 130 ° C. in 18 minutes, held at 1130 ° C. for 5 minutes, and then lowered to 150 ° C. in 24 minutes (calcination time 5
0 minutes). This is Example 1. Firing condition 5 In the air, the temperature was raised from room temperature to 600 ° C. in 37 minutes, from 600 ° C. to 1120 ° C. in 30 minutes, held at 1120 ° C. for 13 minutes, and then lowered to 150 ° C. in 40 minutes (firing time 120 Minutes). This is Example 2. Firing condition 6 In the air, the temperature was raised from room temperature to 600 ° C. in 90 minutes, from 600 ° C. to 1120 ° C. in 60 minutes, held at 1120 ° C. for 60 minutes, and then lowered to 150 ° C. in 90 minutes (firing time 300 Minutes). This is Example 3. As a comparative example, ferrite raw materials having different BET specific surface areas were prepared,
The ring-shaped core granulated and molded in the same procedure as described above was fired under the same conditions as firing condition 5 using a roller hearth type continuous firing furnace. This is Comparative Example 4. The sintered density and the initial magnetic permeability of the fired body thus obtained were measured. The results are shown in Table 1 as Comparative Examples 1 to 4 and Examples 1 to 3, respectively. Further, FIG. 1 shows the relationship between the initial magnetic permeability and the firing time in Examples 1 to 3 and Comparative Examples 2 to 3.

【0007】[0007]

【表1】 [Table 1]

【0008】次に、Fe23 49mol%、NiO
17mol%、CuO 6mol%およびZnO 28
mol%相当量の酸化物原料粉末を秤量し、上記実施例
と同一手順でリング状コアを成形した。これを、上記実
施例と同様の条件で焼成を行い、得られた焼成体の焼結
密度と初透磁率を測定した。それぞれ比較例5〜8およ
び実施例4〜6とし、結果を表2に示す。又、実施例4
〜6及び比較例6〜7の初透磁率と焼成時間の関係を図
2に示す。
Next, Fe 2 O 3 49 mol% and NiO
17 mol%, CuO 6 mol% and ZnO 28
An oxide raw material powder in an amount corresponding to mol% was weighed, and a ring-shaped core was formed by the same procedure as in the above-mentioned example. This was fired under the same conditions as in the above example, and the sintered density and initial magnetic permeability of the obtained fired body were measured. The results are shown in Table 2 as Comparative Examples 5 to 8 and Examples 4 to 6, respectively. Example 4
6 and Comparative Examples 6 to 7 show the relationship between the initial magnetic permeability and the firing time.

【0009】[0009]

【表2】 [Table 2]

【0010】さらに、Fe23 49mol%、NiO
15mol%、CuO 6mol%およびZnO 3
0mol%相当量の酸化物原料粉末を秤量し、上記実施
例と同一手順でリング状コアを成形した。これを、上記
実施例と同様の条件で焼成を行い、得られた焼成体の焼
結密度と初透磁率を測定した。それぞれ比較例9〜12
および実施例7〜9とし、結果を表3に示す。又、実施
例7〜9及び比較例10〜11の初透磁率と焼成時間の
関係を図3に示す。
Further, Fe 2 O 3 49 mol%, NiO
15 mol%, CuO 6 mol% and ZnO 3
An oxide raw material powder in an amount equivalent to 0 mol% was weighed, and a ring-shaped core was formed by the same procedure as in the above-mentioned example. This was fired under the same conditions as in the above example, and the sintered density and initial magnetic permeability of the obtained fired body were measured. Comparative Examples 9 to 12
And Examples 7 to 9 and the results are shown in Table 3. Further, the relationship between the initial magnetic permeability and the firing time in Examples 7 to 9 and Comparative Examples 10 to 11 is shown in FIG.

【0011】[0011]

【表3】 [Table 3]

【0012】表1〜3より、室温から600℃までの昇
温時間が3分未満の場合、焼成体にクラックが発生し、
部品の信頼性が低くなることが判る。600℃から焼成
温度に達するまでの時間が18分未満の場合、焼成温度
に達してから降温を開始するまでの時間が5分未満の場
合、あるいは降温開始以降150℃までの時間が24分
未満の場合、焼結密度および初透磁率が低くなり品質の
高い部品が得られなくなる。また、BET比表面積が4
500m2/kg未満のフェライト原料粉を用いる場
合、焼結密度および初透磁率が低くなり品質の高い部品
が得られなくなることが明かである。以上の結果から、
本発明のフェライトの製造方法により、高い初透磁率と
焼結密度を有するフェライトが50分〜8時間という短
い焼成時間で得られ、生産効率が改善されコストが低減
されることが明かである。
From Tables 1 to 3, when the temperature rising time from room temperature to 600 ° C. is less than 3 minutes, cracks occur in the fired body,
It can be seen that the reliability of the parts is low. If the time from 600 ° C to the firing temperature is less than 18 minutes, if the time from reaching the firing temperature to starting the cooling is less than 5 minutes, or from the start of cooling to 150 ° C is less than 24 minutes In the case of, the sintered density and the initial magnetic permeability become low, and it becomes impossible to obtain high quality parts. Also, the BET specific surface area is 4
It is clear that when a ferrite raw material powder of less than 500 m 2 / kg is used, the sintered density and the initial magnetic permeability become low, and high quality parts cannot be obtained. From the above results,
It is apparent that the method for producing a ferrite of the present invention can obtain a ferrite having a high initial magnetic permeability and a high sintering density in a short firing time of 50 minutes to 8 hours, improving the production efficiency and reducing the cost.

【0013】[0013]

【発明の効果】本発明によれば、焼結密度と初透磁率が
ともに高いフェライト磁心が、50分〜8時間という短
い焼成時間で得られ、フェライトの製造において、コス
トの低減と生産効率の改善に非常に有利である。
EFFECTS OF THE INVENTION According to the present invention, a ferrite core having a high sintered density and a high initial permeability can be obtained in a short firing time of 50 minutes to 8 hours. Very advantageous for improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における実施例1〜3及び比較例2〜3
の初透磁率と焼成時間の関係を表す図である。
FIG. 1 is a schematic diagram of Examples 1 to 3 and Comparative Examples 2 to 3 of the present invention.
It is a figure showing the relationship of the initial magnetic permeability and baking time.

【図2】本発明における実施例4〜6及び比較例6〜7
の初透磁率と焼成時間の関係を表す図である。
FIG. 2 shows Examples 4 to 6 and Comparative Examples 6 to 7 in the present invention.
It is a figure showing the relationship of the initial magnetic permeability and baking time.

【図3】本発明における実施例7〜9及び比較例10〜
11の初透磁率と焼成時間の関係を表す図である。
FIG. 3 is a schematic diagram of Embodiments 7 to 9 and Comparative Examples 10 of the present invention.
It is a figure showing the relationship of the initial magnetic permeability of No. 11, and baking time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni―Zn系フェライトの焼成におい
て、室温から600℃までの昇温時間を3分以上5時間
以内とする脱バインダ工程と、600℃から焼成温度に
達するまでの昇温時間を18分以上5時間以内とする昇
温工程と、焼成温度に達してから降温を開始するまでの
時間を5分以上5時間以内とする恒温工程と、さらに降
温開始以降150℃までの時間を24分以上3時間未満
とする降温工程から成り、かつ前記4工程の時間の総和
を50分〜8時間とすることを特徴とするNi―Zn系
フェライトの製造方法。
1. In the firing of a Ni—Zn-based ferrite, a binder removal step in which a temperature rising time from room temperature to 600 ° C. is 3 minutes or more and 5 hours or less, and a temperature rising time from 600 ° C. to the firing temperature are included. A temperature raising step of 18 minutes or more and 5 hours or less, a constant temperature step of 5 minutes or more and 5 hours or less after reaching the firing temperature, and a temperature of 150 ° C. or more after starting the temperature reduction are 24 hours. A method for producing a Ni-Zn-based ferrite, comprising a temperature lowering step of not less than 3 minutes and less than 3 hours, and a total time of the 4 steps being 50 minutes to 8 hours.
【請求項2】 請求項1に記載のNi―Zn系フェライ
トの製造方法において、BET比表面積が4500〜1
5000m2/kgのフェライト原料粉を用いることを
特徴とするNi―Zn系フェライトの製造方法。
2. The method for producing a Ni—Zn ferrite according to claim 1, wherein the BET specific surface area is 4500 to 1
A method for producing a Ni-Zn-based ferrite, which comprises using a ferrite raw material powder of 5000 m 2 / kg.
JP7099530A 1995-03-30 1995-03-30 Method for producing Ni-Zn ferrite Expired - Fee Related JP2934589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7099530A JP2934589B2 (en) 1995-03-30 1995-03-30 Method for producing Ni-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7099530A JP2934589B2 (en) 1995-03-30 1995-03-30 Method for producing Ni-Zn ferrite

Publications (2)

Publication Number Publication Date
JPH08268748A true JPH08268748A (en) 1996-10-15
JP2934589B2 JP2934589B2 (en) 1999-08-16

Family

ID=14249784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7099530A Expired - Fee Related JP2934589B2 (en) 1995-03-30 1995-03-30 Method for producing Ni-Zn ferrite

Country Status (1)

Country Link
JP (1) JP2934589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446414A (en) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 Ferrite magnetic material for heat-sensitive sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446414A (en) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 Ferrite magnetic material for heat-sensitive sensor

Also Published As

Publication number Publication date
JP2934589B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
JP2934589B2 (en) Method for producing Ni-Zn ferrite
US5698145A (en) Method for producing Mn-Zn ferrites
JP4215992B2 (en) Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component
US3458927A (en) Method for improving the switching coefficient of ferrites with hysteresis loops of rectangular shape
CN109734432B (en) Vehicle-mounted wide-temperature stress-resistant ferrite material, magnetic core and manufacturing method of magnetic core
JPH11307336A (en) Manufacture of soft magnetic ferrite
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
JP3871149B2 (en) Manufacturing method of low-loss ferrite sintered body
CN108892501B (en) Ferrite material and preparation method thereof
JP2003112969A (en) METHOD FOR PRODUCING Mn-Zn FERRITE
JP2005277179A (en) Method for manufacturing ferrite cores
JPH06112033A (en) Manufacture of ferrite material
JPH1143375A (en) Production of setter for sintering soft ferrite
JPH0971455A (en) Ferrite material and its production
JPH07320923A (en) Manufacturing method of mn-zn ferrite
JP3024891B2 (en) Method for producing Mn-Zn ferrite
JP3488742B2 (en) Manufacturing method of soft ferrite
JPH0827571A (en) Production of storontium titanate target
JPH08301652A (en) Production of manganese-zinc ferrite forming
JP3230414B2 (en) Method of manufacturing magnetic core and method of manufacturing inductor
JPH06260321A (en) Sintered ferrite with fine crystalline grains and manufacture thereof
JPH0831628A (en) Manufacture of high-frequency low-loss oxide magnetic material
JPH07126015A (en) Production of ni-zn ferrite powder
JPH0574623A (en) High permeability magnetic material and its manufacture
JPH0653022A (en) Manufacture of high density ferrite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees