JPS5973763A - Rapid measurement of silicon content in molten metal - Google Patents

Rapid measurement of silicon content in molten metal

Info

Publication number
JPS5973763A
JPS5973763A JP57184365A JP18436582A JPS5973763A JP S5973763 A JPS5973763 A JP S5973763A JP 57184365 A JP57184365 A JP 57184365A JP 18436582 A JP18436582 A JP 18436582A JP S5973763 A JPS5973763 A JP S5973763A
Authority
JP
Japan
Prior art keywords
silicon
electrolyte
molten metal
measuring
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184365A
Other languages
Japanese (ja)
Other versions
JPH037264B2 (en
Inventor
Kiichi Narita
成田 貴一
Toshio Onoe
尾上 俊雄
Akira Egami
江上 明
Seiji Nishi
誠治 西
Masayasu Otani
大谷 正康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57184365A priority Critical patent/JPS5973763A/en
Publication of JPS5973763A publication Critical patent/JPS5973763A/en
Publication of JPH037264B2 publication Critical patent/JPH037264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals

Abstract

PURPOSE:To eliminate the sampling and conveyance of a specimen at all and to simply and rapidly measure the silicon content of molten iron or the like, by measuring electromotive force generated between reference substance known in the silicon content and a molten metal being a specimen to be measured. CONSTITUTION:A silicate electrolyte 6 is held inside a holding pipe 5 and reference substance 7 is charged into said pipe so as to be positioned on said electrolyte 6. As the silicate electrolyte 6, a silicate having ion conductivity is used and, as the reference substance 7, a pure metal Si, Fe-Si or a silicon compound known in the Si-concn. thereof is used. When the lower end of a measuring probe 1 is immersed in molten iron, the silicate electrolyte 6 and the reference substance 7 are directly melted to form a silicon concn. cell between the reference substance 7 and molten iron and electromotive force is generated between contacts A, B of lead wires 3a, 3b. If the calibration curve of the electromotive force value corresponding to the silicon concn. of molten iron is preliminarily calculated, the silicon concn. of molten iron can be directly known.

Description

【発明の詳細な説明】 本発明は、溶銑篩の溶融金属中の珪素量を簡皐且つ迅速
に測定することのできる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily and quickly measuring the amount of silicon in molten metal of a hot metal sieve.

例えば浴銑中の珪素量は、転炉操業での熱バランス、生
成スリブ量、スラグ塩基度等と密接に関連しておシ、こ
の珪素量を正確に把握しておくことは転炉製鋼を効率良
く進めるうえで極めて重要である。また最近浴銑予備処
理法の一つとして、高炉鋳床等で溶銑にスケールを添加
したシ酸素を吹込んで脱珪処理を行なういわゆる予備脱
珪が行なわれているが、高炉から出湯される浴銑中の珪
素量は相当反動するので、脱珪処理前に珪素量を測定し
脱珪剤添加量等を正確にコントロールする必要がある。
For example, the amount of silicon in bath pig iron is closely related to the heat balance during converter operation, the amount of stubs produced, the basicity of slag, etc., and accurately understanding the amount of silicon is important for converter steelmaking. This is extremely important in order to proceed efficiently. Recently, as one of the pretreatment methods for bath pig iron, so-called preliminary desiliconization has been carried out, in which scale is added to hot metal in a blast furnace casthouse, etc., and then oxygen is blown into the hot metal to remove desiliconization. Since the amount of silicon in pig iron changes considerably, it is necessary to measure the amount of silicon before the desiliconization treatment and accurately control the amount of desiliconizing agent added.

殊に上記の様な高炉鋳床脱珪では、出銑樋上を流れる溶
銑に脱珪剤を投入し流下途中に脱珪を行なうものである
から、溶銑中の珪素量を迅速に測定してそれに応じた脱
珪剤量を添加しなければならず、測定に長時間がかかる
とその間に当該浴銑が下流側へ流れてしまう為に1珪素
量を測定した意味が半減乃至無意味になってしまう。
In particular, in the above-mentioned blast furnace casthouse desiliconization, a desiliconizing agent is added to the hot metal flowing on the tap trough and desiliconization is carried out while it is flowing down, so the amount of silicon in the hot metal can be quickly measured and It is necessary to add the appropriate amount of desiliconizing agent, and if the measurement takes a long time, the bath pig iron will flow downstream during that time, so the meaning of measuring one silicon amount will be halved or become meaningless. Put it away.

ところで溶融金属中の珪素分析法としては、重量法やモ
リブデン青級光々度法尋の他、螢光X線法や発光分光分
析法等の機器分析法が知られておシ、殊に機器分析法の
場合分析自体の所要時間は1〜2分程程度、迅速性を満
足するかにみえる。
By the way, as methods for analyzing silicon in molten metal, in addition to the gravimetric method and the molybdenum blue class photometric method, instrumental analysis methods such as the fluorescent X-ray method and the optical emission spectrometry are known. In the case of the analytical method, the time required for the analysis itself is about 1 to 2 minutes, which seems to satisfy the speed.

しかしながらこれらの41M器分析法にしても、分析試
料の採取、搬送及び機器への装入等の準備時間を含、め
た偏析要時間は少なくとも10分程度を要し、迅速性を
満足するものとは言い難い。
However, even with these 41M instrument analysis methods, the time required for segregation, including the preparation time for collecting, transporting, and loading the analysis sample into the equipment, takes at least about 10 minutes, and the speed is not satisfactory. It's hard to say.

本発明者等はこうした事情に着目し、珪素量を極めて短
時間のうちに正確に測定し得る様な技術を確立しようと
して鋭意研究を進めてきた。本発明はこうした研究の結
果完成されたものであって、その構成は、溶銑の様な溶
融金属の液面下に珪素測定用プローブを浸漬して銭金属
中の珪素含有層を測定する方法であって、縦長耐熱性保
持管の下端部に珪酸塩電解質を保持させると共に、保持
された該電解質の上方に珪素標準物質を装入して前記電
解質と接触せしめてなる測定素子を、前記測定用プロー
ブの先端に固定し、珪素倉測定時は、前記測定素子を略
垂直状態にしてその下端部を前記溶融金属中に浸漬させ
て、該溶融金属と標準物質の間に珪酸塩電解質の溶融液
を介在せしめ、前記溶融金属と前記標準物質の間に生じ
る起電力によって611記溶融金属の珪素含有層を検知
するところに要旨が存在する。
The inventors of the present invention have focused on these circumstances and have been conducting intensive research in an attempt to establish a technique that can accurately measure the amount of silicon in an extremely short period of time. The present invention was completed as a result of such research, and its structure is a method of measuring the silicon-containing layer in metal by immersing a silicon measuring probe under the liquid surface of molten metal such as hot metal. A silicate electrolyte is held at the lower end of a longitudinal heat-resistant holding tube, and a silicon standard material is charged above the held electrolyte and brought into contact with the electrolyte. It is fixed to the tip of the probe, and when measuring the silicon chamber, the measuring element is kept in a substantially vertical position and its lower end is immersed in the molten metal, and a molten silicate electrolyte is placed between the molten metal and the reference material. The gist lies in that the silicon-containing layer of the molten metal No. 611 is detected by the electromotive force generated between the molten metal and the standard substance.

本発明では以下に詳述する如く、珪素量の分かつている
標準物質と測定試料である浴#i!l+金属の間で生ず
る起電力によって該溶融金属中の珪素量を把握するもの
であシ、測定に当っては以下に述べる様な測定用プロー
ブを使用し、これを溶融金属に浸漬して起電力を測定す
るだけでよい。即ち測定二:剥の採取・搬送等が全く不
要であり、例えば高炉鋳床の溶銑に前記プローブを直接
浸漬するだけで、例えば1〜2分以内という極めて短い
時間で珪素量を正確に測定することができる。
In the present invention, as described in detail below, a standard substance with a known silicon content and a bath #i which is a measurement sample! The amount of silicon in the molten metal is determined by the electromotive force generated between the molten metal and the molten metal. All you need to do is measure the power. That is, measurement 2: There is no need to collect or transport strips, and the amount of silicon can be accurately measured in a very short time, for example within 1 to 2 minutes, by simply immersing the probe directly into the hot metal of a blast furnace cast bed. be able to.

ところで珪酸塩電解質溶融面を挾んで溶融鉄と標準物質
とを隣接させて発生する起電力を測定し、溶銑中の珪素
量を電気化学的に守備する基本的な原理は、例えば本件
出願の発明者の1人である大谷等によって報告されてい
る。(K、Sanbongiand M、ohtani
 H5oi、Sci、Rep、Res、Ins t 、
Tohoku’(Jn 1 、A5 (1958) e
 d50、M、0htani :Sci、Rep、ne
s。
By the way, the basic principle of electrochemically controlling the amount of silicon in hot metal by measuring the electromotive force generated by placing molten iron and a reference material adjacent to each other by sandwiching the molten surface of silicate electrolyte is based on, for example, the invention of the present application. This was reported by one of the researchers, Otani et al. (K, Sanbongian and M, ohtani
H5oi, Sci, Rep, Res, Ins t,
Tohoku' (Jn 1, A5 (1958) e
d50, M, 0htani: Sci, Rep, ne
s.

In5t、Tohohu Uni 、A5(1955)
、487.) Lかしながらこの原理は実験家的規模で
確認されているに止まシ、これを1朶的規模で珪i *
 ?1lII定用プローブ停として要用化しようとする
研究は現在のところ報告されておらず、勿論実用化もさ
れていない。
In5t, Tohohu Uni, A5 (1955)
, 487. ) However, this principle has only been confirmed on an experimental scale;
? At present, no research has been reported to try to use it as a regular probe stop for IlII, and of course it has not been put to practical use.

その最大の理由としては、■起電力沖j定用の電解質と
して使用する珪酸塩の融点は浴銑温度よシも低(、抄用
定l晶度で溶−1椋してしまうので、溶銑と接触させつ
つプローブ内で安定tこ保持することが間離である、■
珪f俊塩箪等質の溶融物は、標r―物質として使用され
る純siやpe−8t等に比べて比重が小さいので、測
定に先だって標準物質の下側に電解質を装入しておいた
としても、+1+lJ定時の61度でこれらが溶−して
流動性を得ると比重差によって電解質と標準物質の上下
間係が逆転してしまい、標準物質と浴銑が[接々触して
しまう為に起電力を利用した珪素量の測定が不可能にな
ること、が挙げられる。本発明はこうした区止点を解消
し、ブローブイ犬の測定素子を用いた珪素量の測定を可
能にしたものであって、その具体的な構成は以下に詳述
する通シである。
The biggest reason for this is: ■ The melting point of the silicates used as electrolytes for determining electromotive force is lower than that of the bath metal (the melting point of the silicates used as electrolytes for determining the electromotive force is lower than that of hot metal). The separation is to maintain the stability within the probe while making contact with the
The specific gravity of a molten silica substance is lower than that of pure Si or PE-8T, which are used as standard materials, so an electrolyte must be charged under the standard material before measurement. Even if the electrolyte and the standard substance are placed in contact with each other, if they melt at 61 degrees at +1+lJ and obtain fluidity, the vertical relationship between the electrolyte and the standard substance will be reversed due to the difference in specific gravity, and the standard substance and the hot iron will not come into contact with each other. This makes it impossible to measure the amount of silicon using electromotive force. The present invention solves this problem and makes it possible to measure the amount of silicon using a blow-buoy measuring element, the specific configuration of which will be described in detail below.

第1図は本発明で使用する珪素量測定用プローブの先端
構造を例示する概略縦断In1説明図であシ、図中1は
測定用プローブ本体、2は測定素子、8は熱電対、8a
、8b19cはリード線、4゛は断熱材を夫々示す。耐
熱性及び絶縁性を有する縦長保持管5の内側下端には、
珪酸塩電解質6を保持させると共に、該電解質6の上方
にF[解質6と接触して、標r$物質7を装入し、該4
J串動物質7装入にリード113aの下端を埋設すると
共に、リード線8aの上端は起電力測定装置(図示せず
)に接続する。同珪酸塩電解質6としてはイオン伝導性
を有する珪酸塩(例えばCaO5j02−A1203、
Ca O−S i 02− M g 01CaO−S 
i O2−A / 203− M g O等の珪酸塩)
、標準物質7としては5iaJXの分かつている純金j
萬Si、Fe−8iあるいは他の珪素化合物を使用する
が、これらは何れも測定温度(例えば溶銑温度)で溶融
する。しかも溶f1状頓において珪1桜塩電解質6は標
準物質7よルも比重が小さいので、比重差によシ溶融時
に珪酸塩電解質6が標準物質7の上方へ浮上してしまう
恐れがある3、そこで測定素子2を作製するに当っては
、珪酸塩電解質6及び標準物質7の溶融時における表面
張力及び保持管5との濡れ性を考慮し、保持管5の材質
や形状、内径等を調整することKよって、前記電解質6
と標準物質7の逆転を防止する。aち、保持管5として
内径の小さいもの、あるいけ内表面積の大きいもの(内
面が粗面であるもの)を使用すれば、珪酸塩電解質6の
溶融物はそれ自身の有する表面張力及び流動に対する摩
擦抵抗によって保持95の下部に保持される。また保持
管5としては石英、マグネシア、窒化硼素等の耐熱絶縁
性材料が使用されるが、この材料として前記電解質6溶
融物との濡れ性の高いものを使用すれば、u電解質61
B融物の保持効果は一段と向上する。そしてプローブ1
の前記測定素子2突設側にはその近い位置にリード線8
bを突出して設け、測定時にその先端が溶銑中に浸漬さ
れる様にすると共に、他端は前記起電力測定装置に接続
する。またプローブ1の先端には測定温度を検出する為
の熱電対8を突設して他端を上記起電力測定装+yl 
K接続し、起電力i+n+定値の温度補正が自動的に行
なわれる様にする。
FIG. 1 is a schematic longitudinal cross-sectional view In1 illustrating the tip structure of the silicon content measuring probe used in the present invention, in which 1 is the measuring probe body, 2 is the measuring element, 8 is the thermocouple, 8a
, 8b19c are lead wires, and 4'' is a heat insulating material. At the inner lower end of the elongated holding tube 5 having heat resistance and insulation,
While holding the silicate electrolyte 6, a reference material 7 is charged above the electrolyte 6 in contact with the F[electrolyte 6, and the 4
The lower end of the lead 113a is buried in the J skewer substance 7 charge, and the upper end of the lead wire 8a is connected to an electromotive force measuring device (not shown). The silicate electrolyte 6 is a silicate having ionic conductivity (e.g. CaO5j02-A1203,
CaO-S i 02- M g 01CaO-S
i O2-A / 203- Silicates such as M g O)
, the standard material 7 is pure gold known to 5iaJX.
Si, Fe-8i or other silicon compounds are used, all of which melt at the measured temperature (e.g. hot metal temperature). Moreover, in the melted state, the silicate electrolyte 6 has a lower specific gravity than the standard substance 7, so there is a risk that the silicate electrolyte 6 will float above the standard substance 7 during melting due to the difference in specific gravity. Therefore, when manufacturing the measuring element 2, the material, shape, inner diameter, etc. of the holding tube 5 are determined by considering the surface tension of the silicate electrolyte 6 and the standard substance 7 during melting and the wettability with the holding tube 5. By adjusting the electrolyte 6
and standard substance 7 from reversing. If a holding tube 5 with a small inner diameter or a large inner surface area (with a rough inner surface) is used, the melt of the silicate electrolyte 6 will be affected by its own surface tension and flow. It is held at the lower part of the holder 95 by frictional resistance. Further, a heat-resistant insulating material such as quartz, magnesia, boron nitride, etc. is used for the holding tube 5, but if a material with high wettability with the melted electrolyte 6 is used,
The retention effect of the B melt is further improved. and probe 1
A lead wire 8 is connected to the protruding side of the measuring element 2 at a position close to the protruding side of the measuring element 2.
b is provided in a protruding manner so that its tip is immersed in hot metal during measurement, and the other end is connected to the electromotive force measuring device. In addition, a thermocouple 8 for detecting the measured temperature is protruded from the tip of the probe 1, and the other end is connected to the electromotive force measuring device +yl.
K connection so that temperature correction of electromotive force i+n+fixed value is automatically performed.

従ってとの沖]定プローブ1を略垂1.11にしてその
下端を溶銑中に斡漬すると、珪酸塩電解w6及び標?仁
物質7は溶銑温度で直ちに溶融する。そして珪酸塩1は
解質6を挾んで標準物質7と溶銑の間で珪素DA淡電池
が形成され、前記リード線8a、8bの接点A、Hの間
で起電力が全学するので、これを起電力測定装+1で検
知すると共に、熱電対8で計測された温度で補正するこ
とによって、標準物質7と浴銑の珪素m度の差に応じた
起電力値を測定することができる。従って溶銑の珪素4
1度に対応する起電力値の検量線を予め求めておき、実
測値を該標準線と対照すれば溶銑の珪素濃度を直ちに知
ることができる。
Therefore, when the constant probe 1 is made approximately vertical to 1.11 and its lower end is immersed in hot metal, the silicate electrolysis w6 and the standard? The material 7 melts immediately at hot metal temperature. The silicate 1 sandwiches the solute 6, and a silicon DA cell is formed between the standard material 7 and the hot metal, and an electromotive force is generated between the contacts A and H of the lead wires 8a and 8b. By detecting the electromotive force with the electromotive force measuring device +1 and correcting it with the temperature measured by the thermocouple 8, it is possible to measure the electromotive force value corresponding to the difference in m degrees of silicon between the standard material 7 and the bath iron. Therefore, silicon 4 of hot metal
If a calibration curve of electromotive force values corresponding to one time is determined in advance and the actual measured values are compared with the standard curve, the silicon concentration of the hot metal can be immediately known.

ちなみに@2図は、珪酸塩電解質6として624S 1
02−g o係cao−81MgOの珪酸塩スラグ、標
準物質7として純金属珪素、保持管5として透明石英管
(寸法・形状はwS8図の通シ:単位關)を夫々使用し
たときの、溶銑中の珪素量と起電力(測定温度は150
0 ’C)の関係を示したものである。この図からも明
らかな様に珪素量と起電力の間には直線的な関係がある
ので、これを検量線と定め、実測起電力値を対照するこ
とによ)、当該溶銑の珪素濃度を正確に求めることがで
きる。しかもむの測定法であれば、単に測定プローブ1
を溶銑に浸漬して起電力を測定するだけであるから測定
に要する時間は極めて短く、1〜2分以内で迅速に珪素
量を定量することができる。
By the way, @2 diagram shows 624S 1 as silicate electrolyte 6.
02-go Cao-81MgO silicate slag, pure metal silicon as the standard substance 7, and a transparent quartz tube as the holding tube 5 (dimensions and shapes are shown in Figure WS8: Units). The amount of silicon inside and the electromotive force (measured temperature is 150
0 'C). As is clear from this figure, there is a linear relationship between the amount of silicon and the electromotive force, so by setting this as a calibration curve and comparing it with the actually measured electromotive force value, we can calculate the silicon concentration of the hot metal. can be determined accurately. Moreover, if it is a measurement method of Mumu, simply 1 measurement probe 1
Since the electromotive force is simply measured by immersing the metal in hot metal, the time required for measurement is extremely short, and the amount of silicon can be quickly determined within 1 to 2 minutes.

同第1.8図では保持管5の下端を先すばまジ状に形成
し、測定時に電解質6が溶銑方向へ拡散するのを極力防
止するmK構成してbるので、該電解質6の7@融物は
溶銑よシも比重が小さく且っ溶銑との相溶性も乏しいの
で、保持管5の材質や内径を工夫すればス゛トレード状
であっても差支えない。また保持管5としては円筒状の
ものが最も一般的であるが、矩形筒状や異形筒状のもの
でも勿論差支えない。この保持管5の素材としては、先
に石英、マグネシア、窒化硼素が好ましい旨説明したt
ζ要は電気的に絶縁性を有すると共に測定温度に耐える
耐熱性を有し、且つ珪酸塩電解質6、標準物質7及び被
測定金属溶湯と反応せずあるいは反応しても起電力測定
値に豊影曽を及ぼさないものであればどの様な素材であ
ってもかまわない。リード線88〜8Cについても同様
で、適度の耐熱性を有すると共に接触物(溶銑や珪酸塩
電解質)と反応せず、且つ良好な4定性を有するもので
あればよく、代表的なものとしては炭素や高融点金属が
挙げられる。
In Fig. 1.8, the lower end of the holding tube 5 is formed into a serpentine shape, and the mK configuration is used to prevent the electrolyte 6 from diffusing in the direction of the hot metal as much as possible during measurement. 7@ Since the specific gravity of molten metal is lower than that of hot metal, and its compatibility with hot metal is also poor, if the material and inner diameter of the holding tube 5 are carefully selected, a swath-trade shape may be used. The holding tube 5 is most commonly cylindrical, but it may of course be rectangular or irregularly shaped. As the material for this holding tube 5, it was explained earlier that quartz, magnesia, and boron nitride are preferable.
ζ In short, it has electrical insulating properties and heat resistance to withstand the measurement temperature, and does not react with the silicate electrolyte 6, standard material 7, and molten metal to be measured, or even if it does, it has a rich electromotive force measurement value. Any material may be used as long as it does not affect the image. The same goes for the lead wires 88 to 8C, as long as they have appropriate heat resistance, do not react with contact objects (hot metal or silicate electrolyte), and have good 4 properties, typical examples include Examples include carbon and high melting point metals.

第4図は本発明で使用する他の測定素子2を例示する概
略縦断面図で、保持管5として下端の封―された多孔質
耐熱管を使用する。そして使用に当っては該多孔質耐熱
管の細孔に珪酸塩電解質の溶融物を含浸し、必要であれ
ば熱処理等によって耐熱性素材と化学的に結合させ、そ
の管肉部に該電解質を保持せしめ、この中に標準物質7
を装入する。この測定素子2であれば、測定時に保持管
5の管肉部に保持された珪酸塩電解質がそのままの状態
で溶融するので、第1図の例と同様標準物質7と溶銑間
に生ずる起電力を測定することができる。同この例であ
れば、珪酸塩電解質は保持管5管肉の微細な細孔内へ封
入された状態となっておシ、それ自身の表面張力の作用
とも相まって管肉部に安定に保持されるので、比重差に
よる標準物質7相と電解質6相の逆転という事態は全く
生じない。
FIG. 4 is a schematic longitudinal sectional view illustrating another measuring element 2 used in the present invention, in which a porous heat-resistant tube with a sealed lower end is used as the holding tube 5. In use, the pores of the porous heat-resistant tube are impregnated with a molten silicate electrolyte, and if necessary, it is chemically bonded to a heat-resistant material by heat treatment, etc., and the electrolyte is applied to the tube wall. The standard substance 7 is held in this.
Charge. With this measuring element 2, the silicate electrolyte held in the wall of the holding tube 5 is melted as it is during measurement, so the electromotive force generated between the standard material 7 and the hot metal is generated as in the example shown in Fig. 1. can be measured. In this example, the silicate electrolyte is encapsulated in the fine pores of the wall of the holding tube 5, and combined with the action of its own surface tension, it is stably held in the wall of the tube. Therefore, a situation where the 7 phases of the standard substance and the 6 phases of the electrolyte are reversed due to a difference in specific gravity does not occur at all.

本発明は概略以上の様に構成されておシ、測定用プロー
ブを溶融金属へ浸漬し起電力を測定するだけで1その珪
素含有率を極めて迅速且つ正確に検知することができる
。しかも本発明では溶融金属を別途サンプリングする必
要がなく、浴銑軸上や取鍋内あるいは混銑車による搬送
中等の任意の時期に測定を行なうことができる。また本
明細書では浴銑中の珪素定量を主体に説明したが、本発
明はこれに限られる訳ではなく、溶鋼や各種合金鋼の珪
素定量にも同様に適用し得るのであって、その実用価値
は頻る大きい。
The present invention is roughly constructed as described above, and the silicon content can be detected extremely quickly and accurately by simply dipping a measurement probe into molten metal and measuring the electromotive force. Moreover, in the present invention, there is no need to separately sample the molten metal, and the measurement can be carried out at any time, such as on the bath pig shaft, in the ladle, or while being transported by the pig iron mixer car. In addition, although this specification mainly describes the determination of silicon in hot bath iron, the present invention is not limited to this, and can be similarly applied to the determination of silicon in molten steel and various steel alloys. The value is often great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する測定用プローブを例 。 示する先端部の縦断面略図、第2図はSi含有率と起電
力の関係を示すグラフ、第8(2)は夾験で使用した測
定素子の説明図、第4図は本発明で使用する他の測定素
子を示す縦断面略図である。 1・・・測定用プローブ本体 2・・・測定素子    8・・・熱電対ga−−9o
・・・リード線  4・・・断熱材5・・・保持管  
   6・・・珪酸塩電解質7・・・標準物質 手続補正書 昭和58年10月31日 1、事件の表示 昭和57年特許願第184365号 2、発明の名称 溶融金属中の珪素量迅速測定方法 3、補正をする者 事件との関係  特許出願人 神戸市中央区脇浜町−丁目3番18号 (119)株式会社 神戸製鋼所 代表者  牧   冬 彦 4、代理人 〒530 大阪市北区堂島2丁目3番7号 シンコービル 明1i111書の「特許請求の範囲」及び「発明の詳細
な説明」の各欄 (1)「特許請求の範囲」を別紙の通り訂正します。 (2)す1細書の所定箇所を別紙正誤表の通り訂正しま
す。 特許請求の範囲 珪素標準極物質を有する珪素量測定用プローブを溶融金
属の液面下に浸漬して該金属中の珪素含有量を測定する
方法であって、珪酸塩電解質部を溶融金属に接触させて
前記標準極物質と溶融金属の間に存在させ、前記溶融金
属と前記標準極物質の間に生じる超電力によって前記溶
融金属の珪素含有量を検知することを特徴とする溶融金
属中の珪素量迅速測定方法。
Figure 1 shows an example of a measurement probe used in the present invention. Fig. 2 is a graph showing the relationship between Si content and electromotive force, No. 8 (2) is an explanatory diagram of the measuring element used in the trial, and Fig. 4 is a diagram showing the measurement element used in the present invention. FIG. 1... Measuring probe body 2... Measuring element 8... Thermocouple ga--9o
... Lead wire 4 ... Insulation material 5 ... Holding tube
6...Silicate electrolyte 7...Reference material procedural amendment October 31, 1982 1. Indication of the case 1984 Patent Application No. 184365 2. Name of the invention Method for rapidly measuring the amount of silicon in molten metal 3. Relationship with the case of the person making the amendment Patent applicant: 3-18 (119) Wakihama-cho, Chuo-ku, Kobe City, Kobe Steel, Ltd. Representative: Fuyuhiko Maki 4, Agent: 2 Dojima, Kita-ku, Osaka City, 530 The "Scope of Claims" and "Detailed Description of the Invention" columns (1) "Scope of Claims" in Book 3-7 Shinko Building Mei 1i111 will be corrected as shown in the attached sheet. (2) The specified parts of the detailed document will be corrected according to the attached errata. Claims: A method for measuring the silicon content in a molten metal by immersing a silicon content measuring probe having a silicon standard electrode material under the liquid surface of the molten metal, the method comprising: bringing a silicate electrolyte into contact with the molten metal; silicon in the molten metal, which is present between the standard electrode material and the molten metal, and the silicon content of the molten metal is detected by superpower generated between the molten metal and the standard electrode material. Quantity rapid measurement method.

Claims (1)

【特許請求の範囲】[Claims] 11)溶出金属の液面下に珪累盆測定用プローブを浸漬
して該金属中の珪素含有量を測定する方法であって、縦
長耐熱性保持管の下端部に珪酸塩電解質を保持させると
共に、保持された該電解質の上方に珪素標準物質を装入
して前記電解質と接触せしめてなる測定素子を、前記測
定用プローブの先端に固定し、珪素量測定時は、前記測
定素子を略垂直状態にしてその下端部を前記溶融金属中
に浸漬させて、該溶融金属と標準物質の開に珪酸塩電解
質の溶融液を介在せしめ、前記溶融金属と前記標準物質
の間に生じる起電力によって前記溶融金属の珪素含有量
を検知することを特徴とするf4融金属中の珪素量迅速
測定方法。
11) A method of measuring the silicon content in the metal by immersing a silica basin measuring probe under the liquid level of the eluted metal, in which a silicate electrolyte is held at the lower end of a longitudinal heat-resistant holding tube, and A measuring element, which is made by charging a silicon standard substance above the retained electrolyte and bringing it into contact with the electrolyte, is fixed to the tip of the measuring probe, and when measuring the amount of silicon, the measuring element is held approximately vertically. The lower end of the silicate electrolyte is immersed in the molten metal, and a molten silicate electrolyte is interposed between the molten metal and the standard substance, and the electromotive force generated between the molten metal and the standard substance causes the molten metal to immerse in the molten metal. A method for rapidly measuring the amount of silicon in f4 molten metal, which comprises detecting the silicon content of the molten metal.
JP57184365A 1982-10-20 1982-10-20 Rapid measurement of silicon content in molten metal Granted JPS5973763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184365A JPS5973763A (en) 1982-10-20 1982-10-20 Rapid measurement of silicon content in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184365A JPS5973763A (en) 1982-10-20 1982-10-20 Rapid measurement of silicon content in molten metal

Publications (2)

Publication Number Publication Date
JPS5973763A true JPS5973763A (en) 1984-04-26
JPH037264B2 JPH037264B2 (en) 1991-02-01

Family

ID=16151953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184365A Granted JPS5973763A (en) 1982-10-20 1982-10-20 Rapid measurement of silicon content in molten metal

Country Status (1)

Country Link
JP (1) JPS5973763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127415A (en) * 1985-11-29 1987-06-09 Nippon Steel Corp Desiliconization method for molten pig iron
JPS63255655A (en) * 1987-03-27 1988-10-21 セントロ・スビルッポ・マテリアーリ・エセ・ピ・ア Concentration cell
JPH01131449A (en) * 1987-11-17 1989-05-24 Nippon Steel Corp Method for measuring concentration of phosphorus in molten iron
US6013163A (en) * 1997-07-18 2000-01-11 Usx Corporation Probe for detection of the concentration of various elements in molten metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127415A (en) * 1985-11-29 1987-06-09 Nippon Steel Corp Desiliconization method for molten pig iron
JPH0122322B2 (en) * 1985-11-29 1989-04-26 Nippon Steel Corp
JPS63255655A (en) * 1987-03-27 1988-10-21 セントロ・スビルッポ・マテリアーリ・エセ・ピ・ア Concentration cell
JPH0559379B2 (en) * 1987-03-27 1993-08-30 Sentoro Subirutsuho Materiaari
JPH01131449A (en) * 1987-11-17 1989-05-24 Nippon Steel Corp Method for measuring concentration of phosphorus in molten iron
US6013163A (en) * 1997-07-18 2000-01-11 Usx Corporation Probe for detection of the concentration of various elements in molten metal

Also Published As

Publication number Publication date
JPH037264B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
JP5753007B2 (en) Measuring probe for measuring molten metal and sampling
US3773641A (en) Means for determining the oxygen content of liquid metals
Riaz et al. Experimental examination of slag/refractory interface
CA1276235C (en) Probe for the determination of gas concentration in molten metal
Brisley et al. Determination of the sodium activity in aluminum and aluminum silicon alloys using sodium beta alumina
US3864231A (en) Apparatus for measuring in a continuous manner oxygen in a molten metal
JPS5973763A (en) Rapid measurement of silicon content in molten metal
Shevchenko et al. Experimental liquidus studies of the Pb-Cu-Si-O system in equilibrium with metallic Pb-Cu alloys
JPH0246103B2 (en)
Otsuka et al. Oxygen solubility in liquid indium and oxygen diffusivity in liquid indium and tin
US5342489A (en) Method of measuring oxygen activities in slag
JPH0257866B2 (en)
KR910006222B1 (en) Apparatus for measuring silicon amount in molten iron
JP3646125B2 (en) High-temperature property testing equipment for electric furnace raw materials for alloy iron production
JP2578542B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal
EP0285578B1 (en) Improvement of electrochemical devices for measuring the silicon content of hot metal
JP2578544B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal
Pargeter et al. Direct oxygen determination in commercial steelmaking practice
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
JP2878603B2 (en) Sensor for measuring dissolved amount of hydrogen in molten metal
JPS6242008B2 (en)
Park et al. Thermodynamics of carbon removal by molten slags from manganese alloy melts
JPH0222690Y2 (en)
JPH0810792Y2 (en) Consumable crucible used for oxygen activity measuring device in slag
CS233268B1 (en) Probe for oxygen chemical potential determination in melted metals and slags