JPH08266850A - Refining device - Google Patents

Refining device

Info

Publication number
JPH08266850A
JPH08266850A JP7153452A JP15345295A JPH08266850A JP H08266850 A JPH08266850 A JP H08266850A JP 7153452 A JP7153452 A JP 7153452A JP 15345295 A JP15345295 A JP 15345295A JP H08266850 A JPH08266850 A JP H08266850A
Authority
JP
Japan
Prior art keywords
gas
heat
adsorption
tower
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7153452A
Other languages
Japanese (ja)
Other versions
JP3054062B2 (en
Inventor
Atsushi Miyamoto
篤 宮本
Hisanao Jo
久尚 城
Nobunao Kikuchi
延尚 菊地
Junya Suenaga
純也 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP7153452A priority Critical patent/JP3054062B2/en
Publication of JPH08266850A publication Critical patent/JPH08266850A/en
Application granted granted Critical
Publication of JP3054062B2 publication Critical patent/JP3054062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To provide a refining device which eliminates the useless consumption of heating power and the failure in execution of a regeneration stage within time and obviates the degradation in the performance of adsorbents over a long period of time. CONSTITUTION: This refining device is an adsorption column 1 provided with the adsorbents 83 for removing gaseous impurity components in gases in a gas passage 82 formed in an adsorption column body 2. This adsorption column body 2 is composed of a double-shell structure. The internal space of the inside shell 4 of this double-shell structure is formed in the gas passage 82. The part of the inside shell 4 corresponding to the gas inlet 85a of the gas passage 82 is provided with a communicating part 8 making the gas passage 82 communicate with the heat insulating space 9 between both inside and outside shells 3 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気分離装置や各種
精製装置に用いられるサーマルスイング式吸着塔等の精
製器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining device such as a thermal swing adsorption tower used in an air separation device and various refining devices.

【0002】[0002]

【従来の技術】電子工業では極めて多量のガス(例えば
半導体基板のパージ用ガスとしての窒素ガス)が使用さ
れている。このような窒素ガスを製造する装置として
は、一般に、空気分離装置がある。この空気分離装置
は、空気を原料とし、これを空気圧縮機で圧縮したの
ち、吸着塔に入れて炭酸ガスおよび水分を吸着除去し、
さらに熱交換器を通して冷媒と熱交換させて冷却し、つ
いで精留塔で深冷液化分離して製品窒素ガスを製造し、
これを前記の熱交換器を通して常温近傍に温度上昇させ
るという工程を経て、窒素ガスを製造するものである。
このような空気分離装置に用いられる吸着塔や、各種ガ
スの精製装置に用いられる吸着塔として、従来から、図
13および図14に示すようなものがある。このもの
は、略円筒状に形成された圧力容器81を備え、この圧
力容器81の内部空間で形成される空気等のガスの通路
82に、モレキュラーシーブ,アルミナ等の吸着剤を充
填した吸着容器83を配設し、ガスを吸着剤に接触させ
ることにより、ガス中の不純ガス分を除去するようにし
たものであり、耐圧部材からなる外壁の外周部にロック
ウール,グラスウール等の断熱材からなる断熱層84を
設けることで断熱構造としている。図において、81a
は圧力容器81の底部から下方に延びる下側筒部、81
bは圧力容器81の天井部から上方に延びる上側筒部、
85は網目状通気部(吸着工程における、ガス通路82
のガス入口となる)85aを有するガス入口側フィルタ
ー、86は網目状通気部(吸着工程における、ガス通路
82のガス出口となる)86aを有するガス出口側フィ
ルター、87は下側筒部81aにボルト,ナット(図示
せず)により着脱自在に取付けられる下側接続管、88
は上側筒部81aにボルト,ナット(図示せず)により
着脱自在に取付けられる接続管であり、上記両フィルタ
ー85,86は両筒部81a,81bと両接続管87,
88間に着脱自在に挟持され取付けられている。89は
支持部材である。このような吸着塔では、モレキュラー
シーブ等の吸着剤を再生するため、ガス通路82のガス
出口86aからガス入口85aに向かって200〜30
0℃の熱風を通し、この熱風で吸着容器83内の吸着剤
を加熱し、これらに吸着されている残存不純ガス分を追
い出すことが行われており、再生された吸着剤は冷却さ
れて再使用される。このような方法は、いわゆるサーマ
ルスイングサイクルと言われるものである。
2. Description of the Related Art An extremely large amount of gas (for example, nitrogen gas as a gas for purging a semiconductor substrate) is used in the electronic industry. An air separation device is generally used as a device for producing such nitrogen gas. This air separation device uses air as a raw material, compresses it with an air compressor, and then puts it in an adsorption tower to adsorb and remove carbon dioxide and water,
Further, it is cooled by exchanging heat with a refrigerant through a heat exchanger, and then chilled and liquefied in a rectification tower to produce product nitrogen gas,
Nitrogen gas is produced through a process of raising the temperature of this to near room temperature through the heat exchanger.
As an adsorption tower used in such an air separation device and an adsorption tower used in a device for purifying various gases, there are conventionally those shown in FIGS. 13 and 14. This is provided with a pressure vessel 81 formed in a substantially cylindrical shape, and a passage 82 for gas such as air formed in the internal space of the pressure vessel 81 is filled with an adsorbent such as molecular sieve or alumina. 83 is disposed and impure gas in the gas is removed by bringing the gas into contact with the adsorbent. From the heat insulating material such as rock wool or glass wool on the outer peripheral portion of the outer wall made of the pressure resistant member. The heat insulating layer 84 is provided to form a heat insulating structure. In the figure, 81a
Is a lower cylinder portion extending downward from the bottom of the pressure vessel 81,
b is an upper cylinder portion that extends upward from the ceiling portion of the pressure vessel 81,
Reference numeral 85 denotes a mesh-like ventilation part (gas passage 82 in the adsorption step).
Gas inlet side filter having 85a), 86 is a gas outlet side filter having a mesh-like ventilation part (becomes a gas outlet of the gas passage 82 in the adsorption step) 86a, and 87 is a lower cylinder part 81a. Lower connection pipe, which is detachably attached by bolts and nuts (not shown), 88
Is a connection pipe detachably attached to the upper tubular portion 81a with bolts and nuts (not shown). The filters 85 and 86 are both tubular portions 81a and 81b and both connecting pipes 87 and 87.
It is detachably clamped between 88 and attached. Reference numeral 89 is a support member. In such an adsorption tower, in order to regenerate the adsorbent such as the molecular sieve, 200 to 30 from the gas outlet 86a of the gas passage 82 toward the gas inlet 85a.
Passing hot air of 0 ° C., heating the adsorbent in the adsorption container 83 with this hot air, and expelling the residual impure gas component adsorbed by these, the regenerated adsorbent is cooled and reused. used. Such a method is a so-called thermal swing cycle.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
吸着塔では、圧力容器81の外壁を構成する耐圧部材や
この耐圧部材の外周部に設けられたロックウール等の断
熱材の熱容量が大きいため、吸着剤の再生のための加熱
工程において、これらを加熱するために必要とされる熱
量が大きく、加熱時間が長くなる。また、再生された吸
着剤の冷却工程において断熱材を長時間冷却する必要が
あり、これらのことが加熱動力の無駄や時間内での再生
工程不履行の原因となる。特に、高圧運転を行うもので
は、その分耐圧部材の肉厚が厚くなるため、上記加熱・
冷却に要する時間がさらに長時間化する。また一般に、
水分を多く含んだ流体や大気温度以上の流体に対する吸
着工程においては、吸着剤の吸着熱に起因する吸着塔内
の温度上昇がみられるのに対し、上記のような吸着塔で
は、その熱量が外部に放熱されにくく、吸着剤の性能
(吸着容量等)が早期に低下する。
However, in such an adsorption tower, the heat capacity of the pressure resistant member constituting the outer wall of the pressure vessel 81 and the heat insulating material such as rock wool provided on the outer peripheral portion of the pressure resistant member is large. In the heating step for regenerating the adsorbent, the amount of heat required to heat these is large, and the heating time becomes long. In addition, it is necessary to cool the heat insulating material for a long time in the cooling process of the regenerated adsorbent, which causes waste of heating power and failure of the regeneration process in time. In particular, in the case of high-pressure operation, the thickness of the pressure-resistant member is correspondingly increased, so
The time required for cooling becomes longer. Also, in general,
In the adsorption process for a fluid containing a large amount of water or a fluid having a temperature higher than the atmospheric temperature, the temperature rise in the adsorption tower due to the heat of adsorption of the adsorbent is observed. It is difficult to dissipate heat to the outside, and the performance of the adsorbent (adsorption capacity etc.) decreases early.

【0004】そこで、外部への放熱を容易にする等の改
善を図った吸着浄化装置が、特開平54−68777号
公報で提案されている。この吸着浄化装置は、耐圧性の
外側容器と、外周部に熱絶縁マットが取付けられ内部に
吸着剤が配設された薄肉の内側容器とを備え、上記内側
容器およびこの内側容器内の吸着剤を外側容器の支持部
に固定された支持格子上に保持し、外側容器の上端部と
内側容器の上端部とを第1の出口/入口短管で連結し、
外側容器の下端部に設けた第2の出口/入口短管に皿状
の熱保護遮蔽体を取付けている。そして、上記内側容器
の下端部と熱保護遮蔽体の上端部との間に形成された隙
間を介して、外側容器と内側容器間の中間空間および外
側容器と熱保護遮蔽体間の空間とをガスの流通路に連通
させる構造にしている。しかしながら、このものでは、
再処理工程において、熱風等の再生ガスにより追い出さ
れた残存不純ガス分が第2の出口/入口短管に流入する
際に、この第2の出口/入口短管の近傍外周部に多量の
水分等が付着し、早期に内部(ガスの流通路)が汚染さ
れる。また、内側容器の外周部に取付けられた熱絶縁マ
ットは、一般的に熱容量が大きく、その分加熱動力が大
きくなり、また、冷却にも長時間を要する。
In view of this, an adsorption purification device, which is improved by facilitating heat radiation to the outside, is proposed in Japanese Patent Laid-Open No. 54-68777. This adsorption purification device includes a pressure-resistant outer container and a thin inner container in which a heat insulating mat is attached to an outer peripheral portion and an adsorbent is disposed inside, and the inner container and the adsorbent in the inner container. Is held on a support grid fixed to the support of the outer container, the upper end of the outer container and the upper end of the inner container are connected by a first outlet / inlet short pipe,
A dish-shaped heat protection shield is attached to the second outlet / inlet short pipe provided at the lower end of the outer container. Then, an intermediate space between the outer container and the inner container and a space between the outer container and the heat protection shield are provided through a gap formed between the lower end of the inner container and the upper end of the heat protection shield. The structure is such that it communicates with the gas flow passage. However, with this one,
In the reprocessing step, when the residual impure gas component expelled by the regenerated gas such as hot air flows into the second outlet / inlet short pipe, a large amount of moisture is present in the outer peripheral portion in the vicinity of the second outlet / inlet short pipe. Etc. will adhere and the inside (gas flow passage) will be contaminated early. Further, the heat insulating mat attached to the outer peripheral portion of the inner container generally has a large heat capacity, the heating power is correspondingly large, and it takes a long time to cool.

【0005】この発明は、加熱動力の無駄や時間内での
再生工程の不履行を無くすことができ、しかも、長時間
にわたって吸着剤の性能が低下することがなく、さら
に、断熱効果に優れ、そのうえ、早期にガス通路が汚染
されることのない精製器の提供をその目的とする。
The present invention can eliminate the waste of heating power and the failure of the regeneration process within time, and the performance of the adsorbent does not deteriorate over a long period of time, and the heat insulating effect is excellent. The object is to provide a purifier in which the gas passage is not contaminated at an early stage.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明の精製器は、精製器本体内に形成される
ガス通路にガス中の不純ガス分を除去する除去手段が設
けられた精製器であって、精製器本体が二重殻構造に構
成され、この二重殻構造の内殻の内部空間がガス通路に
形成され、このガス通路のガス入口もしくはその近傍に
対応する内殻の部分に、内殻の内部空間と内外両殻間の
空間とを連通する連通部が設けられているという構成を
とる。
In order to achieve the above object, the purifier of the present invention is provided with a removing means for removing an impure gas content in the gas, which is formed in the purifier body. In the purifier, the main body of the purifier has a double-shell structure, the inner space of the inner shell of the double-shell structure is formed in the gas passage, and the inner space corresponding to the gas inlet of the gas passage or the vicinity thereof is formed. The shell part is provided with a communication part that connects the inner space of the inner shell and the space between the inner and outer shells.

【0007】[0007]

【作用】すなわち、この発明の精製器は、精製器本体が
二重殻構造に構成されており、この二重殻構造の内殻の
内部空間がガス通路に形成されているとともに、このガ
ス通路を通るガスが連通部を介して二重殻構造の内外両
殻間の空間に流入し、このガスが流入した空間が断熱空
間に形成されている。したがって、優れた断熱効果を奏
するうえ、上記内外両殻間の空間のガスの熱容量が小さ
く、従来のように外壁の外周部にロックウール等の断熱
材からなる断熱層84を設けたものと比べて、吸着剤の
再生のための加熱工程において、加熱のために大きな熱
量を必要としない。また、二重殻構造の外殻から放熱が
行えるため、再生された吸着剤の冷却工程において長時
間冷却する必要もない。したがって、再生加熱工程の加
熱動力の削減や加熱・冷却時間の短縮が可能になる(例
えば、180℃で加熱再生する場合に、13%の再生時
間の短縮となる。)。特に、高圧運転を行うもの等外殻
の肉厚が厚いものには、非常に有効である。しかも、水
分を多く含む流体や大気温度以上の流体に対する吸着工
程において、吸着剤の吸着熱に起因する精製器本体内の
温度上昇がみられても、上記したように精製器本体が放
熱しやすい構造であるため、精製器本体内の温度上昇を
抑えることができ、長時間にわたって吸着剤の性能(吸
着容量等)が低下しない。そのうえ、上記連通部がガス
通路のガス入口もしくはその近傍に対応する内殻の部分
に形成されているため、上記連通部が、吸着工程におい
てガス入口から流出した流体が流れて行く方向とは反対
側に位置する。したがって、流出した流体が除去手段の
通気抵抗によってもその周囲には逃げることなく、除去
手段に流入するようになり、上記優れた断熱効果を損な
うこともない。さらに、吸着剤の再生のための加熱工程
においては、上記連通部が、除去手段を通過した流体が
流れて行く方向に形成されているため、熱風等の再生ガ
スがガス入口に流入する際に、その熱風で追い出された
残存不純ガス分の一部が上記連通部を通って上記内外両
殻間の空間に流入しここに溜まる(すなわち、この空間
が残存不純ガス分の捕獲部として作用する)。したがっ
て、その分ガス通路の汚染が低減され、ガス通路が長期
間にわたって清浄な状態に維持される。
That is, in the purifier of the present invention, the purifier body has a double-shell structure, the inner space of the inner shell of the double-shell structure is formed in the gas passage, and the gas passage is also formed. The gas passing through flows into the space between the inner and outer shells of the double-shell structure via the communication part, and the space into which this gas flows is formed as a heat insulating space. Therefore, in addition to providing an excellent heat insulating effect, the heat capacity of the gas in the space between the inner and outer shells is small, and compared with the conventional one in which the heat insulating layer 84 made of a heat insulating material such as rock wool is provided on the outer peripheral portion of the outer wall. In the heating process for regenerating the adsorbent, a large amount of heat is not required for heating. Further, since heat can be released from the outer shell of the double shell structure, it is not necessary to cool the regenerated adsorbent for a long time in the cooling step. Therefore, it is possible to reduce the heating power in the regeneration heating step and to shorten the heating / cooling time (for example, when heating and regenerating at 180 ° C., the regeneration time is reduced by 13%). In particular, it is very effective for those having a thick outer shell, such as those under high pressure operation. In addition, even if the temperature inside the purifier body rises due to the heat of adsorption of the adsorbent in the adsorption process for a fluid containing a large amount of water or a fluid above the ambient temperature, the purifier body easily radiates heat as described above. Due to the structure, the temperature rise in the purifier body can be suppressed, and the performance (adsorption capacity etc.) of the adsorbent does not decrease for a long time. Moreover, since the communicating portion is formed in the inner shell portion corresponding to the gas inlet of the gas passage or the vicinity thereof, the communicating portion is opposite to the direction in which the fluid flowing out from the gas inlet flows in the adsorption step. Located on the side. Therefore, the fluid that has flowed out does not escape to the surroundings due to the ventilation resistance of the removing means and flows into the removing means, and the excellent heat insulating effect is not impaired. Further, in the heating step for regenerating the adsorbent, since the communication part is formed in the direction in which the fluid passing through the removing means flows, when regenerated gas such as hot air flows into the gas inlet. , A part of the residual impure gas expelled by the hot air flows into the space between the inner and outer shells through the communicating portion and accumulates there (that is, this space acts as a trap for the residual impure gas). ). Therefore, the pollution of the gas passage is reduced correspondingly, and the gas passage is kept clean for a long period of time.

【0008】つぎに、この発明を実施例にもとづいて詳
しく説明する。
Next, the present invention will be described in detail based on embodiments.

【0009】[0009]

【実施例】図1および図2はこの発明の一実施例を示し
ている。図において、1は吸着塔であり、その吸着塔本
体2は、耐圧部材からなる外殻3および吸着剤83が配
設される内殻4からなる二重殻構造に構成されている。
上記外殻3は、円筒状中央部3aとドーム状天井部3b
と逆ドーム状底部3cを備えており、上記ドーム状天井
部3bおよび逆ドーム状底部3cの中央に穿設された丸
穴の周縁から第1および第2の外側フィルター挿通用筒
部5a,5bが垂設されている。一方、上記内殻4は、
円筒状中央部4aとドーム状天井部4bと逆ドーム状底
部4cを備えており、上記ドーム状天井部4bの中央に
穿設された丸穴の周縁から内側フィルター挿通用筒部6
が立設され、この内側フィルター挿通用筒部6の上端部
が外殻3の内周面に溶接により一体的に取付けられてい
る。また、上記内殻4には、その逆ドーム状底部4cの
中央に、ガス入口側フィルター85の外径よりも大径に
形成された中央穴7が形成されており、この中央穴7の
内周面とガス入口側フィルター85の外周面との間に形
成される隙間が連通部8に形成されている。このような
外殻3と内殻4は略相似形に形成されており、これによ
り、外殻3の内周面と内殻4の外周面との間に形成され
る略一定幅の空間が断熱空間9に形成されている。10
は左右一対のスペーサーであり、その外周面が外殻3の
内周面に溶接により取付けられているとともに、その内
周面が内殻4の外周面に当接しており、これにより、内
殻4の左右方向の振れを防止している。それ以外の部分
は、図13に示す吸着塔と同様である。すなわち、上記
第1の外側フィルター挿通用筒部5aの下端部に下側接
続管87の上端部がボルト,ナット(図示せず)により
着脱自在に取付けられており、これら第1の外側フィル
ター挿通用筒部5aの下端部と下側接続管87の上端部
との間に、網目状通気部(吸着工程における、ガス通路
82のガス入口となる)85aを有するガス入口側フィ
ルター85が着脱自在に挟持されて取付けられている。
一方、上記第2の外側フィルター挿通用筒部5bの上端
部に上側接続管88の下端部がボルト,ナット(図示せ
ず)により着脱自在に取付けられており、これら第2の
外側フィルター挿通用筒部5bの上端部と上側接続管8
8の下端部との間に、網目状通気部(吸着工程におけ
る、ガス通路82のガス出口となる)86aを有するガ
ス出口側フィルター86が着脱自在に挟持されて取付け
られている。89は支持部材である。
1 and 2 show an embodiment of the present invention. In the figure, 1 is an adsorption tower, and the adsorption tower main body 2 has a double-shell structure composed of an outer shell 3 made of a pressure resistant member and an inner shell 4 in which an adsorbent 83 is disposed.
The outer shell 3 includes a cylindrical central portion 3a and a dome-shaped ceiling portion 3b.
And a reverse dome-shaped bottom portion 3c, and the first and second outer filter insertion cylinder portions 5a and 5b from the peripheral edge of a circular hole formed in the center of the dome-shaped ceiling portion 3b and the reverse dome-shaped bottom portion 3c. Is installed vertically. On the other hand, the inner shell 4 is
A cylindrical central portion 4a, a dome-shaped ceiling portion 4b, and an inverted dome-shaped bottom portion 4c are provided, and an inner filter insertion tube portion 6 is provided from a peripheral edge of a round hole formed in the center of the dome-shaped ceiling portion 4b.
Is erected, and the upper end of the inner filter inserting tubular portion 6 is integrally attached to the inner peripheral surface of the outer shell 3 by welding. In addition, the inner shell 4 has a central hole 7 formed in the center of the inverted dome-shaped bottom portion 4 c thereof, the central hole 7 having a diameter larger than the outer diameter of the gas inlet side filter 85. A gap formed between the peripheral surface and the outer peripheral surface of the gas inlet side filter 85 is formed in the communication portion 8. The outer shell 3 and the inner shell 4 are formed in a substantially similar shape, so that a space having a substantially constant width formed between the inner peripheral surface of the outer shell 3 and the outer peripheral surface of the inner shell 4 is formed. It is formed in the heat insulating space 9. 10
Is a pair of left and right spacers, the outer peripheral surface of which is attached to the inner peripheral surface of the outer shell 3 by welding, and the inner peripheral surface of which is in contact with the outer peripheral surface of the inner shell 4. 4 is prevented from swinging in the left-right direction. The other parts are the same as those of the adsorption tower shown in FIG. That is, the upper end of the lower connecting pipe 87 is detachably attached to the lower end of the first outer filter inserting tubular portion 5a by a bolt and a nut (not shown). A gas inlet side filter 85 having a mesh-like ventilation portion (which serves as a gas inlet of the gas passage 82 in the adsorption step) 85a is detachably provided between the lower end of the general-purpose tubular portion 5a and the upper end of the lower connecting pipe 87. It is clamped and attached to.
On the other hand, the lower end of the upper connecting pipe 88 is detachably attached to the upper end of the second outer filter inserting tubular portion 5b by bolts and nuts (not shown). The upper end of the tubular portion 5b and the upper connecting pipe 8
A gas outlet side filter 86 having a mesh-like ventilation portion (which serves as a gas outlet of the gas passage 82 in the adsorption step) 86a is detachably sandwiched and attached between the lower end portion 8 and the lower end portion 8. Reference numeral 89 is a support member.

【0010】このような吸着塔1は、2個1組で、図3
に示す空気分離装置に用いられている。図において、1
5,16は容量の異なる空気圧縮機、17,18はドラ
イヤである。21は第1の熱交換器であり、上記吸着塔
1により水分および炭酸ガスが吸着除去された圧縮空気
が、圧縮空気供給パイプ22を経て送り込まれ、熱交換
作用により超低温に冷却される。23は第2の熱交換器
であり、上記圧縮空気供給パイプ22から分岐した分岐
パイプ24により、水分および炭酸ガスの吸着除去され
た圧縮空気が送り込まれる。この第2の熱交換器23に
送り込まれた圧縮空気も熱交換作用により超低温に冷却
され、ついで上記第1の熱交換器21で冷却された超低
温圧縮空気に合流される。25は精留塔であり、第1お
よび第2の熱交換器21,23により超低温に冷却され
合流パイプ26を経て送り込まれる圧縮空気をさらに冷
却し、その一部を液化し液体空気27として底部に溜
め、窒素のみを気体状態で取出すようになっている。こ
の精留塔25の天井部には、液体窒素溜め25aが設け
られ、そこに、液体窒素貯槽28から液体窒素が導入パ
イプ29を介して送り込まれる。送入された液体窒素
は、上記液体窒素溜め25aから溢れて精留塔25内を
下方に流下し、精留塔25の底部から上昇する圧縮空気
と向流的に接触し冷却してその一部を液化するようにな
っている。
Such an adsorption tower 1 is composed of two pieces as shown in FIG.
It is used in the air separation device shown in. In the figure, 1
Reference numerals 5 and 16 are air compressors having different capacities, and 17 and 18 are dryers. Reference numeral 21 is a first heat exchanger, and the compressed air from which moisture and carbon dioxide have been adsorbed and removed by the adsorption tower 1 is sent through a compressed air supply pipe 22 and cooled to an ultra-low temperature by a heat exchange action. Reference numeral 23 is a second heat exchanger, and the compressed air from which the moisture and carbon dioxide have been adsorbed and removed is fed by a branch pipe 24 branched from the compressed air supply pipe 22. The compressed air sent to the second heat exchanger 23 is also cooled to the ultra-low temperature by the heat exchange action, and then merged with the ultra-low temperature compressed air cooled by the first heat exchanger 21. Reference numeral 25 denotes a rectification tower, which further cools the compressed air that has been cooled to an ultralow temperature by the first and second heat exchangers 21 and 23 and is sent through the confluent pipe 26, and liquefies a part thereof to form liquid air 27 at the bottom. It is stored in and is taken out only in a gaseous state. A liquid nitrogen reservoir 25a is provided at the ceiling of the rectification tower 25, and liquid nitrogen is fed from the liquid nitrogen storage tank 28 to the liquid nitrogen reservoir 25a through an introduction pipe 29. The fed liquid nitrogen overflows from the liquid nitrogen reservoir 25a and flows downward in the rectification column 25, and comes into countercurrent contact with the compressed air rising from the bottom of the rectification column 25 to cool it. The part is designed to be liquefied.

【0011】すなわち、この過程で圧縮空気中の高沸点
成分(酸素分)が液化されて精留塔25の底部に溜り、
低沸点成分の窒素ガスが精留塔25の上部に溜る。30
は精留塔25の上部に溜った窒素ガスを製品窒素ガスと
して取り出す取出パイプで、超低温の窒素ガスを第1の
熱交換器21内に案内し、そこに送り込まれる圧縮空気
と熱交換させて常温にしメインパイプ31に送り込む作
用をする。32は凝縮器33内蔵型の分縮器で、上記凝
縮器33に、精留塔25の天井部に溜る窒素ガスの一部
が第1の還流液パイプ34を介して送り込まれて液化
し、第2の還流液パイプ35を経て上記導入パイプ29
内の液体窒素に合流する。上記分縮塔32内は、精留塔
25内よりも減圧状態になっており、精留塔25の底部
の貯留液体空気27が膨脹弁37付きパイプ38を経て
送り込まれ、気化して分縮器32の内部温度を液体窒素
の沸点以下の温度に冷却するようになっている。この冷
却により、精留塔25から第1の還流液パイプ34を介
して凝縮器33内に送り込まれた窒素ガスが液化し、前
記のように導入パイプ29内の液体窒素に合流する。2
5bは第1の液面指示調節計であり、精留塔25内の液
体空気の液面を所定レベルに保つようにその液面に応じ
て弁29aを制御し、液体窒素貯槽28からの液体窒素
の流量を制御する。36は第2の液面指示調節計であ
り、分縮塔32内の液体空気の液面を一定レベルに保よ
うにその液面に応じて膨脹弁37を制御し、精留塔25
内の液体空気の気化量を制御する。40はバックアップ
系ラインであり、空気圧縮系ラインが故障したとき弁4
1を開き、液体窒素貯槽28内の液体窒素を蒸発器42
により蒸発させてメインパイプ31に送り込み、窒素ガ
スの供給がとだえることのないようにている。43は放
出弁であり、不純物分析計(図示せず)によりメインパ
イプ31に送り出される製品酸素ガスの純度を分析し、
その純度の低いときは製品酸素ガスを外部に逃気する作
用をする。44は分縮器32内の液体空気中のハイドロ
カーボンや二酸化炭素の濃縮を防止するため液体空気を
第2の熱交換器23に案内するパイプであり、第2の熱
交換器23に送り込まれる圧縮空気と熱交換してこれを
超低温に冷却したのち大気に放出される。45は分縮器
32の上部に溜った窒素分を廃窒素ガスとして取り出す
廃窒素ガス取出パイプで、上記廃窒素ガスを第1の熱交
換器21に案内してその冷熱により原料空気を超低温に
冷却し、続いてその一部を放出パイプ46から直接大気
中に放出する。47は供給弁であり、この供給弁47を
作動させて製品窒素ガスを送る。
That is, in this process, the high boiling point component (oxygen content) in the compressed air is liquefied and accumulated at the bottom of the rectification column 25,
Nitrogen gas having a low boiling point is accumulated in the upper part of the rectification column 25. 30
Is an extraction pipe for taking out the nitrogen gas accumulated in the upper part of the rectification tower 25 as product nitrogen gas, guiding the ultra-low temperature nitrogen gas into the first heat exchanger 21 and exchanging heat with the compressed air fed therein. It acts to bring the temperature to room temperature and feed it into the main pipe 31. Reference numeral 32 denotes a partial condenser having a built-in condenser 33. Part of the nitrogen gas accumulated in the ceiling portion of the rectification tower 25 is fed into the condenser 33 through a first reflux liquid pipe 34 and liquefied, The introduction pipe 29 through the second reflux liquid pipe 35
Join the liquid nitrogen inside. The inside of the fractionation tower 32 is in a decompressed state as compared with the inside of the rectification tower 25, and the stored liquid air 27 at the bottom of the rectification tower 25 is sent through a pipe 38 with an expansion valve 37, vaporized and partially condensed. The internal temperature of the vessel 32 is cooled to a temperature below the boiling point of liquid nitrogen. By this cooling, the nitrogen gas sent from the rectification column 25 into the condenser 33 through the first reflux liquid pipe 34 is liquefied and merges with the liquid nitrogen in the introduction pipe 29 as described above. Two
5b is a first liquid level indicator controller, which controls the valve 29a according to the liquid level of the liquid air in the rectification column 25 so as to keep the liquid level in the rectification column 25 at a predetermined level. Control the flow rate of nitrogen. A second liquid level indicator controller 36 controls the expansion valve 37 in accordance with the liquid level of the liquid air in the decondensing column 32 so as to keep the liquid level at a constant level.
It controls the amount of vaporization of liquid air inside. Reference numeral 40 is a backup system line, and when the air compression system line fails, the valve 4
1 to open the liquid nitrogen in the liquid nitrogen storage tank 28 to the evaporator 42.
The nitrogen gas is vaporized and sent to the main pipe 31 so that the supply of nitrogen gas is not interrupted. 43 is a release valve, which analyzes the purity of the product oxygen gas sent to the main pipe 31 by an impurity analyzer (not shown),
When the purity is low, it acts to escape the product oxygen gas to the outside. Reference numeral 44 is a pipe that guides liquid air to the second heat exchanger 23 in order to prevent concentration of hydrocarbons and carbon dioxide in the liquid air in the partial condenser 32, and is sent to the second heat exchanger 23. It exchanges heat with compressed air, cools it to ultra-low temperatures, and then releases it to the atmosphere. Reference numeral 45 is a waste nitrogen gas extraction pipe for taking out the nitrogen content accumulated in the upper part of the partial condenser 32 as waste nitrogen gas. The waste nitrogen gas is guided to the first heat exchanger 21 and the raw air is made to have an extremely low temperature by its cold heat. It is cooled and subsequently a part of it is discharged from the discharge pipe 46 directly into the atmosphere. Reference numeral 47 is a supply valve, and the supply valve 47 is operated to send product nitrogen gas.

【0012】50は放出パイプ46の先端から分岐した
分岐パイプで、吸着剤の再生のための加熱工程では、弁
54,56,63を開き弁55,57,62を閉じ(こ
のとき、弁59,60を開け弁58,61を閉じ、圧縮
空気の流路を開成する)、放出パイプ46内の廃窒素ガ
スの一部を電気ヒータ51に案内して常温まで昇温さ
せ、ついでパイプ52を経由し、2個1組の吸着筒1の
うち再生側のもの(左側の吸着塔1)のなかに送り込
み、吸着剤の再生を行うようになっている。このよう
に、吸着筒1は2個1組となっており、各弁54〜63
操作によつて、一方の吸着筒1が吸着作動しているとき
は、他方の吸着筒1は上記常温廃窒素ガスで再生され
る。53は再生を終えた廃窒素ガスを大気に放出する放
出パイプである。また、加熱後の冷却工程において、弁
55,56,63を開き弁54,57,62を閉じ、放
出パイプ46内の廃窒素ガスの一部をパイプ52を経由
し、再生側のもの(左側の吸着塔1)のなかに送り込
み、モレキュラーシーブ,アルミナ等の吸着剤を冷却
し、使用済みの廃窒素ガスを放出するということが行わ
れ、これによってモレキュラーシーブ等の再生が完了す
る。2個1組の吸着筒1はこのようにして交互に再生さ
れ使用される。
Reference numeral 50 is a branch pipe branched from the tip of the discharge pipe 46, and in the heating process for regenerating the adsorbent, the valves 54, 56, 63 are opened and the valves 55, 57, 62 are closed (at this time, the valve 59). , 60 are opened and valves 58, 61 are closed to open the flow path of compressed air), a part of the waste nitrogen gas in the discharge pipe 46 is guided to the electric heater 51 and the temperature is raised to room temperature, and then the pipe 52 is opened. The adsorbent is regenerated by feeding the adsorbent into one of the adsorption cylinders 1 of the two via the regeneration side (the adsorption column 1 on the left side). In this way, the adsorption cylinders 1 are set as two, and each of the valves 54 to 63 is
As a result of the operation, when one of the adsorption cylinders 1 is in the adsorption operation, the other adsorption cylinder 1 is regenerated with the room temperature waste nitrogen gas. Reference numeral 53 is a discharge pipe for discharging waste nitrogen gas, which has been regenerated, to the atmosphere. In the cooling step after heating, the valves 55, 56, 63 are opened, the valves 54, 57, 62 are closed, and a part of the waste nitrogen gas in the discharge pipe 46 is passed through the pipe 52 to the regeneration side (left side). Into the adsorption tower 1), the adsorbent such as the molecular sieve and alumina is cooled, and the used waste nitrogen gas is released, whereby the regeneration of the molecular sieve and the like is completed. In this way, the two adsorption cylinders 1 are alternately regenerated and used.

【0013】この装置は、つぎのようにして製品窒素ガ
スを製造する。すなわち、製品窒素ガスの需要量に応じ
た空気圧縮機15,16を選択し、この選択された空気
圧縮機15,16により空気を圧縮し、この圧縮された
空気をドライヤー17,18により空気中の水分を除去
し、その状態で吸着塔1に送り込み水分および炭酸ガス
を吸着除去する。ついで、水分および炭酸ガスが吸着除
去された圧縮空気の一部を、圧縮空気供給パイプ22を
経由させ第1の熱交換器21内に送り込んで超低温に冷
却するとともに、残部を、分岐パイプ24を経由させ第
2の熱交換器23に送り込んで超低温に冷却し、両者を
合流させて合流パイプ26を経て精留塔25の下部内に
投入する。ついで、この投入圧縮空気を、液体窒素貯槽
28から導入パイプ29を経由して精留塔25内に寒冷
源として送り込まれた液体窒素および液体窒素溜め25
aからの溢流液体窒素と向流的に接触させて冷却し、そ
の一部を液化して精留塔25の底部に液体空気27とし
て溜める。この液体空気27を分縮器32内に送り込み
凝縮器33を冷却させる。この冷却により、精留塔25
の上部から凝縮器33に送り込まれた窒素ガスが液化
し、還流液となり第2の還流液パイプ35を経て液体窒
素溜め25aに戻る。そして、上記のように精留塔25
内において、投入された圧縮空気と溢流液体窒素とを接
触させて冷却する過程において、窒素と酸素の沸点の差
(酸素の沸点−183℃,窒素の沸点−196℃)によ
り、圧縮空気中の高沸点成分である酸素が液化して流下
し、窒素が気体のまま精留塔25の上部に残る。つい
で、上記気体のまま残った窒素ガスを取出パイプ30か
ら取り出して第1の熱交換器21に送り込み、常温近く
まで昇温させメインパイプ31から超高純度の製品窒素
ガスとして送り出す。
This apparatus produces product nitrogen gas as follows. That is, the air compressors 15 and 16 are selected according to the demand amount of the product nitrogen gas, the air is compressed by the selected air compressors 15 and 16, and the compressed air is dried in the air by the dryers 17 and 18. Water is removed, and in that state, it is sent to the adsorption tower 1 to adsorb and remove water and carbon dioxide gas. Then, part of the compressed air from which moisture and carbon dioxide have been adsorbed and removed is sent into the first heat exchanger 21 via the compressed air supply pipe 22 to be cooled to an ultra-low temperature, and the rest is branched to the branch pipe 24. It is passed through and sent to the second heat exchanger 23 to be cooled to an ultra-low temperature, and they are joined together and introduced into the lower part of the rectification column 25 via the joining pipe 26. Then, the input compressed air is supplied from the liquid nitrogen storage tank 28 via the introduction pipe 29 into the rectification column 25 as a cold source, and the liquid nitrogen and liquid nitrogen reservoirs 25 are supplied.
The liquid nitrogen overflowed from a is countercurrently contacted and cooled, and a part of it is liquefied and stored as liquid air 27 at the bottom of the rectification column 25. The liquid air 27 is sent into the partial condenser 32 to cool the condenser 33. By this cooling, the rectification tower 25
The nitrogen gas sent to the condenser 33 from above is liquefied, becomes a reflux liquid, and returns to the liquid nitrogen reservoir 25a through the second reflux liquid pipe 35. Then, as described above, the rectification tower 25
In the compressed air, due to the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183 ° C, boiling point of nitrogen-196 ° C) in the process of bringing the compressed air and the overflow liquid nitrogen into contact with each other and cooling. , Which is a high-boiling point component of liquefaction, liquefies and flows down, and nitrogen remains in the upper part of the rectification column 25 as a gas. Then, the nitrogen gas remaining as the gas is taken out from the take-out pipe 30 and sent to the first heat exchanger 21, the temperature is raised to near room temperature and sent out from the main pipe 31 as ultra-high-purity product nitrogen gas.

【0014】このような空気分離装置は、図4〜図8に
示すように、縦長に形成された1つの窒素ガス製造塔7
0に配設され、取付けられている。この塔70は下部室
71と上部真空断熱室72からなり、下部室71内に2
個の吸着塔1と2個の空気圧縮機15,16と2個のド
ライヤー17,18および電気ヒータ51が配設されて
いる。また、上記下部室71には、複数の扉73が開閉
自在に取付けられており、扉73に空気取入れ口74が
形成されているとともに、計器類(図示せず)の表示を
確認する覗き窓75が設けられている。一方、上部真空
室72内には、図9に示すような位置に、第1および第
2の熱交換器21,23と精留塔25と分縮器32およ
び液体窒素貯槽28が配設されている。また、この上部
真空断熱室72には、その背部にバックアップ系ライン
40の蒸発器42が取付けられている。
As shown in FIGS. 4 to 8, such an air separation apparatus has one vertically long nitrogen gas production tower 7 formed therein.
0 is installed and attached. The tower 70 is composed of a lower chamber 71 and an upper vacuum heat insulating chamber 72.
One adsorption tower 1, two air compressors 15 and 16, two dryers 17 and 18, and an electric heater 51 are arranged. Further, a plurality of doors 73 are attached to the lower chamber 71 so as to be openable and closable, an air intake 74 is formed in the door 73, and a peep window for confirming the display of instruments (not shown). 75 are provided. On the other hand, in the upper vacuum chamber 72, the first and second heat exchangers 21 and 23, the rectification tower 25, the partial condenser 32, and the liquid nitrogen storage tank 28 are arranged at the positions shown in FIG. ing. Further, the evaporator 42 of the backup system line 40 is attached to the back of the upper vacuum insulation chamber 72.

【0015】このように、上記塔60の上部真空断熱室
62内に、第1および第2の熱交換器21,23と精留
塔25と分縮器32および液体窒素貯槽28を配設した
場合には、従来のもの(従来では、第1および第2の熱
交換器21,23と精留塔25と分縮器32をコールド
ボックスの内側に配設し、液体窒素貯槽28をコールド
ボックスの外側に配設していた)と比べて、液体窒素貯
槽28をコールドボックスに供給するパイプが不用にな
り、ヒートリークによるロスが大幅に低減できるうえ、
液体窒素貯槽28内の液体窒素が極低温であるため精留
塔25等のヒートリークも減少し、その分液体窒素の使
用量が減少する。しかも、上記塔70が縦長に形成され
ているため、側方のスペースをとらない。さらに、液体
窒素貯槽28が縦長に形成され、塔70の上端部から下
端部にわたって配設されているため、液体窒素貯槽28
内の超低温の液体窒素が冷媒として作用し、塔70内を
高さ方向の全体にわたって均一に冷却するという効果が
ある。特に、第2の熱交換器23が液体窒素貯槽28の
近傍に配設されているため、上記冷媒の作用により第2
の熱交換器23が有効に冷却されて、この第2の熱交換
器23による圧縮空気の冷却が効率良く行える。そのう
え、この第2の熱交換器23が第1の熱交換器21より
小形であり、その分熱容量が小さいため、液体窒素貯槽
28に熱的悪影響を及ぼさない。
As described above, the first and second heat exchangers 21 and 23, the rectification column 25, the partial condenser 32, and the liquid nitrogen storage tank 28 are arranged in the upper vacuum heat insulation chamber 62 of the column 60. In this case, a conventional one (in the past, the first and second heat exchangers 21 and 23, the rectification column 25 and the partial condenser 32 are arranged inside the cold box, and the liquid nitrogen storage tank 28 is connected to the cold box). The pipe for supplying the liquid nitrogen storage tank 28 to the cold box is unnecessary, and the loss due to heat leak can be significantly reduced,
Since the liquid nitrogen in the liquid nitrogen storage tank 28 has an extremely low temperature, the heat leak of the rectification column 25 and the like also decreases, and the amount of the liquid nitrogen used decreases accordingly. Moreover, since the tower 70 is vertically long, it does not take up a space on the side. Further, since the liquid nitrogen storage tank 28 is vertically long and is arranged from the upper end portion to the lower end portion of the tower 70, the liquid nitrogen storage tank 28 is provided.
The ultra-low temperature liquid nitrogen inside acts as a refrigerant, and has an effect of cooling the inside of the tower 70 uniformly in the entire height direction. Particularly, since the second heat exchanger 23 is arranged in the vicinity of the liquid nitrogen storage tank 28, the second heat exchanger 23 becomes
The heat exchanger 23 is effectively cooled, and the compressed air can be efficiently cooled by the second heat exchanger 23. In addition, the second heat exchanger 23 is smaller than the first heat exchanger 21 and has a smaller heat capacity, so that the liquid nitrogen storage tank 28 is not thermally adversely affected.

【0016】このような空気分離装置において、従来例
の吸着塔もしくはこの実施例の吸着塔を用い、吸着材を
180℃で加熱再生する場合に必要な熱量を計測した。
この場合に、従来例の吸着塔に関しては、塔径を600
mmに、塔の外壁の厚みを6mmに、塔長を1524m
mに、外壁の材質をSS400に、鏡体部を2:1ED
にそれぞれ設定した。また、断熱材の材質としてロック
ウールを用い、その厚みを75mmに、密度を200k
g/m3 に設定した。一方、この実施例の吸着塔に関し
ては、内殻4の塔径を600mmに、厚みを2mmに、
塔長を1524mmに、材質をSS400に、鏡体部を
2:1EDにそれぞれ設定し、外殻3の塔径を650m
mに、厚みを6mmに、塔長を1580mmに、材質を
SS400に、鏡体部を2:1EDにそれぞれ設定し
た。また、吸着材として、モレキュラーシーブを用い
た。このような吸着塔における吸着剤、外壁、断熱材、
内外両殻3,4の重量、加熱温度、比熱、放熱量、加熱
時間および加熱必要熱量を表1(従来例の吸着塔)およ
び表2(この実施例の吸着塔)に示す。上記表1および
表2に示される加熱必要熱量は、下記の式1(従来例の
吸着塔)および式2(この実施例の吸着塔)により、算
出した。なお、表1および表2において、比熱の単位
(※1)は、kcal/kg・℃であり、表2におい
て、伝熱係数(※2)の単位は、3.1kcal/m2
・Hr・℃である。
In such an air separation apparatus, the amount of heat required when the adsorbent was heated and regenerated at 180 ° C. was measured using the conventional adsorption tower or the adsorption tower of this embodiment.
In this case, regarding the adsorption tower of the conventional example, the tower diameter is 600
mm, the outer wall thickness of the tower is 6 mm, and the tower length is 1524 m.
m, the material of the outer wall is SS400, and the mirror part is 2: 1 ED
Set to each. Also, rock wool is used as the material of the heat insulating material, and the thickness is 75 mm and the density is 200 k.
It was set to g / m 3 . On the other hand, regarding the adsorption tower of this embodiment, the inner shell 4 has a tower diameter of 600 mm and a thickness of 2 mm.
The tower length is set to 1524 mm, the material is set to SS400, the mirror part is set to 2: 1 ED, and the tower diameter of the outer shell 3 is 650 m.
m, thickness 6 mm, tower length 1580 mm, material SS400, and mirror body 2: 1 ED. A molecular sieve was used as the adsorbent. The adsorbent, outer wall, heat insulating material in such an adsorption tower,
The weights of the inner and outer shells 3 and 4, the heating temperature, the specific heat, the heat radiation amount, the heating time and the required heating amount are shown in Table 1 (adsorption column of the conventional example) and Table 2 (adsorption column of this example). The required heating amount of heat shown in Tables 1 and 2 was calculated by the following equation 1 (adsorption column of conventional example) and equation 2 (adsorption column of this example). In Tables 1 and 2, the unit of specific heat (* 1) is kcal / kg · ° C, and in Table 2, the unit of heat transfer coefficient (* 2) is 3.1 kcal / m 2.
・ Hr · ° C.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【式1】w1・Δt1・c1+w3・Δt3・c3+w
4・Δt4・c4
[Formula 1] w1 · Δt1 · c1 + w3 · Δt3 · c3 + w
4 / Δt4 / c4

【0020】[0020]

【式2】w1・Δt1・c1+w2・Δt2・c2+w
3・Δt3・c4+q・T
[Formula 2] w1 · Δt1 · c1 + w2 · Δt2 · c2 + w
3 ・ Δt3 ・ c4 + q ・ T

【0021】上記表1および表2により明らかなよう
に、従来例の吸着塔に比べ、この実施例の吸着塔の方が
再生工程において有利である(略13%の動力削減にな
る)ことがわかる。
As is clear from Tables 1 and 2, the adsorption tower of this example is more advantageous in the regeneration process than the adsorption tower of the conventional example (reduced power by about 13%). Recognize.

【0022】このように、この実施例の吸着塔は、吸着
塔本体2が二重殻構造に構成されており、この二重殻構
造の外殻3と内殻4間の空間に空気層からなる断熱空間
9を形成している。したがって、断熱効果に優れるう
え、従来のように外壁の外周部にロックウール等の断熱
材からなる断熱層84を設けたものと比べて、吸着剤の
再生のための加熱工程において大きな熱量を必要としな
い。また、外殻3から放熱が行えて、再生された吸着剤
の冷却工程においてもこれを長時間冷却する必要もな
い。したがって、再生加熱工程の加熱動力の削減や加熱
・冷却時間の短縮が可能になる(例えば、180℃で加
熱再生する場合に13%の再生時間の短縮となる)。特
に、耐圧部材の肉厚が厚いものには、非常に有効であ
る。さらに、大気温度以上の流体や水分を多く含む流体
に対する吸着工程においても、放熱しやすく、吸着塔内
温度上昇を抑えることができ、吸着剤の性能(吸着容量
等)を向上させることができる。そのうえ、吸着工程に
おいては、ガス入口側フィルター85の網目状通気部8
5aから流出したガスが吸着剤83にスムーズに流入
し、また、再生工程においては、熱風等の再生ガスで吸
着剤83から追い出された残存不純ガス分が連通部8を
通って断熱空間9内に捕獲される(すなわち、断熱空間
9が不純ガス分の捕獲部として作用する)。そして、第
1の外側フィルター挿通用筒部5aから下側接続管87
およびガス入口側フィルター85を取り外すことによ
り、簡単に上記捕獲された不純ガス分を外部に取り除く
ことができる。さらに、主として、外殻3に、吸着剤8
3を配設した内殻4とからなり、部品点数が少なく、構
造が簡単であるうえ、外殻3に内殻4を溶接するだけで
作製することができ、作製が容易である。
As described above, in the adsorption tower of this embodiment, the adsorption tower body 2 has a double shell structure, and the space between the outer shell 3 and the inner shell 4 of this double shell structure is separated from the air layer. A heat insulating space 9 is formed. Therefore, in addition to being excellent in heat insulating effect, a large amount of heat is required in the heating process for regenerating the adsorbent, as compared with the conventional one in which the heat insulating layer 84 made of a heat insulating material such as rock wool is provided on the outer peripheral portion of the outer wall. Not. Further, heat can be dissipated from the outer shell 3, and it is not necessary to cool the regenerated adsorbent for a long time in the cooling step. Therefore, it is possible to reduce the heating power in the regeneration heating step and to shorten the heating / cooling time (for example, in the case of heating regeneration at 180 ° C., the regeneration time is reduced by 13%). In particular, it is very effective for a pressure resistant member having a large thickness. Further, even in an adsorption step for a fluid having a temperature higher than the atmospheric temperature or a fluid containing a large amount of moisture, heat can be easily released, the temperature rise in the adsorption tower can be suppressed, and the performance of the adsorbent (adsorption capacity etc.) can be improved. Moreover, in the adsorption step, the mesh ventilation part 8 of the gas inlet side filter 85 is used.
The gas flowing out from 5a smoothly flows into the adsorbent 83, and in the regeneration process, the residual impure gas component expelled from the adsorbent 83 by the regeneration gas such as hot air passes through the communicating portion 8 and inside the heat insulating space 9. (That is, the heat insulating space 9 acts as a trap for the impure gas). Then, from the first outer filter inserting tubular portion 5a to the lower connecting pipe 87
By removing the gas inlet side filter 85, the captured impure gas component can be easily removed to the outside. Furthermore, the adsorbent 8 is mainly provided on the outer shell 3.
It is composed of the inner shell 4 in which 3 is provided, has a small number of parts, has a simple structure, and can be manufactured only by welding the inner shell 4 to the outer shell 3, which is easy to manufacture.

【0023】図10および図11はこの発明の他の実施
例を示している。この実施例では、内殻4は、円筒状中
央部4aとドーム状天井部4bと逆ドーム状底部4cを
備えており、上記ドーム状天井部4bの中央に穿設され
た丸穴の周縁から第2の内側フィルター挿通用筒部6b
が垂設され、この第2の内側フィルター挿通用筒部6b
の上端部が外殻3の内周面に溶接により一体的に取付け
られている。また、上記内殻4には、その逆ドーム状底
部4cの中央に穿設された丸穴の周縁から第1の内側フ
ィルター挿通用筒部6aが立設され、この第1の内側フ
ィルター挿通用筒部6aの下端部が外殻3の内周面に溶
接により一体的に取付けられている。そして、上記第1
の内側フィルター挿通用筒部6aの近傍外周部に円環状
の連通部8が形成されている。この実施例でも、ガス通
路82のガス入口はガス入口側フィルター85の網目状
通気部85aであり、ガス出口はガス出口側フィルター
86の網目状通気部86aである。それ以外の部分は上
記実施例と同様であり、同様の部分には同じ符号を付し
ている。
10 and 11 show another embodiment of the present invention. In this embodiment, the inner shell 4 is provided with a cylindrical central portion 4a, a dome-shaped ceiling portion 4b, and an inverted dome-shaped bottom portion 4c, and from the peripheral edge of a round hole formed in the center of the dome-shaped ceiling portion 4b. Second inner filter insertion tube portion 6b
And the second inner filter insertion tube portion 6b.
The upper end portion of is integrally attached to the inner peripheral surface of the outer shell 3 by welding. Further, the inner shell 4 is provided with a first inner filter insertion tube portion 6a standing upright from the peripheral edge of a round hole formed at the center of the inverted dome-shaped bottom portion 4c. The lower end of the tubular portion 6a is integrally attached to the inner peripheral surface of the outer shell 3 by welding. And the first
An annular communication portion 8 is formed on the outer peripheral portion in the vicinity of the inner filter inserting tubular portion 6a. Also in this embodiment, the gas inlet of the gas passage 82 is the mesh ventilation portion 85a of the gas inlet side filter 85, and the gas outlet is the mesh ventilation portion 86a of the gas outlet side filter 86. The other parts are the same as those in the above-mentioned embodiment, and the same parts are denoted by the same reference numerals.

【0024】図12はこの発明のさらに他の実施例を示
している。この実施例では、図10の実施例において、
ガス入口側フィルター85およびガス出口側フィルター
86を省略している。したがって、この実施例では、内
殻4の逆ドーム状底部4cの第1の内側フィルター挿通
用筒部6aがガス通路82のガス入口となり、内殻4の
ドーム状天井部4bの第2の内側フィルター挿通用筒部
6bがガス通路82のガス出口となる。それ以外の部分
は上記実施例と同様であり、同様の部分には同じ符号を
付している。
FIG. 12 shows still another embodiment of the present invention. In this embodiment, in the embodiment of FIG.
The gas inlet side filter 85 and the gas outlet side filter 86 are omitted. Therefore, in this embodiment, the first inner filter insertion tube portion 6a of the inverted dome-shaped bottom portion 4c of the inner shell 4 serves as the gas inlet of the gas passage 82, and the second inner side of the dome-shaped ceiling portion 4b of the inner shell 4 is formed. The filter insertion tube portion 6b serves as a gas outlet of the gas passage 82. The other parts are the same as those in the above-mentioned embodiment, and the same parts are denoted by the same reference numerals.

【0025】なお、図1の実施例において、ガス入口側
フィルター85およびガス出口側フィルター86を省略
することも考えられる。また、上記各実施例では、連通
部8がガス入口85a,6aの周囲の全周に形成されて
いるが、これに限定するものではなく、部分的に形成し
てもよい。
In the embodiment of FIG. 1, it is possible to omit the gas inlet side filter 85 and the gas outlet side filter 86. Further, in each of the above embodiments, the communicating portion 8 is formed around the entire circumference of the gas inlets 85a and 6a, but the present invention is not limited to this and may be formed partially.

【0026】[0026]

【発明の効果】以上のように、この発明の精製器によれ
ば、二重殻構造に構成された精製器本体の内殻の内部空
間がガス通路に形成されているとともに、このガス通路
中のガスが流入した二重殻構造の内外両殻間の空間が断
熱空間に形成されているため、優れた断熱効果を有す
る。そのうえ、上記内外両殻間の空間のガスの熱容量が
小さく、従来のように外壁の外周部にロックウール等の
断熱材からなる断熱層84を設けたものと比べて、吸着
剤の再生のための加熱工程において、加熱のために大き
な熱量を必要としない。また、加熱された外殻や断熱空
間の熱量が少なく、再生された吸着剤の冷却工程におい
て長時間冷却する必要もない。したがって、再生加熱工
程の加熱動力の削減や加熱・冷却時間の短縮が可能にな
る(例えば、180℃で加熱再生する場合に、13%の
再生時間の短縮となる。)。特に高圧運転を行うもの等
外殻の肉厚が厚いものには、非常に有効である。しか
も、水分を多く含む流体や大気温度以上の流体に対する
吸着工程において、吸着剤の吸着熱に起因する精製器本
体内の温度上昇がみられても、上記したように精製器本
体が放熱しやすい構造であるため、精製器本体内の温度
上昇を抑えることができ、長時間にわたって吸着剤の性
能(吸着容量等)が低下しない。そのうえ、上記連通部
がガス通路のガス入口もしくはその近傍に対応する内殻
の部分に形成されているため、上記連通部が、吸着工程
においてガス入口から流出した流体が流れて行く方向と
は反対側に位置する。したがって、流出した流体が除去
手段の通気抵抗によってもその周囲には逃げることな
く、除去手段に流入するようになり、上記優れた断熱効
果を損なうこともない。さらに、吸着剤の再生のための
加熱工程においては、上記連通部が、除去手段を通過し
た流体が流れて行く方向に形成されているため、熱風等
の再生ガスがガス入口に流入する際にその熱風で追い出
された残存不純ガス分の一部が上記連通部を通って上記
内外両殻間の空間に流入しここに溜まる(すなわち、こ
の空間が残存不純ガス分の捕獲部として作用する)。し
たがって、その分ガス通路の汚染が低減され、ガス通路
が長期間にわたって清浄な状態に維持される。
As described above, according to the purifier of the present invention, the inner space of the inner shell of the purifier body having the double shell structure is formed in the gas passage, and Since the space between the inner and outer shells of the double shell structure into which the gas of (1) is introduced is formed as a heat insulating space, it has an excellent heat insulating effect. In addition, the heat capacity of the gas in the space between the inner and outer shells is small, and compared to the conventional case where the heat insulating layer 84 made of a heat insulating material such as rock wool is provided on the outer peripheral portion of the outer wall, the adsorbent is regenerated. In the above heating step, a large amount of heat is not required for heating. Further, the amount of heat of the heated outer shell and the heat insulating space is small, and it is not necessary to cool the regenerated adsorbent for a long time. Therefore, it is possible to reduce the heating power in the regeneration heating step and to shorten the heating / cooling time (for example, when heating and regenerating at 180 ° C., the regeneration time is reduced by 13%). Especially, it is very effective for the ones having a thick outer shell such as those for high pressure operation. In addition, even if the temperature inside the purifier body rises due to the heat of adsorption of the adsorbent in the adsorption process for a fluid containing a large amount of water or a fluid above the ambient temperature, the purifier body easily radiates heat as described above. Due to the structure, the temperature rise in the purifier body can be suppressed, and the performance (adsorption capacity etc.) of the adsorbent does not decrease for a long time. Moreover, since the communicating portion is formed in the inner shell portion corresponding to the gas inlet of the gas passage or the vicinity thereof, the communicating portion is opposite to the direction in which the fluid flowing out from the gas inlet flows in the adsorption step. Located on the side. Therefore, the fluid that has flowed out does not escape to the surroundings due to the ventilation resistance of the removing means and flows into the removing means, and the excellent heat insulating effect is not impaired. Further, in the heating step for regenerating the adsorbent, since the communication part is formed in the direction in which the fluid passing through the removing means flows, when regenerated gas such as hot air flows into the gas inlet. A part of the residual impure gas component expelled by the hot air flows into the space between the inner and outer shells through the communicating portion and accumulates therein (that is, this space acts as a trap portion for the residual impure gas component). . Therefore, the pollution of the gas passage is reduced correspondingly, and the gas passage is kept clean for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の吸着塔の一実施例を示す縦断面図で
ある。
FIG. 1 is a vertical sectional view showing an embodiment of an adsorption tower of the present invention.

【図2】上記吸着塔の拡大横断面図である。FIG. 2 is an enlarged cross-sectional view of the adsorption tower.

【図3】上記吸着塔を用いた空気分離装置の構成図であ
る。
FIG. 3 is a configuration diagram of an air separation device using the adsorption tower.

【図4】窒素ガス製造塔の斜視図である。FIG. 4 is a perspective view of a nitrogen gas production tower.

【図5】上記塔の要部断面図である。FIG. 5 is a cross-sectional view of a main part of the tower.

【図6】上記塔の正面図である。FIG. 6 is a front view of the tower.

【図7】上記塔の背面図である。FIG. 7 is a rear view of the tower.

【図8】上記塔の平面図である。FIG. 8 is a plan view of the tower.

【図9】上記塔の上部真空断熱室の説明図である。FIG. 9 is an explanatory diagram of an upper vacuum insulation chamber of the tower.

【図10】この発明の他の実施例を示す縦断面図であ
る。
FIG. 10 is a vertical sectional view showing another embodiment of the present invention.

【図11】上記他の実施例を示す横断面図である。FIG. 11 is a cross-sectional view showing the other embodiment.

【図12】この発明のさらに他の実施例を示す縦断面図
である。
FIG. 12 is a vertical sectional view showing still another embodiment of the present invention.

【図13】従来例を示す縦断面図である。FIG. 13 is a vertical sectional view showing a conventional example.

【図14】上記従来例の拡大横断面図である。FIG. 14 is an enlarged cross-sectional view of the conventional example.

【符号の説明】[Explanation of symbols]

1 吸着塔 2 吸着塔本体 3 外殻 4 内殻 8 連通部 9 断熱空間 82 ガス通路 83 吸着剤 85a ガス入口 86a ガス出口 1 Adsorption tower 2 Adsorption tower main body 3 Outer shell 4 Inner shell 8 Communication section 9 Adiabatic space 82 Gas passage 83 Adsorbent 85a Gas inlet 86a Gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末長 純也 大阪府堺市築港新町2丁6番地40 大同ほ くさん株式会社技術本部堺研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junya Suenaga 2-6-6 Tsukikoshinmachi, Sakai City, Osaka 40 Daido Hokusan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 精製器本体内に形成されるガス通路にガ
ス中の不純ガス分を除去する除去手段が設けられた精製
器であって、精製器本体が二重殻構造に構成され、この
二重殻構造の内殻の内部空間がガス通路に形成され、こ
のガス通路のガス入口もしくはその近傍に対応する内殻
の部分に、内殻の内部空間と内外両殻間の空間とを連通
する連通部が設けられていることを特徴とする精製器。
1. A purifier in which a gas passage formed in the purifier body is provided with a removing means for removing an impure gas component in the gas, wherein the purifier body has a double-shell structure. The inner space of the inner shell of the double-shell structure is formed in the gas passage, and the inner space of the inner shell and the space between the inner and outer shells communicate with the portion of the inner shell corresponding to the gas inlet of the gas passage or its vicinity. A purifier characterized by being provided with a communication part that
JP7153452A 1995-01-31 1995-06-20 Purifier Expired - Fee Related JP3054062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7153452A JP3054062B2 (en) 1995-01-31 1995-06-20 Purifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1441295 1995-01-31
JP7-14412 1995-01-31
JP7153452A JP3054062B2 (en) 1995-01-31 1995-06-20 Purifier

Publications (2)

Publication Number Publication Date
JPH08266850A true JPH08266850A (en) 1996-10-15
JP3054062B2 JP3054062B2 (en) 2000-06-19

Family

ID=26350361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7153452A Expired - Fee Related JP3054062B2 (en) 1995-01-31 1995-06-20 Purifier

Country Status (1)

Country Link
JP (1) JP3054062B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534829B1 (en) * 2014-10-29 2015-07-08 태성건설 주식회사 A adsorbent tower for eliminating malodor using assembling container type cartridge
JP2020082038A (en) * 2018-11-30 2020-06-04 本田技研工業株式会社 Air purifying device
CN113457369A (en) * 2021-06-30 2021-10-01 佛山市科蓝环保科技股份有限公司 Flue gas purification device with heat preservation function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534829B1 (en) * 2014-10-29 2015-07-08 태성건설 주식회사 A adsorbent tower for eliminating malodor using assembling container type cartridge
JP2020082038A (en) * 2018-11-30 2020-06-04 本田技研工業株式会社 Air purifying device
US11370276B2 (en) 2018-11-30 2022-06-28 Honda Motor Co., Ltd. Air purification device
CN113457369A (en) * 2021-06-30 2021-10-01 佛山市科蓝环保科技股份有限公司 Flue gas purification device with heat preservation function

Also Published As

Publication number Publication date
JP3054062B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
CS145292A3 (en) Process for preparing extremely pure argon
KR100902911B1 (en) Apparatus for Enriching and Purifying Waste Helium Gases
JPH11316082A (en) Method and device for producing clean and dry air
KR100873375B1 (en) Method and apparatus for purifying Helium gas
CN204588705U (en) A kind of helium cryogenic purincation device
CN114392632A (en) Nitrogen-protected organic waste gas condensation and recovery treatment method for degreasing process
JP2585955B2 (en) Air separation equipment
GB2281229A (en) An adsorber vessel
JP3054062B2 (en) Purifier
JPS6156009B2 (en)
CN111530228A (en) Vertical adsorber and gas purification adsorption system and method
JP2007268439A (en) Spiral heat exchanger incorporated adsorption apparatus
KR20110097648A (en) Purifying method and purifying apparatus for argon gas
JPH08291967A (en) Method and apparatus for separating the air
JP3526648B2 (en) High-purity nitrogen gas production equipment
KR100427138B1 (en) Air separation method and apparatus therefor
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH07144114A (en) Device for shortening regeneration time of pretreatment adsorber for feed air used for air liquefying separator
JP3259099B2 (en) Ultra-high purity nitrogen production apparatus and start-up method thereof
CN216080639U (en) Cryogenic separation coupling device
JP3043282B2 (en) Gas purification method and apparatus used therefor
JP2001033155A (en) Air separator
JPH0579754A (en) Manufacturing method of high purity nitrogen
JPS6329724Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000314

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees