JPH08267265A - Thin film machining device - Google Patents

Thin film machining device

Info

Publication number
JPH08267265A
JPH08267265A JP7072909A JP7290995A JPH08267265A JP H08267265 A JPH08267265 A JP H08267265A JP 7072909 A JP7072909 A JP 7072909A JP 7290995 A JP7290995 A JP 7290995A JP H08267265 A JPH08267265 A JP H08267265A
Authority
JP
Japan
Prior art keywords
thin film
laser beam
laser
processing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7072909A
Other languages
Japanese (ja)
Inventor
Kiyoo Saito
清雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP7072909A priority Critical patent/JPH08267265A/en
Publication of JPH08267265A publication Critical patent/JPH08267265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laser Beam Processing (AREA)
  • Photovoltaic Devices (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE: To increase utilizing efficiency of laser optical system by rotating the line connecting irradiating points in a prescribed angle in the case a thin film laminate body is machined by irradiating it on one line with plural laser beam. CONSTITUTION: A laser beam from an oscillator 1 is split into an output ratio of roughly 7:3 by a beam splitter 2 and adjusted to respective prescribed output by output regulators 81, 82 and guided to optical fibers 41, 42. Out of two laser beams 12, 13, the laser beam 12 having higher output is passed into a small diameter round slit 61 and the laser beam 13 having lower output is passed into a large diameter round slit 62 through a beam expander 5. Successively, a machining device is laid on a base board so that the arraying direction of condensing lenses 71, 72 is coincided with the machining direction, irradiation of laser beams 12, 13 is executed. Next, by shifting a machining device in traverse direction and overlapping the machining direction right under the arraying direction of condensing lenses 71, 72, as soon as a beam splitter 2 is moved, a beam splitter 3 having adverse splitting ratio is rentered in the optical path of laser beam 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜太陽電池の製造な
どのために、基板上に積層した薄膜を分離加工するのに
用いる薄膜加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film processing apparatus used for separating and processing a thin film laminated on a substrate for manufacturing a thin film solar cell or the like.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成される非晶質半導体薄膜は、気相成長法で形成
できるために、大面積化が容易であること、また、形成
温度が低いために樹脂のような可とう性を有する基板に
形成できるという特徴を有している。この非晶質半導体
を使用する代表的な薄膜素子として、薄膜太陽電池があ
る。薄膜太陽電池は、絶縁基板上に導電膜を形成した後
に、非晶質半導体膜、導電膜を順次積層形成して構成さ
れる。導電膜の少なくとも一方が透明導電膜にされ、こ
の透明導電膜側から太陽光を入射する。従来は、この薄
膜太陽電池を複数個に分割し、分割された薄膜太陽電池
相互を直列に接続することにより、取出し電圧を設定し
ていた。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo-CVD can be formed by a vapor phase growth method, so that its area can be easily increased and its formation temperature is low. Therefore, it has a feature that it can be formed on a substrate having flexibility such as resin. A thin film solar cell is a typical thin film element using this amorphous semiconductor. The thin film solar cell is formed by forming a conductive film on an insulating substrate, and then sequentially stacking an amorphous semiconductor film and a conductive film. At least one of the conductive films is made into a transparent conductive film, and sunlight is incident from this transparent conductive film side. Conventionally, the extraction voltage has been set by dividing the thin film solar cell into a plurality of pieces and connecting the divided thin film solar cells in series.

【0003】図2は薄膜太陽電池サブモジュールの一例
を示し、 (a) は平面図、 (b) は(a) のA−A線断
面図である。このサブモジュールは三つの単位太陽電池
20よりなる。各単位太陽電池20は、絶縁性基板21
の上に、銀からなる第一電極22、アモルファスシリコ
ンを主体とする非晶質半導体層23、透明な第二電極層
24を積層し、その上に櫛形に印刷された集電電極層5
を設けた同一構造を有し、基板21上の接続電極26に
より直列接続される。この同一構造を形成するために基
板上に積層した第一電極層、非晶質半導体層、第二電極
層を分離加工して複数の単位太陽電池にする必要があ
る。この分離加工をするのに、まず下地の第一電極層2
2の、例えば100μmの幅を広くレーザ加工で除去分
離し、その後に、非晶質半導体層23および第二電極層
24を形成し、第一電極層22の前記の幅広く除去分離
した部分の真上で非晶質半導体層23および第二電極層
24を第一電極層21の除去分離よりも幅が狭いレーザ
光を用いて、例えば50μmの幅で分離加工して第一電
極層と第二電極層の短絡を防いでいた。しかし、このよ
うな分離加工は、2回のレーザ加工の位置を高精度で合
わせなければならず、位置合わせが難しい。
2A and 2B show an example of a thin film solar cell submodule. FIG. 2A is a plan view and FIG. 2B is a sectional view taken along line AA of FIG. This submodule consists of three unit solar cells 20. Each unit solar cell 20 has an insulating substrate 21.
A first electrode 22 made of silver, an amorphous semiconductor layer 23 mainly composed of amorphous silicon, and a transparent second electrode layer 24 are laminated on top of this, and a current collecting electrode layer 5 printed in a comb shape thereon.
Are connected in series by the connection electrode 26 on the substrate 21. In order to form this same structure, it is necessary to separate the first electrode layer, the amorphous semiconductor layer, and the second electrode layer laminated on the substrate into a plurality of unit solar cells. To perform this separation process, first, the underlying first electrode layer 2
2, the amorphous semiconductor layer 23 and the second electrode layer 24 are formed by removing and separating a wide width of, for example, 100 μm by laser processing, and the portion of the first electrode layer 22 which has been widely removed and separated is removed. The amorphous semiconductor layer 23 and the second electrode layer 24 are separated and processed with a width of, for example, 50 μm by using a laser beam having a width narrower than that of the removal separation of the first electrode layer 21. The short circuit of the electrode layer was prevented. However, in such a separation process, the positions of the two laser processes must be aligned with high accuracy, and alignment is difficult.

【0004】こうした問題点に対処するために、特願平
6−51473号明細書に記載された方法は、図3に示
すように、加工レーザ出力密度およびレーザ加工径の違
う二つのレーザ光線31、32を加工方向33に一線上
に配置し、出力密度が高く、加工径が例えば50〜10
0μmと小さいレーザ光線31で第一電極層22、非晶
質半導体層23、第二電極層24を分離し、出力密度が
低く、加工径が例えば200〜400μmと大きいレー
ザ光線32で表面の第二電極層24を幅広く除去した。
このような加工を行った結果、2回に分けて行ったレー
ザ加工が1回の加工ですむようになった。
In order to cope with such a problem, the method disclosed in Japanese Patent Application No. 6-51473 discloses two laser beams 31 having different processing laser output densities and laser processing diameters, as shown in FIG. , 32 are arranged on the straight line in the machining direction 33, the output density is high, and the machining diameter is, for example, 50 to 10.
The first electrode layer 22, the amorphous semiconductor layer 23, and the second electrode layer 24 are separated by a laser beam 31 having a small value of 0 μm, and the laser beam 32 having a low output density and a large processing diameter of, for example, 200 to 400 μm is applied to the first surface of the surface. The two-electrode layer 24 was widely removed.
As a result of performing such processing, the laser processing performed in two times can be performed only once.

【0005】[0005]

【発明が解決しようとする課題】図3のようなレーザ加
工を行うためには、例えば前記明細書に添付された図面
に含まれる図4に示す一つの発振器34に連なるレーザ
光学系を用いる。すなわち、一つの発振器34から出た
レーザ光35をビームスプリッタ36により等分して光
ファイバ37に導き、その光ファイバ37から出た光を
一方はそのまま集光レンズ38に導き、他方はエキスパ
ンダレンズ39により拡大したあとに集光レンズ38に
導く。前者の光は図3の第一レーザ光31として、エキ
スパンダレンズ39を経たビーム径の大きい後者の光は
第二レーザ光32として用いることができる。
In order to perform the laser processing as shown in FIG. 3, for example, a laser optical system connected to one oscillator 34 shown in FIG. 4 included in the drawings attached to the above specification is used. That is, the laser light 35 emitted from one oscillator 34 is equally divided by the beam splitter 36 and guided to the optical fiber 37. One of the light emitted from the optical fiber 37 is guided to the condenser lens 38 as it is and the other is expanded. After being magnified by the lens 39, it is guided to the condenser lens 38. The former light can be used as the first laser light 31 in FIG. 3, and the latter light having a large beam diameter after passing through the expander lens 39 can be used as the second laser light 32.

【0006】しかし、このような装置を用いて分離加工
をする場合、一つのパターニングラインの加工をしたあ
と、基板あるいは光学系を次のパターニングラインの加
工のために横に移動させると共に縦方向にも加工の出発
点の位置まで戻さねばならず、高価な装置の利用効率が
低く、加工に時間がかかり、生産性が良くない欠点があ
った。
However, in the case of performing separation processing using such an apparatus, after processing one patterning line, the substrate or the optical system is moved horizontally for processing the next patterning line and is moved vertically. However, there is a drawback in that the efficiency of using an expensive device is low, the processing takes a long time, and the productivity is not good, because it has to be returned to the position of the starting point of the processing.

【0007】本発明の目的は上記の欠点を除き、レーザ
光学系の利用効率が高く生産性を向上できる薄膜加工装
置を提供することにある。
An object of the present invention is to provide a thin film processing apparatus which eliminates the above-mentioned drawbacks and which has high utilization efficiency of a laser optical system and can improve productivity.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、一つの本発明は、薄膜の積層体に対して一つのレ
ーザ光線を複数の光線に分割し、分割された各光線を加
工方向に一線上に配列された加工点に照射してそれぞれ
所定の条件で積層体の層の全部あるいは一部を加工する
薄膜加工装置において、各光線の照射点をつなぐ線がそ
れぞれの光線の加工条件を変えないで所定の角度回転可
能であるものとする。そのために、一つのレーザ光線を
所定の比で二つの光線に分割する分光器と、前記所定の
比の逆の比で二つの光線に分割する分光器とを、原レー
ザ光線の光路中で交互に入替える機構を備え、二つの光
線の照射点をつなぐ線が180°回転可能であることが
良い。一つのレーザ光線より分割された二つの光線のう
ちの一つの光線の光路中に挿入されるビームエキスパン
ダを他の光線の光路中に移す機構と、二つの光線の光路
中にそれぞれ挿入される異なる開口径をもつ二つのスリ
ットを交互に入替える機構とを備え、二つの光線の照射
点をつなぐ線が180°回転可能であることも良い。一
つのレーザ光線より分割された複数の光線の照射端に至
る光路中にそれぞれ光ファイバを備え、この光ファイバ
より先の光路に存在し、一線上に配列された部材をつな
ぐ線が任意の角度回転可能であることも有効である。別
の本発明は、薄膜の積層体に対して一つのレーザ光線よ
り分割された複数の光線を照射してそれぞれ所定の条件
で積層体の全部あるいは一部を加工する薄膜加工装置に
おいて、加工のために分割した各光線を同一点に照射す
るものとする。
In order to achieve the above-mentioned object, one of the present invention is to divide one laser beam into a plurality of light beams for a laminated body of thin films and process each divided light beam. In a thin film processing device that irradiates processing points arranged in a line in a direction to process all or part of the layers of the laminated body under predetermined conditions, the line connecting the irradiation points of each light beam is the processing of each light beam. It is possible to rotate a predetermined angle without changing the conditions. Therefore, a spectroscope that splits one laser beam into two beams with a predetermined ratio and a spectroscope that splits the laser beam into two beams with an inverse ratio of the predetermined ratio are alternated in the optical path of the original laser beam. It is preferable that the line connecting the irradiation points of the two light beams be rotatable by 180 °, by providing a mechanism for switching the light beams. A mechanism that moves the beam expander that is inserted into the optical path of one of the two light beams split from one laser beam into the optical path of the other light beam, and that is inserted into the optical paths of the two light beams. It is also possible to provide a mechanism for alternately replacing two slits having different opening diameters, and to rotate the line connecting the irradiation points of the two light rays by 180 °. An optical fiber is provided in the optical path from the single laser beam to the irradiation end of multiple beams, and the line that exists in the optical path ahead of this optical fiber and that connects the members arranged in a line is at an arbitrary angle. It is also effective to be rotatable. Another aspect of the present invention is a thin film processing apparatus for irradiating a plurality of light beams split from a single laser beam to a thin film stack to process all or part of the stack under predetermined conditions. Therefore, each of the divided light beams is applied to the same point.

【0009】[0009]

【作用】複数のレーザ光線を一線上で照射して薄膜積層
体の各層の全部あるいは一部をそれぞれ異なる条件で加
工する場合に、その照射点をつなぐ線を所定の角度だけ
回転させることが可能になれば、一つの加工線に対する
加工が終わったのちに光学系を大きく移動させることな
く所定の角度だけ異なる方向の加工線に対して加工する
ことができる。照射点をつなぐ線を180°回転すれ
ば、行き帰りの加工ができ、90°回転すれば直交する
方向の加工ができる。180°回転するためには、強さ
の異なる二つの光線に分割する分光器を逆の比のものと
入替え、あるいは加工径の異なる二つの光線を形成する
ビームエキスパンダを移動させ、スリットを入替える。
分割された光線の光路中に可とう性の光ファイバがあれ
ば、それより先の光路に存在し、一線上にある部材のつ
なぐ線を回転させることにより、任意の角度だけ加工方
向を変える。
When a plurality of laser beams are irradiated on one line to process all or part of each layer of the thin film laminate under different conditions, the line connecting the irradiation points can be rotated by a predetermined angle. In this case, after the processing for one processing line is completed, it is possible to perform processing for processing lines in different directions by a predetermined angle without largely moving the optical system. If the line connecting the irradiation points is rotated by 180 °, it is possible to carry out the machining in and out, and if it is rotated by 90 °, the machining in the orthogonal direction can be carried out. To rotate by 180 °, replace the spectroscope that splits the two rays with different intensities with one with the opposite ratio, or move the beam expander that forms the two rays with different processing diameters and insert the slit. Change.
If there is a flexible optical fiber in the optical path of the divided light rays, the processing direction is changed by an arbitrary angle by rotating the connecting line of the members existing in the optical path ahead of that and being in line.

【0010】異なる条件で加工する複数の光線が同一点
に照射されれば、その照射点を任意の方向に移動させる
ことにより、加工方向を任意に変えることができる。
If a plurality of light rays to be processed under different conditions are applied to the same point, the processing direction can be changed arbitrarily by moving the irradiation point in an arbitrary direction.

【0011】[0011]

【実施例】以下、図を引用して本発明の実施例について
述べる。図1は本発明の一実施例のレーザ加工装置を示
す。この装置は、レーザ発振器1と2個の光を一定比率
で分割するビームスプリッタ2、3、2本の光ファイバ
41、42、一方の光ファイバ42に接続されるビーム
エキスパンダ5、2種類の口径をもつスリット61、6
2が開けられたスリット板6および2個の集光レンズ7
1、72よりなる。そのほかに、発振器1から出た光線
11から分割されて光ファイバ41、42に入る光の出
力を微調整する出力調整器81、82を挿入してもよ
い。ビームスプリッタ2、3は、光の分割する比率が逆
であり、光線11の光路に交互に入替えることができ
る。スリット板6には大きな口径のスリット61が2
個、小さな口径62が1個開けられており、光線12、
13の光路に入るスリットの口径を交互に入替えること
ができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a laser processing apparatus according to an embodiment of the present invention. This device includes a laser oscillator 1, a beam splitter 2, 3, two optical fibers 41, 42 for splitting two lights at a constant ratio, a beam expander 5 connected to one optical fiber 42, and two types of beam expanders. Slits 61 and 6 with caliber
Slit plate 6 with two openings and two condenser lenses 7
It consists of 1, 72. In addition, output regulators 81 and 82 that finely adjust the output of light that is split from the light beam 11 emitted from the oscillator 1 and enters the optical fibers 41 and 42 may be inserted. The beam splitters 2 and 3 have opposite light splitting ratios, and can be alternately switched to the optical path of the light beam 11. The slit plate 6 has two large slits 61.
One, a small aperture 62 is opened, the light beam 12,
The diameters of the slits entering the optical path of 13 can be interchanged.

【0012】図5 (a) 、 (b) は図1の装置を用いて
本発明の一実施例により製造された薄膜太陽電池モジュ
ールで、 (a) は平面図、 (b) は (a) のB−B線断
面図であり、図2と共通の部分には同一の符号が付され
ている。この太陽電池は、可とう性を有するポリイミド
フィルム基板21上に、第一電極層22、非晶質半導体
層23、第二電極層24および印刷電極25を順次形成
して構成した。この薄膜太陽電池の直列接続を形成する
ために、第一電極層、非晶質半導体層、第二電極層を図
1のレーザ加工装置を用いて加工した。加工にはYA
G:Ndレーザの第二高調波を用い、発振器1から出射
したレーザ光線を7対3の出力比に分割するビームスプ
リッタ2を用いて分割し、分割したレーザ光線は出力調
整器81、82を用いて、各々所定のレーザ出力に調整
し、光ファイバ41、42に導く。光ファイバから出た
二つのレーザ光線12、13の内、出力が高いレーザ光
線12を、直径0.5mmの小口径円形スリット61に通
し、出力が低いレーザ光線13をビームエキスパンダ5
を経て直径2.0mmの大口径円形スリット62に通す。
そして、集光レンズ71、72の配列方向に加工方向2
7が一致するように基板上に加工装置を配置し、レーザ
光線12、13を加工方向に移動して照射する。そし
て、加工出力が高く小口径のレーザ光線12で走査し
て、第一電極層22、非晶質半導体層23、第二電極層
24を加工除去し、加工出力が低く大口径のレーザ光線
13で走査して第二電極層24のみを分離加工する。こ
のような加工を行うことにより、レーザ加工された端部
による第一電極層22と第二電極層24の電気的接触を
防ぐことができる。次に、基板の向きを変えないで加工
装置を基板に対して横方向にずらし、集光レンズ71、
72の配列方向の直下に加工方向28が重なるように
し、ビームスプリッタ2を点線の位置まで矢印91方向
に動かすと同時に、逆の分割比を有するビームスプリッ
タ3をレーザ光線11の光路に入れる。これと連動して
ビームエキスパンダ5およびスリット板6を矢印92の
方向に動かし、スリット板6の直前の光線12,13の
径および円形スリット61、62の位置径も行きの加工
と逆にする。このようにして逆の加工方向28の加工を
することにより、加工方向27の加工と全く同様の加工
ができ、基板の向きを変えないで行き帰り加工する場合
の加工状態の違いに伴う薄膜太陽電池の性能低下を阻止
する。
FIGS. 5 (a) and 5 (b) are thin-film solar cell modules manufactured according to an embodiment of the present invention using the apparatus of FIG. 1, (a) is a plan view, and (b) is (a). 3 is a cross-sectional view taken along line BB of FIG. 2, and the same parts as those in FIG. 2 are denoted by the same reference numerals. This solar cell was configured by sequentially forming a first electrode layer 22, an amorphous semiconductor layer 23, a second electrode layer 24, and a printed electrode 25 on a flexible polyimide film substrate 21. In order to form a series connection of the thin film solar cells, the first electrode layer, the amorphous semiconductor layer, and the second electrode layer were processed using the laser processing device shown in FIG. YA for processing
The second harmonic of the G: Nd laser is used to split the laser beam emitted from the oscillator 1 using the beam splitter 2 for splitting the output ratio to 7: 3, and the split laser beam is output to the output adjusters 81 and 82. Each of them is adjusted to a predetermined laser output and guided to the optical fibers 41 and 42. Of the two laser beams 12 and 13 emitted from the optical fiber, the laser beam 12 having a high output is passed through the small-diameter circular slit 61 having a diameter of 0.5 mm, and the laser beam 13 having a low output is transmitted to the beam expander 5
And pass through a large-diameter circular slit 62 having a diameter of 2.0 mm.
Then, the processing direction 2 is set in the arrangement direction of the condenser lenses 71 and 72.
A processing device is arranged on the substrate so that 7 coincide with each other, and the laser beams 12 and 13 are moved and irradiated in the processing direction. Then, the laser beam 12 having a high processing output and a small diameter is scanned to process and remove the first electrode layer 22, the amorphous semiconductor layer 23, and the second electrode layer 24, and the laser beam 13 having a low processing output and a large diameter is used. Then, the second electrode layer 24 alone is processed by scanning. By performing such processing, it is possible to prevent electrical contact between the first electrode layer 22 and the second electrode layer 24 due to the laser-processed end portion. Next, the processing device is laterally displaced with respect to the substrate without changing the orientation of the substrate, and the condenser lens 71,
The processing direction 28 is made to overlap immediately below the arrangement direction of 72, and the beam splitter 2 is moved to the position of the dotted line in the direction of arrow 91, and at the same time, the beam splitter 3 having the opposite division ratio is put in the optical path of the laser beam 11. In conjunction with this, the beam expander 5 and the slit plate 6 are moved in the direction of the arrow 92, and the diameters of the light rays 12 and 13 immediately before the slit plate 6 and the position diameters of the circular slits 61 and 62 are also reversed from the conventional machining. . By performing the processing in the opposite processing direction 28 in this manner, the same processing as the processing in the processing direction 27 can be performed, and the thin film solar cell according to the difference in the processing state when performing the return processing without changing the orientation of the substrate. Prevent the performance degradation of.

【0013】図6は本発明の別の実施例のレーザ加工装
置を示し、図1と共通の部分には同一の符号が付されて
いる。この装置では、二つのビームスプリッタ2、3を
用いる代わりに、光ファイバ41、42が可とう性を有
することを利用し、光ファイバより先のビームエキスパ
ンダ5、スリット61、62、集光レンズ71、72の
部分10を矢印93のように回転させ、常に加工状態を
同様にするようにし、ビームスプリッタ2、1個のみを
用いた。この装置を用いれば、上述のような行き帰り加
工ばかりでなく、基板上の任意の方向、例えば加工方向
27、28に直交する方向の加工も回動部分10を90
°回すことにより可能である。
FIG. 6 shows a laser processing apparatus according to another embodiment of the present invention, in which the same parts as those in FIG. 1 are designated by the same reference numerals. In this device, instead of using the two beam splitters 2 and 3, the flexibility of the optical fibers 41 and 42 is utilized, and the beam expander 5, the slits 61 and 62, and the condenser lens ahead of the optical fibers are used. The portions 10 of 71 and 72 were rotated as indicated by arrow 93 so that the processed state was always the same, and only one beam splitter 2 was used. By using this apparatus, not only the above-described return processing, but also the processing in any direction on the substrate, for example, in the direction orthogonal to the processing directions 27 and 28, can be performed by rotating the rotating portion 10 to 90.
It is possible by turning °.

【0014】図7は本発明のさらに別の実施例のレーザ
加工装置を示し、図1、図6と共通の部分には同一の符
号が付されている。この装置では、加工出力および加工
径の異なる二つのレーザ光線を合成して照射する。すな
わち、発振器1から出射するレーザ光線11には、YA
G:Ndレーザの第二高調波を用い、このレーザ光線1
1を7対3の出力比に分割するビームスプリッタ2を用
いて分割し、分割したレーザ光12、13を出力調整器
81、82を用いて、各々所定のレーザ出力に調整し、
光ファイバ41、42に導く。光ファイバ41から出た
出力が高いレーザ光線12は、直径0.5mmの小口径円
形スリット61を通し、出力が低いレーザ光線13は、
直径2.0mmの大口径円形スリット62を通す。最後に
加工点で分割した2つのレーザ光線が重なるように配置
した集光レンズ71、72に加工出力および加工径を調
整したレーザ光線12、13をそれぞれ導く。こうする
ことにより、つねに同様の加工状態で、加工点の基板に
対する移動方向によりあらゆる方向の加工が可能とな
る。
FIG. 7 shows a laser processing apparatus according to still another embodiment of the present invention, and the same parts as those in FIGS. 1 and 6 are designated by the same reference numerals. In this device, two laser beams having different processing outputs and processing diameters are combined and irradiated. That is, the laser beam 11 emitted from the oscillator 1 contains YA
This laser beam 1 using the second harmonic of a G: Nd laser
1 is split using a beam splitter 2 that splits an output ratio of 7 to 3, and the split laser beams 12 and 13 are adjusted to predetermined laser outputs using output adjusters 81 and 82, respectively.
It leads to the optical fibers 41 and 42. The high power laser beam 12 emitted from the optical fiber 41 passes through the small diameter circular slit 61 having a diameter of 0.5 mm, and the low power laser beam 13 is
A large diameter circular slit 62 having a diameter of 2.0 mm is passed through. Finally, the laser beams 12 and 13 whose processing output and processing diameter have been adjusted are guided to the condenser lenses 71 and 72 arranged so that the two laser beams divided at the processing point overlap. By doing so, it is possible to perform processing in all directions depending on the moving direction of the processing point with respect to the substrate in the same processing state.

【0015】[0015]

【発明の効果】本発明によれば、薄膜の積層体の層の全
部あるいは一部をそれぞれの加工条件で加工するための
レーザ光線を一つの発振器からのレーザ光線より分割し
て形成し、一線上に配列した加工点に照射する場合に、
加工点をつなぐ線を回転可能にすることにより、積層体
あるいは光学系を大きく移動させないで別の方向に同一
条件で加工することが可能になった。これにより、薄膜
太陽電池の製造のためのパターニングも、行き帰り加工
あるいは直交する方向の加工で加工時間を短縮でき、生
産性が向上した。また、加工条件の異なるレーザ光線を
同一加工点に照射することによっても上記と同一の効果
を得ることができた。
According to the present invention, the laser beam for processing all or part of the layers of the thin film laminate under the respective processing conditions is formed by dividing the laser beam from one oscillator. When irradiating the processing points arranged on the line,
By making the line connecting the processing points rotatable, it became possible to perform processing in different directions under the same conditions without significantly moving the laminate or the optical system. As a result, patterning for manufacturing a thin-film solar cell can reduce the processing time by the return processing or the processing in the orthogonal direction, and the productivity is improved. Further, the same effect as above can be obtained by irradiating the same processing point with laser beams having different processing conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜加工装置を示す正面図FIG. 1 is a front view showing a thin film processing apparatus according to an embodiment of the present invention.

【図2】従来の薄膜加工方法の施された太陽電池モジュ
ールを示し、 (a) は平面図、(b) は (a) のA−A
線断面図
FIG. 2 shows a solar cell module that has been subjected to a conventional thin film processing method, (a) is a plan view, (b) is AA of (a).
Line cross section

【図3】別の従来の薄膜太陽電池の加工方法を示し、
(a) は平面図、 (b) 断面図
FIG. 3 shows another conventional method for processing a thin film solar cell,
(a) is a plan view, (b) is a sectional view

【図4】図3の加工を行う薄膜加工装置を示す正面図FIG. 4 is a front view showing a thin film processing apparatus for performing the processing of FIG.

【図5】本発明の実施例の薄膜加工装置を用いて製造さ
れた太陽電池モジュールを示し、 (a) が平面図、
(b) は (a) のB−B線断面図
FIG. 5 shows a solar cell module manufactured using the thin film processing apparatus of the embodiment of the present invention, (a) is a plan view,
(b) is a sectional view taken along line BB of (a).

【図6】本発明の別の実施例の薄膜加工装置を示す正面
FIG. 6 is a front view showing a thin film processing apparatus according to another embodiment of the present invention.

【図7】本発明のさらに別の実施例の薄膜加工装置を示
す正面図
FIG. 7 is a front view showing a thin film processing apparatus of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 11、12、13 レーザ光線 2、3 ビームスプリッタ 41、42 光ファイバ 5 ビームエキスパンダ 6 スリット板 61、62 スリット 71、72 集光レンズ 10 回転部分 20 単位太陽電池 21 基板 22 第一電極層 23 非晶質半導体層 24 第二電極層 27,28 加工方向 DESCRIPTION OF SYMBOLS 1 Laser oscillator 11, 12, 13 Laser beam 2, 3 Beam splitter 41, 42 Optical fiber 5 Beam expander 6 Slit plate 61, 62 Slit 71, 72 Condensing lens 10 Rotating part 20 Unit solar cell 21 Substrate 22 First electrode Layer 23 Amorphous semiconductor layer 24 Second electrode layer 27, 28 Processing direction

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】薄膜の積層体に対して一つのレーザ光線を
複数の光線に分割し、分割された各光線を加工方向に一
線上に配列された加工点に照射してそれぞれ所定の条件
で積層体の層の全部あるいは一部を加工する薄膜加工装
置において、各光線の照射点をつなぐ線がそれぞれの光
線の加工条件を変えないで所定の角度回転可能であるこ
とを特徴とする薄膜加工装置。
1. A single laser beam is divided into a plurality of light beams for a thin film laminate, and the respective divided light beams are applied to processing points arranged in a line in the processing direction under predetermined conditions. In a thin film processing apparatus for processing all or part of layers of a laminated body, a line connecting irradiation points of each light beam can be rotated by a predetermined angle without changing processing conditions of each light beam. apparatus.
【請求項2】一つのレーザ光線を所定の比で二つの光線
に分割する分光器と、前記所定の比の逆の比で二つの光
線に分割する分光器とを、原レーザ光線の光路中で交互
に入替える機構を備え、二つの光線の照射点をつなぐ線
が180°回転可能である請求項1記載の薄膜加工装
置。
2. A spectroscope for splitting one laser beam into two beams at a predetermined ratio and a spectroscope for splitting two laser beams at a ratio opposite to the predetermined ratio are provided in the optical path of the original laser beam. 2. The thin film processing apparatus according to claim 1, further comprising a mechanism for alternately irradiating with each other, the line connecting the irradiation points of the two light rays being rotatable by 180 °.
【請求項3】一つのレーザ光線より分割された二つの光
線のうちの一つの光線の光路中に挿入されるビームエキ
スパンダを他の光線の光路中に移す機構と、二つの光線
の光路中にそれぞれ挿入される異なる開口径をもつ二つ
のスリットを交互に入替える機構とを備え、二つの光線
の照射点をつなぐ線が180°回転可能である請求項1
あるいは2記載の薄膜加工装置。
3. A mechanism for moving a beam expander, which is inserted into the optical path of one of the two light beams split from one laser beam, into the optical path of the other light beam, and an optical path of the two light beams. 2. A mechanism for alternately replacing two slits each having a different opening diameter to be inserted into the optical fiber, and the line connecting the irradiation points of the two light rays can be rotated by 180 °.
Alternatively, the thin film processing apparatus described in 2.
【請求項4】一つのレーザ光線より分割された複数の光
線の照射端に至る光路中にそれぞれ光ファイバを備え、
この光ファイバより先の光路に存在し、一線上に配列さ
れた部材をつなぐ線が任意の角度回転可能である請求項
1記載の薄膜加工装置。
4. An optical fiber is provided in each of optical paths leading to irradiation ends of a plurality of light beams split from one laser beam,
The thin film processing apparatus according to claim 1, wherein a line existing in the optical path ahead of the optical fiber and connecting the members arranged in a line is rotatable by an arbitrary angle.
【請求項5】薄膜の積層体に対して一つのレーザ光線よ
り分割された複数の光線を照射してそれぞれ所定の条件
で積層体の層の全部あるいは一部を加工する薄膜加工装
置において、加工のために分割した各光線を同一点に照
射することを特徴とする薄膜加工装置。
5. A thin film processing apparatus for irradiating a plurality of light beams divided from one laser beam to a thin film laminate to process all or part of the layers of the laminate under predetermined conditions. A thin film processing apparatus characterized by irradiating each of the divided light beams to the same point.
JP7072909A 1995-03-30 1995-03-30 Thin film machining device Pending JPH08267265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7072909A JPH08267265A (en) 1995-03-30 1995-03-30 Thin film machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7072909A JPH08267265A (en) 1995-03-30 1995-03-30 Thin film machining device

Publications (1)

Publication Number Publication Date
JPH08267265A true JPH08267265A (en) 1996-10-15

Family

ID=13502955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072909A Pending JPH08267265A (en) 1995-03-30 1995-03-30 Thin film machining device

Country Status (1)

Country Link
JP (1) JPH08267265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167936A (en) * 2005-12-26 2007-07-05 Miyachi Technos Corp Gold plating peeling method and gold plating peeling device
WO2010093049A1 (en) * 2009-02-16 2010-08-19 日清紡ホールディングス株式会社 Laser removal machining apparatus for solar panel
WO2010095671A1 (en) * 2009-02-23 2010-08-26 日清紡ホールディングス株式会社 Laser processing method for solar cell panel
WO2013011254A1 (en) * 2011-07-15 2013-01-24 M-Solv Limited Method and apparatus for dividing a thin film device into separate cells

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167936A (en) * 2005-12-26 2007-07-05 Miyachi Technos Corp Gold plating peeling method and gold plating peeling device
WO2010093049A1 (en) * 2009-02-16 2010-08-19 日清紡ホールディングス株式会社 Laser removal machining apparatus for solar panel
WO2010095671A1 (en) * 2009-02-23 2010-08-26 日清紡ホールディングス株式会社 Laser processing method for solar cell panel
WO2013011254A1 (en) * 2011-07-15 2013-01-24 M-Solv Limited Method and apparatus for dividing a thin film device into separate cells
CN103688358A (en) * 2011-07-15 2014-03-26 万佳雷射有限公司 Method and apparatus for dividing a thin film device into separate cells
JP2014524147A (en) * 2011-07-15 2014-09-18 エム−ソルヴ・リミテッド Method and apparatus for dividing thin film devices into individual cells
US9054177B2 (en) 2011-07-15 2015-06-09 M-Solv Limited Method and apparatus for dividing a thin film device into separate cells
CN103688358B (en) * 2011-07-15 2017-07-04 万佳雷射有限公司 Method and apparatus for thin-film device to be divided into single unit

Similar Documents

Publication Publication Date Title
JP2694026B2 (en) Laser light processing device
EP2976177B1 (en) Apparatus for and method of forming plural groups of laser beams using two rotating diffractive optical elements
US5932118A (en) Photoprocessing method
CN107214420A (en) A kind of method and device for laser machining wafer
US6819871B1 (en) Multi-channel optical filter and multiplexer formed from stacks of thin-film layers
DE202010013161U1 (en) Laser processing with several beams and suitable laser optics head
JPH08267265A (en) Thin film machining device
CN107252982B (en) A kind of method and device laser machining wafer
CN211840637U (en) Device for cutting pi net plate by laser imaging method
JP3248336B2 (en) Manufacturing method of thin film solar cell
EP2101354A2 (en) Device and method for forming dividing lines of a photovoltaic module with monolithically series connected cells
JP2002043605A (en) Method for laser etching
US3906621A (en) Method of contacting a semiconductor arrangement
JP2004306101A (en) Apparatus and method for laser beam machining
CN107234343B (en) A kind of method and device of laser processing wafer
US20110300692A1 (en) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
JPH0489192A (en) Laser beam machine
CN111940892B (en) Fast switching optical path architecture for dicing low dielectric value material wafers
JPH0745844A (en) Compound thin film solar battery and manufacture thereof
KR20130108593A (en) Method and apparatus for dividing thin film device into separate cells
JPH0379085A (en) Manufacture of thin film solar cell
JP2000244095A (en) Board surface roughening method, board surface roughening equipment, manufacture of printed wiring board and manufacturing equipment of printed wiring board
WO2023189715A1 (en) Laser optical system and adjustment method therefor, and laser machining device and method
KR102665199B1 (en) Laser apparatus and substrate etching method using the same
WO2019019424A1 (en) Method for reducing cutting conicity and increasing cutting speed using multiple ultrafast laser beams