JPH08261813A - Metal molten level sensor - Google Patents

Metal molten level sensor

Info

Publication number
JPH08261813A
JPH08261813A JP7064063A JP6406395A JPH08261813A JP H08261813 A JPH08261813 A JP H08261813A JP 7064063 A JP7064063 A JP 7064063A JP 6406395 A JP6406395 A JP 6406395A JP H08261813 A JPH08261813 A JP H08261813A
Authority
JP
Japan
Prior art keywords
metal
amorphous carbon
electrode
molten metal
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7064063A
Other languages
Japanese (ja)
Other versions
JP3370472B2 (en
Inventor
Yasuhiro Tanaka
泰宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP06406395A priority Critical patent/JP3370472B2/en
Publication of JPH08261813A publication Critical patent/JPH08261813A/en
Application granted granted Critical
Publication of JP3370472B2 publication Critical patent/JP3370472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve anticorrosion against molten metal by building a dip electrode of a composite ceramics (SNC) comprising amorphous carbon ass dispersed into a matrix mainly composed of silica carbide and silica nitride. CONSTITUTION: A stick-shaped dipping electrode 2 is built up of an SNC which contains silicon carbide 15-80wt.%, silicon nitride 10-7wt.% and amorphous carbon 3-20wt.% while comprising the amorphous carbon as dispersed into a matrix mainly composed of the silicon carbide and silicon nitride. The dipping electrode 2 is so set to be turned to a furnace bottom C through a mounting metal 1 from the ceiling part B within a melting furnace A and adjusted to the height of a liquid surface when it is filled with a metal molten 3 upto a specified quantity. An earth 4 is set at a position lower than a measuring part of the liquid surface. When the furnace A is filled with the metal molten and the liquid surface reaches a specified position, a current flows through the metal molten 3 and is detected by a current detector D. This information is transmitted to a supply device of the metal molten 3 and the filling is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料溶融炉内の溶
湯量を検出するためのレベルセンサーに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a level sensor for detecting the amount of molten metal in a metal material melting furnace.

【0002】[0002]

【従来の技術】従来より用いられている上記レベルセン
サーは、アルミニウムなどの金属用の溶融炉内の天井部
から取付金具を介して炉底に向くように垂直に設置され
た棒状の電極の先端を、金属溶湯が所定の量まで充填さ
れたときの液面高さに調整するとともに、これとは別に
液面測定部位より低い位置にアースを設置し金属材料の
溶湯(以下、金属溶湯と略称する)へ通電することがで
きるように構成し、炉内に溶融金属が充填されてきて液
面が所定の位置に達した時、液面が電極の先端部に接し
て金属溶湯を介して電流が流れ始め、この電流を電流検
出器で検出してその情報を金属溶湯の供給装置に伝えて
充填を停止せしめることにより、溶融炉内の金属溶湯量
を一定に保つようになっている。
2. Description of the Related Art The above-mentioned level sensor which has been conventionally used is a tip of a rod-shaped electrode which is vertically installed from a ceiling portion in a melting furnace for metal such as aluminum to a furnace bottom through a mounting bracket. Is adjusted to the liquid level height when the metal melt is filled up to a predetermined amount, and separately from this, a ground is installed at a position lower than the liquid level measurement site (hereinafter, abbreviated as metal melt). When the molten metal is filled in the furnace and the liquid level reaches a predetermined position, the liquid level contacts the tip of the electrode and the current flows through the molten metal. Is started to flow, and this current is detected by a current detector and the information is transmitted to a molten metal supply device to stop the filling, whereby the amount of molten metal in the melting furnace is kept constant.

【0003】このようなレベルセンサーにおいて、電極
を構成する材料としてはステンレス、ハステロイ、チタ
ン、鋳鋼などの金属材料、あるいはこれらの金属にクロ
ム等のめっきを施したもの、さらに最近では特開平2−
44212号公報に記載される如く、炭化珪素と、二ホ
ウ化チタン、炭化チタン、窒化チタン、二ホウ化ジルコ
ニウム、ケイ化クロムのうち少なくとも一種とを含有す
るセラミック焼結体を用いたものが提案されている。
In such a level sensor, the material forming the electrodes is a metal material such as stainless steel, hastelloy, titanium, cast steel, or a material obtained by plating these metals with chromium or the like, and more recently, JP-A-2-
As disclosed in Japanese Patent No. 44212, one using a ceramic sintered body containing silicon carbide and at least one of titanium diboride, titanium carbide, titanium nitride, zirconium diboride, and chromium silicide is proposed. Has been done.

【0004】[0004]

【従来技術の問題点】しかしながら、上記従来技術には
以下のような問題点があった。すなわち、電極を上記金
属材料によって構成したものは、溶融金属に対するぬれ
性が良いため溶湯の排出時における電極先端部の金属溶
湯の湯切れが悪く、電極先端部に溶湯の残滓が付着して
しまう。何回も溶湯の充填、排出を行うと電極先端部の
付着物が氷柱状に伸びてくる。その結果、溶湯が充填さ
れても液面が所定の位置までに上昇しないうちに電極先
端部から伸びる付着物に接触して電流が流れてしまい、
充填を停止してしまう。このため正確な液面位管理が出
来ず、溶湯炉中の金属溶湯の充填量を一定に保ことがで
きない。
However, the above-mentioned prior art has the following problems. That is, the electrode made of the above metal material has good wettability with respect to the molten metal, so that when the molten metal is discharged, the molten metal at the electrode tip is poorly drained, and the residue of the molten metal adheres to the electrode tip. . When the molten metal is filled and discharged many times, the deposits on the tip of the electrode grow like ice columns. As a result, even when the molten metal is filled, the liquid surface does not rise to a predetermined position and contacts the deposits extending from the electrode tip portion, causing a current to flow,
Stop filling. For this reason, it is not possible to accurately control the liquid level, and it is impossible to keep the filling amount of the molten metal in the melting furnace constant.

【0005】また、金属製の電極は金属溶湯に対する耐
蝕性が小さいため、溶湯中に長時間浸漬させておくと、
次第に化学反応による侵食が起こり、最後には消耗して
しまう。このため電極材料の寿命は数十〜数百時間しか
なく、更に溶出金属等による金属溶湯の汚染・不純物混
入等の問題も懸念されていた。
Further, since the metal electrode has a small corrosion resistance to the molten metal, if it is immersed in the molten metal for a long time,
Erosion due to chemical reaction gradually occurs, and eventually it is consumed. For this reason, the life of the electrode material is only several tens to several hundreds of hours, and there has been a concern that the metal melt may be contaminated by the eluted metal or the like and impurities may be mixed.

【0006】これに対して、電極を前記セラミック焼結
体により構成した従来のレベルセンサーでは、前記耐蝕
性の問題を改善したものではあったが、電極の消耗を完
全に抑えることはできず、したがって電極寿命が短く且
つ強度的な問題があった。さらに、溶湯の排出時におけ
る電極先端部の金属溶湯の湯切れが悪く、電極先端部に
付着物が形成されるため正確な液面位管理が出来なくな
り、溶湯炉内の金属溶湯量を一定に保ことができない、
という点において上記金属製の電極のレベルセンサーと
共通する問題を有していた。
On the other hand, in the conventional level sensor in which the electrodes are made of the ceramic sintered body, although the problem of the corrosion resistance is improved, the consumption of the electrodes cannot be completely suppressed. Therefore, the electrode life is short and there is a problem in strength. Furthermore, when the molten metal is discharged, the molten metal at the tip of the electrode is poorly drained, and deposits are formed on the electrode tip, making it impossible to accurately control the liquid level and keeping the amount of molten metal in the melting furnace constant. Can't keep,
In that respect, there is a problem in common with the level sensor of the metal electrode.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明のレベルセンサーは炭化珪素15〜80wt
%、窒化珪素15〜70wt%、不定形炭素3〜20wt%
を含み且つ炭化珪素と窒化珪素を主成分とするマトリッ
クス中に不定形炭素が分散してなる複合セラミックス
(以下、SNCと略称する)により浸漬電極を構成した
ものである。
In order to solve the above-mentioned problems, the level sensor of the present invention comprises 15-80 wt% of silicon carbide.
%, Silicon nitride 15 to 70 wt%, amorphous carbon 3 to 20 wt%
The immersion electrode is composed of a composite ceramics (hereinafter, abbreviated as SNC) in which amorphous carbon is dispersed in a matrix containing and containing silicon carbide and silicon nitride as main components.

【0008】[0008]

【作用】しかるに、このように構成される本発明に係る
レベルセンサーは、不定形炭素の存在により金属溶湯と
の湯切れが良好となり(例えば、炭素はアルミニウム溶
湯とのぬれ性が低い)電極先端部への金属溶湯の付着が
防止され、かつこの不定形炭素を担持する炭化珪素と窒
化珪素を主成分とするマトリックスは、不定形炭素の耐
蝕性と相まって、金属溶湯に対しても非常に大きな耐蝕
性を示す。
However, in the level sensor according to the present invention having such a structure, the presence of the amorphous carbon makes it possible to achieve good drainage with the molten metal (for example, carbon has low wettability with the molten aluminum). The molten metal is prevented from adhering to the metal parts, and the matrix containing silicon carbide and silicon nitride, which carry the amorphous carbon, as a main component, together with the corrosion resistance of the amorphous carbon, is very large against the molten metal. Shows corrosion resistance.

【0009】さらに、不定形炭素の存在によりレベルセ
ンサーの電極として十分なる導電性も有している。
Further, due to the presence of amorphous carbon, it has sufficient conductivity as an electrode of the level sensor.

【0010】[0010]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図1に本実施例の金属溶湯レベルセンサーの概略図
を示し、このレベルセンサーは、棒状の浸漬電極2が、
炭化珪素15〜80wt%、窒化珪素10〜70wt%、不
定形炭素3〜20wt%を含み且つ炭化珪素と窒化珪素を
主成分とするマトリックス中に不定形炭素が分散してな
るSNCで構成されており、この浸漬電極2を金属用の
溶融炉A内の天井部Bから取付金具1を介して炉底Cに
向くように設置し、さらに金属溶湯3が所定の量まで充
填されたときの液面高さに調整するとともに、これとは
別に液面測定部位より低い位置にアース4を設置し金属
溶湯3へ通電できるように構成した。これにより炉A内
に溶融金属が充填されてきて液面が所定の位置に達した
時、すなわち液面と電極の先端部が接した時に、金属溶
湯3を介して電流が流れ、この電流を電流検出器Dで検
出してその情報を金属溶湯3の供給装置に伝え、充填を
停止せしめることにより、溶融炉A中の金属溶湯量を一
定に保つようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic diagram of a molten metal level sensor of the present embodiment, in which the rod-shaped immersion electrode 2 is
It is composed of an SNC in which amorphous carbon is dispersed in a matrix containing silicon carbide 15 to 80 wt%, silicon nitride 10 to 70 wt% and amorphous carbon 3 to 20 wt% and containing silicon carbide and silicon nitride as main components. The immersion electrode 2 is installed so as to face the furnace bottom C from the ceiling portion B in the melting furnace A for metals through the mounting metal fitting 1, and further the liquid when the molten metal 3 is filled to a predetermined amount. In addition to adjusting the surface height, a ground 4 was installed at a position lower than the liquid surface measurement site so that the metal melt 3 could be energized. Thereby, when the molten metal is filled in the furnace A and the liquid surface reaches a predetermined position, that is, when the liquid surface and the tip of the electrode come into contact with each other, an electric current flows through the molten metal 3 and The amount of the molten metal in the melting furnace A is kept constant by detecting the information with the current detector D and transmitting the information to the supply device of the molten metal 3 to stop the filling.

【0011】このようなレベルセンサーを構成する前記
浸漬電極2は、炭化珪素原料の成形体を高温高圧の窒素
雰囲気中で焼成し、これにより炭化珪素中の炭素を窒素
に置換し、窒化珪素と不定形炭素を生じさせることによ
って得ることができる。材料中の各成分の比は置換反応
の進行度によって決まるが、不定形炭素はSNCの導電
性を担う要素であって特に重要である。すなわち不定形
炭素が3wt%より小さい場合、電極として必要な比抵抗
値を得られなくなってしまう。
In the immersion electrode 2 constituting such a level sensor, a compact of a silicon carbide raw material is fired in a nitrogen atmosphere at a high temperature and a high pressure, whereby carbon in the silicon carbide is replaced with nitrogen to obtain silicon nitride. It can be obtained by producing amorphous carbon. The ratio of each component in the material depends on the degree of progress of the substitution reaction, but the amorphous carbon is an element responsible for the conductivity of SNC and is particularly important. That is, if the amorphous carbon is less than 3 wt%, the specific resistance value required for the electrode cannot be obtained.

【0012】また、上記浸漬電極2は、不定形炭素の存
在により金属溶湯との湯切れが良好となり電極先端部へ
の金属溶湯の付着が防止され、かつこの不定形炭素を担
持する炭化珪素と窒化珪素を主成分とするマトリックス
は、不定形炭素の耐蝕性と相まって、金属溶湯に対して
非常に大きな耐蝕性を示す。
Further, in the immersion electrode 2, the presence of the amorphous carbon makes it possible to prevent the molten metal from running out of the molten metal and to prevent the molten metal from adhering to the tip of the electrode. The matrix containing silicon nitride as a main component, together with the corrosion resistance of amorphous carbon, shows a very large corrosion resistance to molten metal.

【0013】なお、不定形炭素が3%より少ない場合、
十分な導通が得られず、そのうえ金属付着、侵食による
溶出が発生するという問題点がある。他方、20wt%よ
り多い場合、金属付着、侵食による溶出が発生するとい
う問題点がある。
If the amorphous carbon content is less than 3%,
There is a problem that sufficient conduction cannot be obtained, and furthermore, metal adhesion and elution due to erosion occur. On the other hand, if it is more than 20 wt%, there is a problem that elution due to metal adhesion and erosion occurs.

【0014】また、窒化珪素が70wt%より多い場合、
窒化珪素は例えば溶融アルミニウムに非常に侵されやす
いため金属付着、侵食による溶出が発生するという問題
点がある。
If the silicon nitride content is more than 70% by weight,
Silicon nitride, for example, is very easily attacked by molten aluminum, and therefore has a problem that metal adhesion and elution due to corrosion occur.

【0015】実験例1 組成:炭化珪素70wt%、窒化珪素25wt%、不定形炭
素5wt%のSNCを円錐状の先端を持つ長さ約10cm
の棒状の電極に加工し、この浸漬電極2を図1に示すよ
うに取付金具1に固定し、炉内にアルミニウム溶湯を充
填して約2000時間、実用テストを行った。
Experimental Example 1 Composition: SNC containing 70 wt% of silicon carbide, 25 wt% of silicon nitride and 5 wt% of amorphous carbon and having a conical tip and a length of about 10 cm.
1 was processed into a rod-shaped electrode, the immersion electrode 2 was fixed to the fitting 1 as shown in FIG. 1, the molten aluminum was filled in the furnace, and a practical test was performed for about 2000 hours.

【0016】溶湯温度は720〜780℃であり、24
Vの電圧を用いた。
The molten metal temperature is 720 to 780 ° C. and is 24
A voltage of V was used.

【0017】その結果、アルミニウムが僅かに付着して
いたが、その量は厚さにして1mm以下であり、液面測
定に影響を与えるものではなかった。また、試験前、取
り付け金具端部から電極先端部までの抵抗値は2 〜3 Ω
だったが、試験後の抵抗値も同様の値を示し、抵抗値の
上昇もなく最後まで電極として機能しており、侵食も見
られず、従来の金属電極の10倍以上の寿命を示した。
この間の電極の変化は次の通りであった。
As a result, a slight amount of aluminum adhered, but the amount thereof was 1 mm or less in thickness and did not affect the liquid level measurement. Before the test, the resistance from the end of the mounting bracket to the tip of the electrode is 2-3 Ω.
However, the resistance value after the test also showed the same value, the resistance value did not increase, and it functions as an electrode until the end. Corrosion was not observed and the life was 10 times or more that of the conventional metal electrode. .
Changes in the electrodes during this period were as follows.

【0018】炉内に溶融アルミニウムが充填されて炉内
温度が500 ℃〜600 ℃前後まで上昇すると、電極の極表
層部の遊離炭素がわずかに酸化焼失するが、その直後電
極表面に数10μm程度厚さのシリカ膜が形成され、遊離
炭素の焼失は停止する。この状態では表面の導通はほと
んどなくなる。しかし取り付け金具と接触している部分
は大気と接触していないため導通が保たれる。更に溶融
アルミニウムが充填されてきて液面が電極の先端部に接
触した瞬間に、電極先端のみの表面のシリカ膜が破壊さ
れ、その部分のみの導電性が回復した。そして、アルミ
ニウム溶湯中に接触した瞬間に電流が流れ、アルミニウ
ム溶湯の充填を停止させた。
When molten aluminum is filled in the furnace and the temperature in the furnace rises up to around 500 ° C to 600 ° C, the free carbon in the electrode superficial layer part is slightly oxidized and burned off, but immediately after that, several tens of μm are left on the electrode surface. A thick silica film is formed and free carbon burnout ceases. In this state, there is almost no conduction on the surface. However, the part that is in contact with the mounting metal is not in contact with the atmosphere, so that electrical continuity is maintained. Further, when the molten aluminum was filled and the liquid surface came into contact with the tip of the electrode, the silica film on the surface only at the tip of the electrode was destroyed, and the conductivity of only that portion was restored. Then, the current flowed at the moment of contact with the molten aluminum, and the filling of the molten aluminum was stopped.

【0019】電極先端部は、SNCとアルミニウムが接
しているが、含有する不定形炭素の存在によりぬれ性が
悪く、そのため、液面が低下したときに、アルミニウム
の湯切れがよく、氷柱状の付着が殆ど生じない。故に再
度液面が上昇してきたときも正確な測定が可能であっ
た。
Although the SNC and aluminum are in contact with each other at the tip of the electrode, the wettability is poor due to the presence of the amorphous carbon contained therein. Therefore, when the liquid level is lowered, the aluminum is well drained and has an ice column shape. Almost no adhesion occurs. Therefore, accurate measurement was possible even when the liquid level rose again.

【0020】実験例2 前記SNCの作製方法に準じて、表1に示すような組成
の浸漬電極2を作製し、それぞれを図1のレベルセンサ
ーに取付け、上記実験例1と同様の環境でテストを行
い、テスト前後の電器抵抗値、およびアルミニウムの付
着厚みについて測定した。その結果を表1に示す。
Experimental Example 2 In accordance with the method for producing the SNC, the immersion electrodes 2 having the compositions shown in Table 1 were produced, and each was attached to the level sensor shown in FIG. 1 and tested in the same environment as in the above Experimental Example 1. Then, the electric resistance value before and after the test and the adhesion thickness of aluminum were measured. Table 1 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、SNCは炭化珪素中の炭素を窒素に
置換する事によって窒化珪素と不定形炭素を生じさせる
ことで得るので、ある要素の成分量を決めると他の成分
量も概ね決まってくる。
Since the SNC is obtained by substituting carbon in silicon carbide with nitrogen to generate silicon nitride and amorphous carbon, when the content of a certain element is determined, the content of other elements is also generally determined. .

【0023】表1から明らかなように、試験片1は不定
形炭素量が少なく、不定形炭素よりも骨格成分である炭
化珪素によってわずかに導通したものと考えられる。試
験片2でも、不定形炭素が不足しているため電気抵抗が
大きい。試験片3〜5では、組成のバランスがよく、抵
抗値も低く、付着等の問題もない。試験片6では窒化珪
素の組成比が大きすぎ、試験後にアルミが僅かに付着し
ていた。
As is apparent from Table 1, the test piece 1 has a small amount of amorphous carbon, and it is considered that the test piece 1 is slightly conducted by silicon carbide which is a skeleton component rather than amorphous carbon. The test piece 2 also has a large electric resistance due to lack of amorphous carbon. The test pieces 3 to 5 have a good composition balance, a low resistance value, and no problem such as adhesion. In the test piece 6, the composition ratio of silicon nitride was too large, and aluminum was slightly attached after the test.

【0024】以上より、不定形炭素量が少ない場合、十
分な抵抗値が得られず、金属付着、侵食による溶出が発
生するため、レベルセンサーには不適切であると言え
る。またこれとは逆に不定形炭素量が導通を得るに十分
でも、窒化珪素の量が多すぎる場合、窒化珪素は特に溶
融アルミニウムに非常に侵食され易く、やはりレベルセ
ンサーには不適切である。このことから炭化珪素15〜
80wt%、窒化珪素15〜70wt%、不定形炭素3〜2
0wt%の範囲内が好ましいことが確認された。
From the above, when the amount of amorphous carbon is small, a sufficient resistance value cannot be obtained, and elution due to metal adhesion and erosion occurs, so it can be said that it is not suitable for a level sensor. On the contrary, when the amount of amorphous carbon is sufficient to obtain conduction, but the amount of silicon nitride is too large, silicon nitride is particularly apt to be corroded by molten aluminum, which is also unsuitable for a level sensor. From this, silicon carbide 15-
80 wt%, silicon nitride 15-70 wt%, amorphous carbon 3-2
It was confirmed that the range of 0 wt% is preferable.

【0025】なお、この範囲内においてさらに好ましく
は炭化珪素50〜70wt%、窒化珪素25〜40wt%、
不定形炭素5〜10wt%の範囲が良好であった。
Within this range, it is more preferable that the content of silicon carbide is 50 to 70 wt% and the content of silicon nitride is 25 to 40 wt%.
The range of amorphous carbon 5 to 10 wt% was favorable.

【0026】[0026]

【発明の効果】叙上のように、本発明のレベルセンサー
は浸漬電極を炭化珪素15〜80wt%、窒化珪素15〜
70wt%、不定形炭素3〜20wt%を含み且つ炭化珪素
と窒化珪素を主成分とするマトリックス中に不定形炭素
が分散してなる複合セラミックにより構成したことによ
り、電極先端部の金属溶湯の湯切れが良好で、溶湯の付
着が防止できるので正確な液面位管理、すなわち溶湯炉
中の金属溶湯量を一定に保ことを保証できる。
As described above, in the level sensor of the present invention, the immersion electrode is made of 15 to 80 wt% of silicon carbide and 15 to 80% of silicon nitride.
70 wt%, 3 to 20 wt% of amorphous carbon, and a composite ceramic in which amorphous carbon is dispersed in a matrix containing silicon carbide and silicon nitride as main components. Since the cutting is good and the adhesion of the molten metal can be prevented, it is possible to guarantee accurate liquid level management, that is, to keep the amount of molten metal in the melting furnace constant.

【0027】さらに、浸漬電極が金属溶湯に対して非常
に大きな耐蝕性を有するものであり、長寿命かつ侵食溶
出物による金属溶湯の汚損の恐れがない。
Further, since the immersion electrode has a very high corrosion resistance to the molten metal, it has a long life and there is no risk of the molten metal being contaminated by the leached substances.

【0028】また、浸漬電極中の不定形炭素の存在によ
りレベルセンサーの電極として十分なる導電性も有す
る、という優れた効果を奏するものである。
Further, the presence of the amorphous carbon in the immersion electrode has an excellent effect that it has sufficient conductivity as an electrode of the level sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の金属溶湯レベルセンサーの概略
図である。
FIG. 1 is a schematic view of a molten metal level sensor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 取付金具 2 浸漬電極 3 金属溶湯 4 アース A 金属溶融炉 B 天井部 C 炉底 1 Mounting bracket 2 Immersion electrode 3 Molten metal 4 Earth A Metal melting furnace B Ceiling C Bottom

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素15〜80wt%、窒化珪素15
〜70wt%、不定形炭素3〜20wt%を含み且つ炭化珪
素と窒化珪素を主成分とするマトリックス中に不定形炭
素が分散してなる複合セラミックスからなる浸漬電極を
具備した金属溶湯レベルセンサー。
1. Silicon carbide 15 to 80 wt%, silicon nitride 15
A molten metal level sensor provided with a dipping electrode made of a composite ceramic in which amorphous carbon is dispersed in a matrix mainly containing silicon carbide and silicon nitride and containing 70 to 70 wt% of amorphous carbon and 3 to 20 wt% of amorphous carbon.
JP06406395A 1995-03-23 1995-03-23 Metal melt level sensor Expired - Fee Related JP3370472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06406395A JP3370472B2 (en) 1995-03-23 1995-03-23 Metal melt level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06406395A JP3370472B2 (en) 1995-03-23 1995-03-23 Metal melt level sensor

Publications (2)

Publication Number Publication Date
JPH08261813A true JPH08261813A (en) 1996-10-11
JP3370472B2 JP3370472B2 (en) 2003-01-27

Family

ID=13247269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06406395A Expired - Fee Related JP3370472B2 (en) 1995-03-23 1995-03-23 Metal melt level sensor

Country Status (1)

Country Link
JP (1) JP3370472B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106959A (en) * 2007-10-29 2009-05-21 Hitachi Metals Ltd Method and apparatus for controlling molten metal surface in continuous casting
CN106711052A (en) * 2015-11-13 2017-05-24 金鼎冠科技股份有限公司 Sphere forming device
CN107621221A (en) * 2016-07-14 2018-01-23 广州全康环保设备有限公司 Conductance type bed detector
CN115597682A (en) * 2022-12-13 2023-01-13 常州臻晶半导体有限公司(Cn) Method for accurately measuring liquid level height value in growth process of silicon carbide single crystal by liquid phase method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106959A (en) * 2007-10-29 2009-05-21 Hitachi Metals Ltd Method and apparatus for controlling molten metal surface in continuous casting
CN106711052A (en) * 2015-11-13 2017-05-24 金鼎冠科技股份有限公司 Sphere forming device
CN106711052B (en) * 2015-11-13 2019-05-10 金鼎冠科技股份有限公司 Sphere forming device
CN107621221A (en) * 2016-07-14 2018-01-23 广州全康环保设备有限公司 Conductance type bed detector
CN115597682A (en) * 2022-12-13 2023-01-13 常州臻晶半导体有限公司(Cn) Method for accurately measuring liquid level height value in growth process of silicon carbide single crystal by liquid phase method

Also Published As

Publication number Publication date
JP3370472B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
Brisley et al. Determination of the sodium activity in aluminum and aluminum silicon alloys using sodium beta alumina
Pratt The thermodynamic properties of silver-palladium alloys
JPH08261813A (en) Metal molten level sensor
CZ48993A3 (en) Probe for measuring oxygen in molten metal baths used in the production of glass
US4354918A (en) Anode stud coatings for electrolytic cells
US4510030A (en) Method for cathodic protection of aluminum material
JPH0829375A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
GB1360962A (en) Apparatus for measuring in a continuous manner oxygen in a molten metal
WO1996032637A1 (en) Continuous oxygen content monitor
Feller et al. Relation of Electron Configuration to Passivity in Cr‐Ni‐Fe Alloys
Trumbore et al. Magnesium—Cadmium Alloys. II. The Use of the Electrochemical Cell to Determine the Heats, Free Energies and Entropies of Formation of the Solid Alloys in the Temperature Range Above the Order—Disorder Curie Points1, 2, 3
JP3076175B2 (en) Silver / silver chloride reference electrode and method for producing the same
US4428847A (en) Anode stud coatings for electrolytic cells
US5749932A (en) Refractory electrodes for joule heating and methods of using same
JPH10317089A (en) Usage of material composed of molybdenum and/or tungsten
JP2578642B2 (en) Thermocouple protection tube for immersion in molten metal
JPH09295895A (en) Single crystal sapphire material containing metallic wire therein, its production and liquid level sensor for metallic melt using the same
Rolseth et al. Studies on the possible presence of an aluminum carbide layer or bath film at the bottom of aluminum electrolysis cells
Richards et al. Solid Thallium Amalgams and the Electrode Potential of Pure Thallium
JP4620487B2 (en) Oxygen sensor
Ballamy et al. The liquid-carbide equilibrium in the nickel-titanium-carbon system
CN1034687A (en) The protective coating that founding non-ferrous metal and alloy are used
Krebs et al. Investigations of Electrocrystallization at Silver Electrodes
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JP2581958B2 (en) Sensor for detecting the level of molten aluminum metal and alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees