JPH08264052A - Partial conductive-glazed insulator - Google Patents

Partial conductive-glazed insulator

Info

Publication number
JPH08264052A
JPH08264052A JP6455095A JP6455095A JPH08264052A JP H08264052 A JPH08264052 A JP H08264052A JP 6455095 A JP6455095 A JP 6455095A JP 6455095 A JP6455095 A JP 6455095A JP H08264052 A JPH08264052 A JP H08264052A
Authority
JP
Japan
Prior art keywords
conductive
insulator
surface resistance
conductive glaze
glaze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6455095A
Other languages
Japanese (ja)
Inventor
Hiroshi Nozaki
宏 野崎
Shigeo Mori
重男 森
Hideyuki Oda
英之 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6455095A priority Critical patent/JPH08264052A/en
Priority to CN96101363A priority patent/CN1073741C/en
Publication of JPH08264052A publication Critical patent/JPH08264052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Insulating Bodies (AREA)

Abstract

PURPOSE: To provide a partial conductive-glazed insulator capable of sufficiently preventing the occurrence of a corona discharge or RIV under severe operating conditions. CONSTITUTION: A pin metal 21 and a cap metal 22 are connected to a insulator main body 11 made of glazed porcelain serving as an insulation section via Portland cement 18. Conductive glaze layers 19, 20 are formed in the boundary region between the insulating glaze layer 15 of the insulator main body 11 and the Portland cement 18. The conductive glaze layers 19, 20 are made gradually thinner toward a shade section 12 side. The surface resistance of the conductive-glaze layers 19, 20 is within the range of 100-800MΩon the pin side 19 and to the range of 20-1000MΩ on the cap side 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、碍子本体の絶縁表面
とセメント材との間の境界領域に導電釉層(導電性を有
する釉薬層)を設けた部分導電釉碍子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partially conductive glazed insulator in which a conductive glaze layer (a conductive glaze layer) is provided in a boundary region between an insulating surface of an insulator body and a cement material.

【0002】[0002]

【従来の技術】 例えば、懸垂型碍子は施釉磁器製の絶
縁部の内外両面にセメント材を介して課電側のピン金具
と接地側のキャップ金具とが接合され、それら両金具の
間が互いに絶縁されている。これらの各部材は、例えば
表面抵抗等の電気的特性が異なるため、課電時において
これらの各部材間の境界領域に電界集中が起こる。ここ
で、空気の絶縁耐力を越えた電界集中が発生した場合に
は、空気の部分的絶縁破壊によるコロナ放電を生じて、
ラジオ障害電圧(RIV)が発生する。
2. Description of the Related Art For example, in a suspended insulator, a pin metal fitting on the power supply side and a cap metal fitting on the grounding side are joined to each other on both the inner and outer surfaces of an insulating part made of glazed porcelain via cement material, and these metal fittings are mutually connected. It is insulated. These members have different electrical characteristics, such as surface resistance, so that electric field concentration occurs in the boundary region between these members during power application. Here, when an electric field concentration exceeding the dielectric strength of air occurs, corona discharge occurs due to partial insulation breakdown of air,
Radio interference voltage (RIV) is generated.

【0003】このコロナ放電やRIVの発生を防止する
ために、例えば酸化鉄等の金属酸化物を一般の釉薬に混
合した導電釉を、電界集中の起こりやすい境界領域に施
した部分導電釉碍子が知られている。一般にその導電釉
層の表面抵抗値は100MΩ以下となっている。例え
ば、USP3,243,505号公報の懸垂碍子では、
電界集中の起こりやすい碍子本体の絶縁表面とセメント
材との境界領域に、ブルーチタニアよりなる導電釉層が
形成されている。この導電釉層の表面抵抗値は0.2〜
20MΩの範囲となっている。そして、この導電釉層に
よって、電界集中が緩和されて、コロナ放電やRIVを
防止する構成となっている。
In order to prevent the occurrence of corona discharge and RIV, for example, a partial conductive glazed porcelain in which a conductive glaze in which a metal oxide such as iron oxide is mixed with a general glaze is applied to a boundary region where electric field concentration is likely to occur is known. Are known. Generally, the surface resistance value of the conductive glaze layer is 100 MΩ or less. For example, in the suspension insulator of USP 3,243,505,
A conductive glaze layer made of blue titania is formed in the boundary region between the insulating material of the insulator body where the electric field is likely to concentrate and the cement material. The surface resistance value of this conductive glaze layer is 0.2 to
It is in the range of 20 MΩ. The conductive glaze layer reduces the electric field concentration and prevents corona discharge and RIV.

【0004】[0004]

【発明が解決しようとする課題】 例えば、送電圧が高
圧である場合には、碍子の分担電圧が高くなり、碍子の
各構成材の境界領域における電界集中が大きくなる。ま
た、高標高地区等の放電の起こりやすい環境下において
は、わずかな電界集中でもコロナ放電やRIVが発生す
ることがある。ところが、このような厳しい使用条件下
においては、従来の部分導電釉碍子では電界集中の緩和
効果が不十分なため、電界集中を緩和しきれずにコロナ
放電やRIVが発生するという問題点があった。
For example, when the sending voltage is high, the voltage shared by the insulator is high, and the electric field concentration is large in the boundary region of each constituent material of the insulator. Further, in an environment such as a high altitude area where discharge is likely to occur, even a slight electric field concentration may cause corona discharge or RIV. However, under such a severe use condition, the conventional partial conductive glazed insulator has a problem that the electric field concentration is not sufficiently mitigated, so that the electric field concentration cannot be fully mitigated and corona discharge or RIV occurs. .

【0005】本発明の目的は、厳しい使用条件下におい
ても、コロナ放電やRIVの発生を十分に防止しうる部
分導電釉碍子を提供することにある。
An object of the present invention is to provide a partially conductive glaze insulator capable of sufficiently preventing corona discharge and RIV generation even under severe use conditions.

【0006】[0006]

【課題を解決するための手段】 上記目的を達成するた
めに、請求項1の発明では、課電側の導電釉層の表面抵
抗を100〜800MΩに、かつ接地側の導電釉層の表
面抵抗を20〜1000MΩに設定したものである。
In order to achieve the above-mentioned object, in the invention of claim 1, the surface resistance of the conductive glaze layer on the voltage application side is 100 to 800 MΩ and the surface resistance of the conductive glaze layer on the ground side. Is set to 20 to 1000 MΩ.

【0007】請求項2の発明では、前記各導電釉層の表
面抵抗が、碍子本体の絶縁表面とセメント材との間で高
低差が生じるように、その表面抵抗をなだらかに変化さ
せたものである。
According to the second aspect of the present invention, the surface resistance of each of the conductive glaze layers is gently changed so that there is a difference in height between the insulating surface of the insulator body and the cement material. is there.

【0008】請求項3の発明では、前記表面抵抗分布
を、絶縁表面側ほど高く、セメント材側ほど低くなるよ
うに形成したものである。
According to the third aspect of the present invention, the surface resistance distribution is formed so as to be higher on the insulating surface side and lower on the cement material side.

【0009】[0009]

【作用】 請求項1の発明によれば、部分導電釉碍子の
コロナ消滅電圧レベルを高い範囲とすることができる。
このため、高い電圧レベルまでコロナ放電が発生するこ
とがなく、より大きな電界集中にも耐えられるものとす
ることができる。
According to the invention of claim 1, the corona extinction voltage level of the partially conductive glaze can be set in a high range.
Therefore, corona discharge does not occur up to a high voltage level, and it is possible to withstand a larger electric field concentration.

【0010】請求項2の発明によれば、電界集中の起こ
りやすい碍子本体の絶縁表面とセメント材の境界領域の
表面抵抗の落差を、導電釉層を介してなだらかにするこ
とができる。
According to the second aspect of the invention, the drop in surface resistance between the insulating surface of the insulator main body where the electric field concentration is likely to occur and the boundary region of the cement material can be smoothed through the conductive glaze layer.

【0011】請求項3の発明によれば、表面抵抗が相対
的に低いセメント材側から表面抵抗が高い碍子本体の絶
縁表面にわたって、その表面抵抗の高低の傾向に沿った
表面抵抗分布が形成される。このため、碍子本体の絶縁
表面とセメント材との表面抵抗の落差がいっそうなだら
かなものとなり、電界集中が緩和される。
According to the invention of claim 3, a surface resistance distribution is formed along the tendency of the surface resistance from the cement material side having a relatively low surface resistance to the insulating surface of the insulator main body having a high surface resistance. It Therefore, the difference in surface resistance between the insulating surface of the insulator body and the cement material becomes more gentle, and the electric field concentration is alleviated.

【0012】[0012]

【実施例】 以下に、本発明を懸垂型碍子(以下、部分
導電釉碍子とする)に具体化した実施例について図面に
基づいて説明する。図1に示すように、碍子本体11の
笠部12の内側面に円環状かつ同心円状に複数のひだ部
13が一体に形成されている。前記笠部12の中央上部
には有蓋円筒状の頭部14が一体形成されている。ま
た、この碍子本体11の全面は、絶縁性を有する酸化ケ
イ素、酸化アルミニウムを主成分とする一般の釉薬(以
下、絶縁釉)が施されて、絶縁表面としての絶縁釉層1
5となっている。前記頭部14の外周面及び内周面に
は、磁器片が固着されてサンド層16が構成されてい
る。碍子本体11の頭部14の外面及び内面にはポルト
ランドセメント18を介して接地側のキャップ金具22
及び課電側のピン金具21とが接合固定されている。従
って、碍子本体11の両端にキャップ金具22及びピン
金具21が位置することになる。
EXAMPLE An example in which the present invention is embodied in a suspended-type insulator (hereinafter, referred to as a partially conductive glaze insulator) will be described with reference to the drawings. As shown in FIG. 1, a plurality of pleats 13 are integrally formed in an annular and concentric shape on the inner surface of the cap portion 12 of the insulator body 11. A cylindrical head portion 14 having a lid is integrally formed on the central upper portion of the cap portion 12. Further, the entire surface of the insulator body 11 is coated with a general glaze (hereinafter referred to as insulating glaze) containing silicon oxide and aluminum oxide having an insulating property as main components, and the insulating glaze layer 1 as an insulating surface is formed.
It is 5. Porcelain pieces are fixed to the outer peripheral surface and the inner peripheral surface of the head portion 14 to form a sand layer 16. On the outer surface and the inner surface of the head 14 of the insulator main body 11, a grounding side cap fitting 22 is provided with a Portland cement 18 interposed.
And the pin metal fitting 21 on the power supply side are joined and fixed. Therefore, the cap fittings 22 and the pin fittings 21 are located at both ends of the insulator body 11.

【0013】キャップ金具22の上部には、直上の他の
部分導電釉碍子のピン金具21を係合するための嵌合凹
部22aが形成されている。また、ピン金具21の下端
は直下の他の部分導電釉碍子の嵌合凹部22aに係合さ
れる。このように、部分導電釉碍子は、直列に複数個連
結されて使用される。
A fitting recess 22a is formed on the upper portion of the cap member 22 for engaging the pin member 21 of the other partial conductive glazed insulator immediately above. In addition, the lower end of the pin fitting 21 is engaged with the fitting recess 22a of the other partial conductive glaze insulator immediately below. As described above, a plurality of partially conductive glazes are used by being connected in series.

【0014】図2に示すように、碍子本体11の内面及
び外面において、碍子本体11の絶縁釉層15と、ポル
トランドセメント18との境界領域には幅30mmにわ
たって導電釉層19、20が形成されている。この導電
釉層19、20は、ポルトランドセメント18側から笠
部12側にかけて順次厚みが薄くなるように形成されて
いる。この導電釉層19、20は、碍子本体11の前記
絶縁釉層15上に、鉄系の半導電性釉薬を所定の幅、厚
みとなるようにハケでの塗布により形成される。なお、
前記鉄系の半導電性釉薬は、一般の釉薬組成に、酸化鉄
を15wt%、酸化クロムを8wt%を添加したものと
なっている。
As shown in FIG. 2, conductive glaze layers 19 and 20 are formed on the inner surface and outer surface of the insulator body 11 in a boundary region between the insulating glaze layer 15 of the insulator body 11 and the Portland cement 18 over a width of 30 mm. ing. The conductive glaze layers 19 and 20 are formed so that the thickness thereof is gradually reduced from the Portland cement 18 side to the cap portion 12 side. The conductive glaze layers 19 and 20 are formed on the insulating glaze layer 15 of the insulator main body 11 by applying an iron-based semiconductive glaze with a brush so as to have a predetermined width and thickness. In addition,
The iron-based semiconductive glaze has a composition of general glaze to which 15 wt% of iron oxide and 8 wt% of chromium oxide are added.

【0015】なお、図1及び図2において、理解を容易
にするために、絶縁釉層15及び導電釉層19、20は
実際よりも厚く描いてある。次に、導電釉層19、20
の表面抵抗値とコロナ消滅電圧レベルとの関係について
説明する。
In FIG. 1 and FIG. 2, the insulating glaze layer 15 and the conductive glaze layers 19 and 20 are drawn thicker than they actually are to facilitate understanding. Next, the conductive glaze layers 19 and 20
The relationship between the surface resistance value of and the corona extinction voltage level will be described.

【0016】図3は、図1においてピン側導電釉層19
及びキャップ側導電釉層20の表面抵抗値を種々変化さ
せた条件下での、コロナ放電が消滅する電圧レベルを示
したものである。図3に示すように、キャップ側導電釉
層20の抵抗値が10MΩ以下あるいは1000〜50
00MΩの範囲では、ピン側導電釉層19の表面抵抗値
1〜1000MΩの全域にわたって、コロナ消滅電圧レ
ベルはほとんど変化がみられない。これに対して、キャ
ップ側導電釉層20の表面抵抗値が20〜1000MΩ
の範囲では、ピン側導電釉層19の表面抵抗値が100
〜800MΩの範囲において、従来の両導電釉層19、
20の表面抵抗を100MΩ以下とした場合に比べて、
高いコロナ消滅電圧レベルが認められた。すなわち、ピ
ン側導電釉層19及びキャップ側導電釉層20の表面抵
抗値をこの範囲に設定することにより、従来の部分導電
釉碍子に比べてより高い電圧レベルまでコロナ放電を防
止可能となる。つまり、導電釉層19、20の表面抵抗
値の最適範囲は、キャップ側が20〜1000MΩの範
囲で、かつピン側が100〜800MΩの範囲となる。
ここで、導電釉層19、20の表面抵抗値がこの最適範
囲以下の場合では、導電釉層19、20と絶縁釉層15
との境界部においてコロナ放電を生じることがある。一
方、導電釉層19、20の表面抵抗値がこの最適範囲以
上の場合では、導電釉層19、20とポルランドセメン
ト18との境界部においてコロナ放電を生じることがあ
る。
FIG. 3 shows the pin side conductive glaze layer 19 in FIG.
3 shows the voltage level at which the corona discharge disappears under the condition that the surface resistance value of the cap side conductive glaze layer 20 is variously changed. As shown in FIG. 3, the resistance value of the conductive glaze layer 20 on the cap side is 10 MΩ or less, or 1000 to 50.
In the range of 00 MΩ, the corona extinction voltage level hardly changes over the entire surface resistance value of the pin-side conductive glaze layer 19 of 1 to 1000 MΩ. On the other hand, the surface resistance value of the cap side conductive glaze layer 20 is 20 to 1000 MΩ.
In the range of, the surface resistance value of the pin side conductive glaze layer 19 is 100.
In the range of up to 800 MΩ, the conventional double conductive glaze layer 19,
Compared with the case where the surface resistance of 20 is 100 MΩ or less,
High corona extinction voltage levels were observed. That is, by setting the surface resistance values of the pin-side conductive glaze layer 19 and the cap-side conductive glaze layer in this range, it is possible to prevent corona discharge to a higher voltage level than that of the conventional partial conductive glaze insulator. That is, the optimum range of the surface resistance value of the conductive glaze layers 19 and 20 is 20 to 1000 MΩ on the cap side and 100 to 800 MΩ on the pin side.
Here, when the surface resistance values of the conductive glaze layers 19 and 20 are less than or equal to this optimum range, the conductive glaze layers 19 and 20 and the insulating glaze layer 15
Corona discharge may occur at the boundary between and. On the other hand, when the surface resistance values of the conductive glaze layers 19 and 20 are above the optimum range, corona discharge may occur at the boundary between the conductive glaze layers 19 and 20 and the Polland cement 18.

【0017】また、図4に示すように、導電釉層をハケ
での塗布によって形成したためにその表面抵抗値に若干
のばらつきがみられる。しかし、導電釉層の厚みと表面
抵抗値との間には、その平均値において一定の関連性が
みられる。すなわち、導電釉層の厚みが厚いほど表面抵
抗値が低く、厚みが薄いほど表面抵抗値が高くなってい
る。従って、導電釉層19、20の表面抵抗値は、その
厚みで規定することができる。ここで、本実施例では、
ピン側導電釉層19及びキャップ側導電釉層20の表面
抵抗が前記最適範囲となるように、それぞれの厚みがほ
ぼ0.14〜0.23mm、及び0.14〜0.33m
mの範囲内で変化するように構成されている。
Further, as shown in FIG. 4, since the conductive glaze layer is formed by coating with a brush, a slight variation is observed in the surface resistance value. However, there is a certain relationship between the thickness of the conductive glaze layer and the surface resistance value in the average value. That is, the thicker the conductive glaze layer, the lower the surface resistance value, and the thinner the thickness, the higher the surface resistance value. Therefore, the surface resistance value of the conductive glaze layers 19 and 20 can be defined by its thickness. Here, in this embodiment,
The thickness of each of the pin-side conductive glaze layer 19 and the cap-side conductive glaze layer 20 is approximately 0.14 to 0.23 mm and 0.14 to 0.33 m so that the surface resistances thereof fall within the above-mentioned optimum range.
It is configured to change within the range of m.

【0018】以上のように構成された本実施例によれ
ば、電界集中の起こりやすい碍子本体11の絶縁釉層1
5と、ポルトランドセメント18との境界領域に、導電
釉層19、20が形成されている。そして、ピン側導電
釉層19の表面抵抗値が100〜800MΩの範囲、キ
ャップ側導電釉層20の表面抵抗値が20〜1000M
Ωの範囲となるように形成されている。しかも、この導
電釉層19、20は、ポルトランドセメント18側から
笠部12側にかけてなだらかに厚みが薄くなるように形
成されている。従って、図4に示すように、導電釉層1
9、20の厚みが薄いほど表面抵抗値が高くなるという
関係から、各導電釉層19、20内の表面抵抗分布が、
ポルトランドセメント18側から笠部12側にかけてな
だらかに高くなっている。
According to this embodiment constructed as described above, the insulating glaze layer 1 of the insulator body 11 where electric field concentration is likely to occur
Conductive glaze layers 19 and 20 are formed in a boundary region between the No. 5 and the Portland cement 18. The surface resistance value of the pin side conductive glaze layer 19 is in the range of 100 to 800 MΩ, and the surface resistance value of the cap side conductive glaze layer 20 is 20 to 1000 MΩ.
It is formed to be in the range of Ω. Moreover, the conductive glaze layers 19 and 20 are formed so as to have a gentle thickness from the Portland cement 18 side to the cap portion 12 side. Therefore, as shown in FIG. 4, the conductive glaze layer 1
Since the smaller the thickness of 9 and 20, the higher the surface resistance value, the surface resistance distribution in each conductive glaze layer 19 and 20 is
It gradually rises from the Portland cement 18 side to the cap 12 side.

【0019】図5に示すように、一般に、ポルトランド
セメント18層の表面抵抗値は1MΩ程度であり、一
方、絶縁釉層15の表面抵抗値は10000MΩ程度で
ある。ここで、本実施例の部分導電釉碍子では、上述の
構成の導電釉層19、20を介して、前記二層15、1
8が接合されているため、その二層15、18間の表面
抵抗の落差が緩和されて、電界集中が緩和される構造と
なる。しかも、前記二層15、18の表面抵抗の高低の
傾向に合わせて、導電釉層19、20内の表面抵抗の勾
配は、図5においてピン側が近似線αに、キャップ側が
近似線βにそれぞれ沿ってなだらかに変化しており、い
っそう電界集中が緩和される構成となっている。このた
め、部分導電釉碍子のコロナ放電の発生する電圧レベル
を向上することができて、高電圧課電状態や高標高地区
等の厳しい使用条件下においても、コロナ放電やRIV
の発生を十分に防止できるものとなっている。
As shown in FIG. 5, in general, the surface resistance value of 18 layers of Portland cement is about 1 MΩ, while the surface resistance value of the insulating glaze layer 15 is about 10000 MΩ. Here, in the partially conductive glazed insulator of the present embodiment, the two layers 15, 1 are provided via the conductive glazed layers 19, 20 having the above-mentioned configuration.
Since 8 is bonded, the difference in surface resistance between the two layers 15 and 18 is reduced, and the electric field concentration is reduced. Moreover, in accordance with the tendency of the surface resistance of the two layers 15 and 18 to be high or low, the gradient of the surface resistance in the conductive glaze layers 19 and 20 is the approximate line α on the pin side and the approximate line β on the cap side in FIG. 5, respectively. It changes smoothly along the line, and the electric field concentration is further alleviated. Therefore, the voltage level at which corona discharge of the partially conductive glaze is generated can be improved, and corona discharge and RIV can be achieved even under severe use conditions such as high voltage voltage application and high altitude areas.
Is sufficiently prevented.

【0020】また、導電釉層19、20の形成は、碍子
本体11の外周面全面に施釉された絶縁釉層15の上面
に、鉄系の半導電性釉薬を所定幅、厚みとなるように塗
布するのみでよく、加工が簡単で製作上有利である。
Further, the conductive glaze layers 19 and 20 are formed such that an iron-based semiconductive glaze has a predetermined width and thickness on the upper surface of the insulating glaze layer 15 which is glazed on the entire outer peripheral surface of the insulator body 11. Since it only needs to be applied, it is easy to process and is advantageous in manufacturing.

【0021】なお、本発明は以下のように変更して具体
化することもできる。 (1)図2において、導電釉層19、20の厚みをさら
になだらかに変化させること。
The present invention can be modified and embodied as follows. (1) In FIG. 2, the thickness of the conductive glaze layers 19 and 20 should be changed more gently.

【0022】このように構成すれば、いっそう電界集中
を緩和することができる。 (2)図5において、導電釉層19、20の表面抵抗変
化の近似線の勾配を、それぞれの許容範囲内において異
なったものとすること。
With this structure, the electric field concentration can be further alleviated. (2) In FIG. 5, the gradients of the approximate lines of the surface resistance changes of the conductive glaze layers 19 and 20 are made different within the respective allowable ranges.

【0023】このように構成しても、電界集中を緩和す
ることができる。 (3)図5において、キャップ側導電釉層20の表面抵
抗変化の近似線βの勾配を、ピン側導電釉層19表面抵
抗変化の近似線αと一致させること。
Even with this structure, the electric field concentration can be alleviated. (3) In FIG. 5, the gradient of the approximate line β of the surface resistance change of the cap-side conductive glaze layer 20 is made to coincide with the approximate line α of the pin-side conductive glaze layer 19 surface resistance change.

【0024】このように構成すれば、両導電釉層19、
20の厚みを一致させることができて、製作上有利であ
る。 (4)図5において、導電釉層19、20の表面抵抗変
化の近似線の勾配を、それぞれの許容範囲内において逆
にすること。すなわち、図2においてセメント材18端
側ほど高く、絶縁表面15側ほど低くなるように形成す
ること。
With this structure, both conductive glaze layers 19,
The thicknesses of 20 can be matched, which is advantageous in manufacturing. (4) In FIG. 5, the gradients of the approximate lines of the surface resistance changes of the conductive glaze layers 19 and 20 are reversed within their respective allowable ranges. That is, in FIG. 2, it should be formed so that it is higher toward the end of the cement material 18 and lower toward the insulating surface 15.

【0025】(5)導電釉層19、20に塗布する導電
性釉薬の金属酸化物を、例えば酸化スズ、酸化チタン等
に変更すること。 (6)導電釉層19、20として、金属酸化物の種類の
異なる複数の導電釉(例えば鉄系、チタン系、スズ系等
の導電釉)層を、同心円状に列設して、表面抵抗の変化
を設けること。
(5) Change the metal oxide of the conductive glaze applied to the conductive glaze layers 19 and 20 to tin oxide, titanium oxide or the like. (6) As the conductive glaze layers 19 and 20, a plurality of conductive glazes (for example, iron-based, titanium-based, tin-based conductive glaze) layers having different kinds of metal oxides are concentrically arranged in a row, and the surface resistance is increased. To make changes.

【0026】(7)導電釉層19、20を碍子本体11
の磁器表面に直接施すこと。以上のように構成しても、
電界集中を緩和することができる。 (8)この発明をステーションポスト碍子、ラインポス
ト碍子の絶縁部とセメント材との境界領域に適用するこ
と。
(7) The conductive glaze layers 19 and 20 are attached to the insulator body 11
Apply directly to the porcelain surface of. Even with the above configuration,
The electric field concentration can be relaxed. (8) The present invention is applied to the boundary area between the insulating material of the station post insulator and the line post insulator and the cement material.

【0027】つぎに、上記実施例によって把握される技
術的思想を述べる。 (1)請求項1〜3において、碍子本体11の絶縁表面
として磁器表面に絶縁釉を施し、その絶縁表面上に導電
釉を施して導電釉層19、20を設けた部分導電釉碍
子。
Next, the technical idea grasped by the above embodiment will be described. (1) A partially conductive glazed porcelain according to any one of claims 1 to 3, wherein a porcelain surface serving as an insulating surface of the porcelain insulator body 11 is provided with an insulating glaze, and conductive glaze is provided on the insulating surface to provide conductive glaze layers 19 and 20.

【0028】このように構成した場合、導電釉層19、
20の形成は、碍子本体11の表面に、導電性釉薬を所
定の位置に所定幅、厚みとなるように塗布するのみでよ
く、加工が簡単で製作上有利である。
In the case of such a structure, the conductive glaze layer 19,
The formation of 20 is only required to be applied to the surface of the insulator main body 11 with a conductive glaze at a predetermined position so as to have a predetermined width and thickness.

【0029】[0029]

【発明の効果】 以上詳述したように、本発明によれば
以下の優れた効果を奏する。請求項1の発明によれば、
部分導電釉碍子の耐電界集中性を向上することができ、
高い電圧レベルまでコロナ放電が発生することがない。
従って、厳しい使用条件下においても、コロナ放電やR
IVの発生を防止することができる。
As described in detail above, according to the present invention, the following excellent effects are exhibited. According to the invention of claim 1,
It is possible to improve the electric field concentration resistance of the partially conductive glaze insulator,
Corona discharge does not occur up to high voltage levels.
Therefore, even under severe usage conditions, corona discharge and R
It is possible to prevent the generation of IV.

【0030】請求項2及び請求項3の発明によれば、碍
子本体の絶縁表面とセメント材との境界領域の電界集中
が緩和されて、コロナ放電やRIVの発生しにくい構成
にできる。
According to the second and third aspects of the present invention, the electric field concentration in the boundary area between the insulating surface of the insulator body and the cement material is alleviated, so that corona discharge or RIV is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の部分導電釉碍子の一実施例を示す一
部切欠正面図。
FIG. 1 is a partially cutaway front view showing an embodiment of a partially conductive glaze insulator of the present invention.

【図2】 図1の要部を示す拡大部分断面図。FIG. 2 is an enlarged partial sectional view showing a main part of FIG.

【図3】 導電釉層の表面抵抗とコロナ消滅電圧レベル
の関係のグラフ。
FIG. 3 is a graph showing the relationship between the surface resistance of the conductive glaze layer and the corona extinction voltage level.

【図4】 導電釉層の厚さと表面抵抗の関係のグラフ。FIG. 4 is a graph showing the relationship between the thickness of the conductive glaze layer and the surface resistance.

【図5】 導電釉層付近の表面抵抗を示す概念図。FIG. 5 is a conceptual diagram showing the surface resistance near the conductive glaze layer.

【符号の説明】[Explanation of symbols]

11…碍子本体、15…絶縁表面としての絶縁釉層、1
8…セメント材としてのポルトランドセメント、19…
課電側の導電釉層としてのピン側導電釉層、20…接地
側の導電釉層としてのキャップ側導電釉層、21…課電
側の金具としてのピン金具、22…接地側の金具として
のキャップ金具。
11 ... Insulator main body, 15 ... Insulating glaze layer as insulating surface, 1
8 ... Portland cement as cement material, 19 ...
Pin-side conductive glaze layer as a conductive glaze layer on the power-supply side, 20 ... Cap-side conductive glazed layer as a ground-side conductive glaze layer, 21 ... Pin metal fittings as metal fittings on the power-supply side, 22 ... Metal fittings on the ground side Cap metal fittings.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 碍子本体の両端にセメント材を介して課
電側及び接地側の金具を接合し、碍子本体の絶縁表面と
セメント材との間の境界領域に導電釉層を設けた部分導
電釉碍子において、 課電側の導電釉層の表面抵抗を100〜800MΩに、
かつ接地側の導電釉層の表面抵抗を20〜1000MΩ
に設定した部分導電釉碍子。
1. Partial conductivity in which metal fittings on the power-supply side and the grounding side are joined to both ends of the insulator body via cement material, and a conductive glaze layer is provided in a boundary region between the insulating surface of the insulator body and the cement material. In the glaze insulator, the surface resistance of the conductive glaze layer on the voltage-applying side is set to 100 to 800 MΩ,
Also, the surface resistance of the conductive glaze layer on the ground side is 20 to 1000 MΩ.
Partially conductive glaze insulator set to.
【請求項2】 前記各導電釉層の表面抵抗が、碍子本体
の絶縁表面とセメント材との間で高低差が生じるよう
に、その表面抵抗をなだらかに変化させた請求項1に記
載の部分導電釉碍子。
2. The portion according to claim 1, wherein the surface resistance of each of the conductive glaze layers is gently changed so that there is a difference in height between the insulating surface of the insulator body and the cement material. Conductive glaze insulator.
【請求項3】 前記表面抵抗を、絶縁表面側ほど高く、
セメント材側ほど低くなるように形成した請求項2に記
載の部分導電釉碍子。
3. The surface resistance is higher on the insulating surface side,
The partially conductive glazed insulator according to claim 2, which is formed so as to be lower on the cement material side.
JP6455095A 1995-03-23 1995-03-23 Partial conductive-glazed insulator Pending JPH08264052A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6455095A JPH08264052A (en) 1995-03-23 1995-03-23 Partial conductive-glazed insulator
CN96101363A CN1073741C (en) 1995-03-23 1996-02-07 Insulator with local-conducting glaze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6455095A JPH08264052A (en) 1995-03-23 1995-03-23 Partial conductive-glazed insulator

Publications (1)

Publication Number Publication Date
JPH08264052A true JPH08264052A (en) 1996-10-11

Family

ID=13261451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6455095A Pending JPH08264052A (en) 1995-03-23 1995-03-23 Partial conductive-glazed insulator

Country Status (2)

Country Link
JP (1) JPH08264052A (en)
CN (1) CN1073741C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208233A (en) * 2010-11-30 2011-10-05 苏州电瓷厂有限公司 Suspension type porcelain insulator for direct-current overhead power transmission line
CN113178295A (en) * 2021-04-22 2021-07-27 江西百新电瓷电气有限公司 Semiconductor lightning protection ice combined porcelain insulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700452B (en) * 2014-01-07 2016-09-28 湖北德赛绝缘设备技术发展有限公司 Corona loss and Electromagnetic Interference and the insulator of raising gold utensil efficiency of preservation can be reduced

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799653B2 (en) * 1987-02-04 1995-10-25 日本碍子株式会社 Suspension insulator
JPS63198214A (en) * 1987-02-11 1988-08-16 日本碍子株式会社 Corrosion resistant insulator
CN2169900Y (en) * 1993-07-24 1994-06-22 大连电瓷厂 Anti-dizzy suspending procelain insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208233A (en) * 2010-11-30 2011-10-05 苏州电瓷厂有限公司 Suspension type porcelain insulator for direct-current overhead power transmission line
CN113178295A (en) * 2021-04-22 2021-07-27 江西百新电瓷电气有限公司 Semiconductor lightning protection ice combined porcelain insulator

Also Published As

Publication number Publication date
CN1135647A (en) 1996-11-13
CN1073741C (en) 2001-10-24

Similar Documents

Publication Publication Date Title
JPH08264052A (en) Partial conductive-glazed insulator
US4112193A (en) Electrical insulators
JPH0616459B2 (en) Method for manufacturing porcelain capacitor
US2253376A (en) Lightning-arrester block
EP0860835A1 (en) Enamelled wire with high resistance to partial discharges
JPH0119363Y2 (en)
US4652705A (en) Ignition distributor with noise suppression electrode oxide coating
NZ207972A (en) Electrical insulators of coated glass or porcelain
US1997688A (en) Insulator
JPH0552021B2 (en)
US2576723A (en) Electric insulator having potential drop controlling means
JP2003141955A (en) Suspension insulator
JPH05242958A (en) Fixing heater and manufacture thereof
JP2001184961A (en) Suspension insulator
JPH06105641B2 (en) Variable resistor for high voltage
JPH0430732B2 (en)
JPH10289808A (en) Functional ceramic element
JPS5929305Y2 (en) overhead power distribution line
JPS6134836Y2 (en)
JPH036801A (en) Voltage-dependent nonlinear resistor
JPH0113365Y2 (en)
JP2897486B2 (en) Positive thermistor element
JPS59171439A (en) Color braun tube
JPH11144602A (en) Cylindrical cutout
JPH0113361Y2 (en)