JPH08260161A - Method for recovering ni or zn salt from waste liquid containing ni or zn and ni - Google Patents

Method for recovering ni or zn salt from waste liquid containing ni or zn and ni

Info

Publication number
JPH08260161A
JPH08260161A JP8460595A JP8460595A JPH08260161A JP H08260161 A JPH08260161 A JP H08260161A JP 8460595 A JP8460595 A JP 8460595A JP 8460595 A JP8460595 A JP 8460595A JP H08260161 A JPH08260161 A JP H08260161A
Authority
JP
Japan
Prior art keywords
tank
salt
liquid
dehydrated
liter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8460595A
Other languages
Japanese (ja)
Other versions
JP3014614B2 (en
Inventor
Norihiro Yaide
乃大 矢出
Seiichi Tsuda
精一 津田
Kazutsugu Kitajima
一嗣 北島
Kyoichi Shoda
喬一 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
JFE Engineering Corp
Original Assignee
Ebara Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, NKK Corp, Nippon Kokan Ltd filed Critical Ebara Corp
Priority to JP7084605A priority Critical patent/JP3014614B2/en
Publication of JPH08260161A publication Critical patent/JPH08260161A/en
Application granted granted Critical
Publication of JP3014614B2 publication Critical patent/JP3014614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE: To obtain a recovered Ni soln. having g high content of Ni and extremely low in impurities by dissolving a sludge obtained by flocculating and separating an Ni-contg. waste liq. with a mineral acid, regulating the pH to separate SS, dehydrating and purifying the obtained liq. CONSTITUTION: A waste liq. 1 contg. Ni or Zn and Ni is added with Ca(OH)2 in an air oxidation tank 4, further admixed with a high molecular flocculant 3 in a flocculation tank 6, sent to a settling tank 7, flocculated and separated. The treated water 35 is neutralized and then discharged 10. Meanwhile, the flocculated and separated sludge 11 is dissolved with H2 SO4 9, then regulated to pH3 to 5 with NaOH 14 and introduced into a separation tank 15. The separated sludge 17 is dehydrated and reutilized as the raw material for Ni and Zn. Besides, the supernatant liq. 16 is added with NaOH 14 and an inorg. dehydration assistant 23 respectively in a reaction tank 11 and in a mixing tank 22 and dehydrated. The dehydrated cake 19b is dissolved with H2 SO4 9, regulated to pH3 to 4 with NaOH 14, passed successively through a separation tank 26, a UF membrane module 30 and active-carbon adsorption tank 32 and recovered as a recovered Ni soln. 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ni又はZnとNi塩
の回収方法に係り、特にNi系メッキ工場から排出され
るNi又はZnとNiを含有する廃液から、メッキ浴に
再利用可能なNi塩又はZnとNi塩を回収する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering Ni or Zn and a Ni salt, and in particular, it can be reused in a plating bath from a waste liquid containing Ni or Zn and Ni discharged from a Ni-based plating plant. The present invention relates to a method for recovering Ni salt or Zn and Ni salt.

【0002】[0002]

【従来の技術】近年、製鉄所において製品の高付加価値
化に伴って、Niメッキ鋼板又はZn−Ni合金メッキ
鋼板が多量に生産されている。このようなメッキ鋼板の
生産に際して、メッキ後の製品に付着するメッキ液に対
する水洗や、濃厚なメッキ浴の更新によるダンプアウト
によって、多量のNi又はZnとNiを含有する廃液が
生産ラインより排出される。これらNi含有廃液のNi
濃度又はZnとNi濃度は0.01〜0.1%程度であ
る。特にNiはメッキ原料やステンレス鋼用原料等とし
て、多方面に広く使用されて、その価格もFeやZnに
比べて高い。
2. Description of the Related Art In recent years, a large amount of Ni-plated steel sheets or Zn-Ni alloy-plated steel sheets have been produced in steel mills as the value added of products has increased. In the production of such plated steel sheet, a large amount of waste liquid containing Ni or Zn and Ni is discharged from the production line by rinsing the plating liquid adhering to the product after plating with water and dumping out by updating the concentrated plating bath. It Ni of these waste liquids containing Ni
The concentration or Zn and Ni concentration is about 0.01 to 0.1%. In particular, Ni is widely used in various fields as a plating raw material, a raw material for stainless steel, etc., and its price is higher than that of Fe or Zn.

【0003】このような状況からNi回収は省資源の観
点からも非常に重要である。また、その廃液処理に際し
て、公共水域の水質保全の観点から、重金属であるNi
の除去は必要である。従来より、このように多量に排出
される重金属含有廃液の処理のために凝集沈殿が行わ
れ、その処理水は公共水域に放流される。そして発生す
る凝集沈殿汚泥は脱水後、産業廃棄物として投棄される
か、いわゆる山元還元として、電炉メーカにNi鉱石の
代替え品として外販されている。しかしながら、上記の
ようにNiを含む凝集沈殿汚泥を脱水処理しても、脱水
ケーキ中にはFe、Cr、Cu、Pb、Cd等のZnや
Ni以外の重金属と有機物である不純物が多く含有して
いるために、その利用価値は極めて低く、これをそのま
まで外販しようとしても、産業廃棄物と大差ないのが現
状である。
Under such circumstances, Ni recovery is very important from the viewpoint of resource saving. Further, in treating the waste liquid, Ni, which is a heavy metal, is treated from the viewpoint of water quality conservation in public water areas.
Must be removed. Conventionally, coagulation-sedimentation has been performed for the treatment of such heavy metal-containing waste liquids discharged in such a large amount, and the treated water is discharged to public water bodies. The coagulated sedimented sludge generated is dehydrated and then discarded as industrial waste, or is sold to electric furnace manufacturers as a substitute for Ni ore as so-called Yamamoto reduction. However, even when the coagulated sedimented sludge containing Ni is dehydrated as described above, the dehydrated cake contains a large amount of heavy metals other than Zn and Ni such as Fe, Cr, Cu, Pb, and Cd and impurities that are organic substances. Therefore, its utility value is extremely low, and even if it is sold directly as it is, it is not much different from industrial waste.

【0004】本発明者らは先にNi又はZnとNi含有
廃液の凝集沈殿汚泥からNi又はZnとNiメッキ液と
して使用可能なNi塩又はZnとNi塩の回収方法を見
いだした。(特願平6−148532号、以下先願とい
う) 前記先願の回収方法の工程図を図2に示す。しかしなが
ら、この先願の技術によれば、有機物を含まないNi又
はZnとNi含有廃液からNi塩又はZnとNi塩を回
収する方法には有効であるが、Ni又はZnとNi含有
廃液が多量の有機物で汚染されている場合、先願の技術
では有機物とNi塩又はZnとNi塩を十分に分離する
ことができず、このために回収されたNi塩又はZnと
Ni塩に有機物が残留し、メッキ液として再利用できな
いという不具合があった。
The present inventors have previously found a method of recovering Ni or Zn and a Ni salt or a Zn and Ni salt that can be used as a Ni plating solution from a coagulation sedimentation sludge of Ni or Zn and a waste liquid containing Ni. (Japanese Patent Application No. 6-148532, hereinafter referred to as the prior application) FIG. 2 shows a process diagram of the recovery method of the prior application. However, according to the technique of this prior application, although it is effective in the method of recovering the Ni salt or Zn and the Ni salt from the organic-free Ni or Zn and the Ni-containing waste liquid, a large amount of the Ni or Zn and the Ni-containing waste liquid is produced. When it is contaminated with organic matter, the technique of the prior application cannot sufficiently separate the organic matter and the Ni salt or the Zn and Ni salt, and the organic matter remains in the Ni salt or the Zn and Ni salt recovered for this reason. However, there was a problem that it could not be reused as a plating solution.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述した問題
を解決し、Ni又はZnとNiを含有する廃液の凝集沈
澱処理において、多量に発生するNi又はZnとNi含
有汚泥中から、Ni、Zn以外の重金属や有機物という
不純物が極めて少なく、かつ高濃度のNi又はZnとN
iを含有する回収液を得ることができ、得られたNi又
はZnとNi回収液をメッキ浴に再利用することによっ
て、生産コストの低減及び省エネルギー、省資源を図る
ことができるNi、又はZnとNi含有廃液からのNi
塩又はZnとNi塩の回収方法を提供することを課題と
する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and in the coagulation-sedimentation treatment of waste liquid containing Ni or Zn and Ni, Ni or Zn and Ni-containing sludge, which are generated in a large amount, are mixed with Ni, Impurities such as heavy metals and organic substances other than Zn are extremely small, and high concentration Ni or Zn and N
Ni or Zn capable of obtaining a recovery liquid containing i and reusing the obtained Ni or Zn and the Ni recovery liquid in a plating bath can reduce production cost and save energy and resources. And Ni from waste liquid containing Ni
An object of the present invention is to provide a method for recovering salt or Zn and Ni salt.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、Ni又はZnとNi含有廃液から精製
されたそれら、即ちNi又はZnとNiの塩の含有液を
回収する方法において、次の(a)〜(f)の工程を順
次行うことを特徴とするNi塩又はZnとNi塩の回収
方法としたものである。 (a)Ni又はZnとNi含有廃液を凝集分離処理する
第1工程、(b)第1工程で発生する凝集分離汚泥を鉱
酸で溶解する第2工程、(c)第2工程の酸溶解液をア
ルカリ剤でpH3〜5に調整する第3工程、(d)第3
工程で生成するSSを固液分離する第4工程、(e)第
4工程の分離液にアルカリ剤と無機系脱水助剤を添加し
て脱水する第5工程、(f)第5工程の脱水ケーキを鉱
酸で溶解し、アルカリ剤でpH調整後、生成するSSと
無機系脱水助剤を膜分離する第6工程。また、本発明で
は、前記工程(f)の後に、第6工程の膜分離水を活性
炭吸着処理する第7工程を有してもよい。
In order to solve the above problems, the present invention provides a method for recovering Ni or Zn and a Ni-containing waste solution containing purified Ni, Zn and Ni-containing waste solution. The following steps (a) to (f) are sequentially performed, and a method for recovering a Ni salt or Zn and a Ni salt is provided. (A) First step of coagulating and separating Ni or Zn and a waste liquid containing Ni, (b) Second step of dissolving coagulating and separating sludge generated in the first step with mineral acid, (c) Acid dissolution of the second step Third step of adjusting the liquid to pH 3 to 5 with an alkaline agent, (d) third
Fourth step of solid-liquid separation of SS produced in the step, (e) fifth step of adding alkaline agent and inorganic dehydration auxiliary agent to the separated solution of the fourth step, and (f) fifth step of dehydration A sixth step in which the cake is dissolved with a mineral acid, the pH is adjusted with an alkaline agent, and then the produced SS and the inorganic dehydration aid are separated by a membrane. Further, in the present invention, after the step (f), a seventh step of subjecting the membrane-separated water of the sixth step to adsorption of activated carbon may be included.

【0007】次にこの発明を詳細に説明する。第1工程
においては、Ni又はZnとNi含有廃液を凝集分離処
理するが、具体的には該廃液にアルカリ剤を添加して、
空気酸化処理し、次に高分子凝集剤好ましくはアニオン
系高分子凝集剤を添加して、廃液中の重金属類を水酸化
物として凝集分離させる。上記のように、第1工程はア
ルカリ剤と高分子凝集剤特に、アニオン系高分子凝集剤
を併用するのが望ましいが、アルカリ剤単独で凝集沈殿
処理しても良い。アルカリ剤は、一般に廃液処理に使わ
れている消石灰でも水道用消石灰でも、あるいはか性ソ
ーダ(NaOH)でも良いし、また、高分子凝集剤は公
知のものがいずれも使用できるが、両者を兼用できる消
石灰が好ましい。廃液を凝集沈殿するための第1工程に
おいては、空気酸化処理により、廃液中のFe2+をFe
3+となし、そして、廃液中にアルカリ剤を添加して、廃
液中の重金属類を水酸化物とし、凝集沈殿させる。
Next, the present invention will be described in detail. In the first step, Ni or Zn and the Ni-containing waste liquid are coagulated and separated. Specifically, an alkaline agent is added to the waste liquid,
After air oxidation treatment, a polymer coagulant, preferably an anionic polymer coagulant, is added to aggregate and separate heavy metals in the waste liquid as hydroxides. As described above, in the first step, it is desirable to use the alkali agent and the polymer coagulant, especially the anionic polymer coagulant in combination, but the coagulation and precipitation treatment may be performed with the alkali agent alone. The alkaline agent may be slaked lime generally used for waste liquid treatment, slaked lime for tap water, or caustic soda (NaOH). Also, any known polymer flocculant can be used, but both are used. Slaked lime that can be used is preferable. In the first step for coagulating and precipitating the waste liquid, Fe 2+ in the waste liquid is converted into Fe by the air oxidation treatment.
3+ , and by adding an alkaline agent to the waste liquid, the heavy metals in the waste liquid are converted into hydroxides to cause aggregation and precipitation.

【0008】第2工程では、第1工程の凝集沈殿汚泥又
は凝集沈殿汚泥を濃縮した濃縮汚泥に鉱酸を添加して、
pH0.5〜2で重金属類の水酸化物を溶解する。鉱酸
はHCl、HNO3 、H2 SO4 等が使えるが、CaS
4 としてCaの除去が期待でき、また、メッキ浴によ
く使われているNiSO4 やZnSO4 の形態にするた
めにH2 SO4 の使用が望ましい。第3工程では、第2
工程の酸溶解液にアルカリ剤、特にNaOHを添加し
て、pH3〜5に調整し、不純物であるFe3+をFe
(OH)3 の不溶性に変える。
In the second step, a mineral acid is added to the coagulated sedimentation sludge of the first step or the concentrated sludge obtained by concentrating the coagulated sedimentation sludge,
Dissolves heavy metal hydroxides at pH 0.5-2. HCl, HNO 3 , H 2 SO 4 etc. can be used as mineral acid, but CaS
The removal of Ca as O 4 can be expected, and it is preferable to use H 2 SO 4 in order to obtain the form of NiSO 4 or ZnSO 4 often used in plating baths. In the third step, the second
An alkaline agent, especially NaOH, is added to the acid solution of the process to adjust the pH to 3 to 5 to remove Fe 3+ as an impurity from Fe.
Change to insoluble in (OH) 3 .

【0009】第4工程の固液分離では、重力濃縮、遠心
濃縮、膜分離濃縮等によって第3工程で生成した汚泥を
1〜数%容量に濃縮してから、脱水機に供給するのがよ
いが、前記第3工程からの汚泥濃縮が1%以上なら前記
濃縮操作が省略でき、直接脱水処理しても良い。脱水機
はフィルタープレス、真空脱水機、遠心脱水機、ベルト
プレスなどいずれも使用できる。Niの回収率を高める
ためには脱水ケーキの含水率が極力低くできるフィルタ
ープレスの使用が望ましい。脱水時の脱水ろ液はNi又
はZnとNiを含むために第2工程に戻す。発生する脱
水ケーキにもNi又はZnとNiが含まれるので資源の
有効利用を図るためにNi鉱石の原料として再利用す
る。
In the solid-liquid separation in the fourth step, the sludge produced in the third step may be concentrated to a volume of 1 to several% by gravity concentration, centrifugal concentration, membrane separation concentration, etc., and then supplied to the dehydrator. However, if the sludge concentration from the third step is 1% or more, the concentration operation can be omitted and direct dehydration treatment may be performed. As the dehydrator, any of a filter press, a vacuum dehydrator, a centrifugal dehydrator, a belt press and the like can be used. In order to increase the recovery rate of Ni, it is desirable to use a filter press that can reduce the water content of the dehydrated cake as much as possible. Since the dehydrated filtrate at the time of dehydration contains Ni or Zn and Ni, it is returned to the second step. Since the generated dehydrated cake also contains Ni or Zn and Ni, it is reused as a raw material of Ni ore in order to effectively utilize resources.

【0010】第5工程では第4工程からの分離液即ち、
濃縮上澄液、膜分離液等にアルカリ剤、特にNaOHを
添加して、pH10〜12に調整し、分離液中のNi又
はZnとNiを不溶性のNi(OH)2 又はZn(O
H)2 に変える。次に無機性脱水助剤を添加したのちそ
の全量をフィルタープレスで脱水し、Ni(OH)2
はZn(OH)2 、Ni(OH)2 と無機性脱水助剤を
脱水ケーキとして回収する。無機性脱水助剤は、粉末状
活性炭、パーライト、珪藻土、活性白土、カオリン等、
鉱酸で溶解されない素材で粉末状であれば本発明に使用
でき、その添加量はNi(OH)2 やZn(OH)2
起因する汚泥重量に対して0.1〜10%であることが
好ましい。また、この第5工程に、脱水ケーキの洗浄工
程を付加することもできる。
In the fifth step, the separated liquid from the fourth step, that is,
An alkaline agent, especially NaOH, is added to the concentrated supernatant liquid, the membrane separation liquid or the like to adjust the pH to 10 to 12, and Ni or Zn and Ni in the separation liquid are mixed with insoluble Ni (OH) 2 or Zn (O
H) Change to 2 . Next, after adding an inorganic dehydrating auxiliary, the whole amount is dehydrated by a filter press, and Ni (OH) 2 or Zn (OH) 2 , Ni (OH) 2 and the inorganic dehydrating auxiliary are recovered as a dehydrated cake. Inorganic dehydration aids include powdered activated carbon, perlite, diatomaceous earth, activated clay, kaolin, etc.
It is a material that is not dissolved in mineral acid and can be used in the present invention as long as it is in powder form, and its addition amount is 0.1 to 10% relative to the weight of sludge caused by Ni (OH) 2 and Zn (OH) 2. Is preferred. Further, a dehydration cake washing step can be added to the fifth step.

【0011】洗浄工程は第5工程の未洗浄の脱水ケーキ
に工業用水、水道水好ましくは純水(脱塩水)を加え
て、脱水ケーキ中の水に溶け易い不純物、例えばNaC
lやNaSO4 などを除去して回収Ni又は回収Znと
Niの純度を高めるために行うものである。脱水ケーキ
から不純物を水側に抽出した後に、必要に応じてさらに
脱水操作によって不純物を脱水ろ液と共に系外に排除す
るようにしても良い。この脱水ケーキの洗浄又は洗浄と
脱水操作は1〜数回繰り返して行うことができる。脱水
ろ液や洗浄操作後の脱水ろ液は第1工程に戻す。
In the washing step, industrial water, tap water, preferably pure water (demineralized water) is added to the unwashed dewatered cake in the fifth step to remove impurities such as NaC which are easily dissolved in water in the dewatered cake.
It is carried out in order to increase the purity of the recovered Ni or the recovered Zn and Ni by removing 1 and NaSO 4 . After extracting the impurities from the dehydrated cake to the water side, the impurities may be removed from the system together with the dehydrated filtrate by a dehydration operation, if necessary. The washing of the dehydrated cake or the washing and dehydrating operations can be repeated once to several times. The dehydrated filtrate and the dehydrated filtrate after the washing operation are returned to the first step.

【0012】第6工程では、Ni(OH)2 又はZn
(OH)2 とNi(OH)2 と無機系脱水助剤を含む第
5工程の脱水ケーキを鉱酸で溶解後、アルカリ剤でpH
8〜12に調整して、Ni(OH)2 とZn(OH)2
を溶解する。未溶解物である無機系脱水助剤を膜分離に
よって除去し、膜分離水を得る。この膜分離水がNi塩
又はNiとZn塩を含む回収液となる。この未溶解物で
ある無機系脱水助剤等のSS濃度が1%以上の場合には
膜分離の前段で、予めSSを除去しておく必要がある。
SSの除去手段は脱水、ろ過、沈降分離等の方法によっ
て行えば良いが、運転操作が簡単で、設備費が安価な点
から、沈降分離によって行うことが望ましい。前記の第
6工程の膜分離水中に10mg/リットル以上のTOC
が残留する場合、有機物の除去のために、前記膜分離水
を活性炭吸着処理する。この活性炭は繊維状の活性炭の
使用が望ましい。
In the sixth step, Ni (OH) 2 or Zn is used.
After dissolving the dehydrated cake of the fifth step containing (OH) 2 , Ni (OH) 2 and an inorganic dehydration aid with mineral acid, the pH was adjusted with an alkaline agent.
Adjusted to 8-12, Ni (OH) 2 and Zn (OH) 2
Dissolve. The undissolved inorganic dehydration aid is removed by membrane separation to obtain membrane separated water. This membrane-separated water becomes a recovery liquid containing Ni salt or Ni and Zn salt. When the SS concentration of the undissolved inorganic dehydration aid or the like is 1% or more, it is necessary to remove the SS in advance before the membrane separation.
The SS removing means may be carried out by a method such as dehydration, filtration or sedimentation separation, but it is preferable to use sedimentation separation because the operation is simple and the equipment cost is low. TOC of 10 mg / liter or more in the membrane separation water of the sixth step
When the water remains, the membrane-separated water is subjected to activated carbon adsorption treatment to remove organic substances. The activated carbon is preferably fibrous activated carbon.

【0013】次に、本発明のうちZn,Ni含有廃液か
らZnとNiを回収する方法の一例について、その工程
図を示した図1で説明する。 第1工程:Zn,Ni含有廃液(1)は散気設備を有す
る空気酸化槽(4)に導かれ、Ca(OH)2 (2)を
添加し、空気酸化することによって廃液中のFe2+は酸
化されてFe3+となり、すべてFe(OH)3 になる。
一方、NiとZnはNi(OH)2 とZn(OH)2
なり、すべて不溶化する。これら3種類の水酸化物とN
i又はNiとZn含有廃液に元から存在しているSS
は、凝集槽(6)において高分子凝集剤(3)を添加し
て凝集処理する。ここで生成するSSは、沈澱槽(7)
で凝集沈澱処理水(35)と凝集沈澱汚泥(11)とに
固液分離される。凝集沈澱処理水は、中和槽(8)にお
いてH2 SO4 (9)で中和されたのち放流される。
Next, an example of a method for recovering Zn and Ni from a waste liquid containing Zn and Ni according to the present invention will be described with reference to FIG. First step: Zn, Ni-containing waste liquid (1) is introduced into an air oxidation tank (4) having an air diffuser, Ca (OH) 2 (2) is added, and air oxidation is performed to thereby Fe 2 in the waste liquid. + Is oxidized to Fe 3+ , and all become Fe (OH) 3 .
On the other hand, Ni and Zn become Ni (OH) 2 and Zn (OH) 2 and are all insolubilized. These three types of hydroxide and N
SS originally present in waste liquid containing i or Ni and Zn
In the coagulation tank (6), the polymer coagulant (3) is added for coagulation treatment. The SS produced here is a settling tank (7)
The solid-liquid separation is carried out into coagulation-sedimentation treated water (35) and coagulation-sedimentation sludge (11). The coagulation sedimentation treated water is discharged after being neutralized with H 2 SO 4 (9) in the neutralization tank (8).

【0014】第2工程:凝集沈澱汚泥(11)中の重金
属の水酸化物は、No.1溶解槽(12)においてH2
SO4 を添加して、pH0.5〜2で溶解される。N
o.1溶解槽には、凝集沈澱汚泥(11)の他にNo.
1脱水ろ液(20a)とNo.2脱水ケーキスラリー
(28)が導かれ、液中に残留するNiとZnが本工程
と次の第3及び第4工程で回収される。 第3工程:第2工程の酸溶解液に、No.1pH調整槽
(13)でNaOH(14)を添加して、pH3〜5に
調整する。ここで不純物であるFe3+を再度、Fe(O
H)3 の不溶性に変える。 第4工程:第2工程で生成したCaSO4 と第3工程で
生成したSSをNo.1SS分離槽(15)で固液分離
する。その上澄液(16)は次工程に送水する。固液分
離されたNo.1脱水ケーキスラリー(17)は、N
o.1フィルタープレス(18a)で脱水される。その
No.1脱水ケーキ(19a)はNi、Znの鉱石とし
て再利用し、No.1脱水ろ液(20a)は前述したよ
うに第2工程に戻す。
Second step: The heavy metal hydroxide in the coagulation sedimentation sludge (11) is No. H 2 in one dissolution tank (12)
SO 4 was added and dissolved in PH0.5~2. N
o. In addition to the coagulating sedimentation sludge (11), No.
No. 1 dehydrated filtrate (20a) and No. 1 2 The dehydrated cake slurry (28) is introduced, and Ni and Zn remaining in the liquid are recovered in this step and the following third and fourth steps. Third step: No. 1 was added to the acid solution of the second step. NaOH (14) is added in a pH adjusting tank (13) to adjust the pH to 3-5. Here, the impurities Fe 3+ are replaced with Fe (O
H) Change to insoluble in 3 . Fourth step: CaSO 4 produced in the second step and SS produced in the third step are No. Solid-liquid separation is performed in the 1SS separation tank (15). The supernatant liquid (16) is sent to the next step. The solid-liquid separated No. 1 dehydrated cake slurry (17) is N
o. It is dehydrated with 1 filter press (18a). The No. No. 1 dehydrated cake (19a) was reused as an ore of Ni and Zn. The 1-dehydrated filtrate (20a) is returned to the second step as described above.

【0015】第5工程:第4工程の上澄液(16)のp
Hが10〜12になるように反応槽(21)にNaOH
を添加する。次に、混合槽(22)に無機系脱水助剤で
ある粉末活性炭(100〜200メッシュ)(23)を
添加する。粉末活性炭の添加量は、反応槽(21)内の
SSあたり1〜50%である。その後、その全量をN
o.2フィルタープレス(18b)で脱水し、No.2
脱水ろ液(20b)は第1工程に戻す。本工程で活性炭
を添加する主目的は脱水助剤としてであるが、他に工程
水に含まれる有機物の除去も目的である。
Fifth step: p of the supernatant (16) of the fourth step
NaOH in the reaction tank (21) so that H becomes 10-12.
Is added. Next, powdered activated carbon (100 to 200 mesh) (23), which is an inorganic dehydration aid, is added to the mixing tank (22). The amount of powdered activated carbon added is 1 to 50% per SS in the reaction tank (21). After that, the total amount is N
o. No. 2 filter press (18b) was used for dehydration. Two
The dehydrated filtrate (20b) is returned to the first step. The main purpose of adding activated carbon in this step is as a dehydration aid, but it is also the purpose of removing organic substances contained in the process water.

【0016】No.2脱水ケーキ(19b)はNo.2
溶解槽(24)でNi濃度とZn濃度の合計が100m
g/リットル以下になるように希釈水(36)を注入す
るとともに、H2 SO4 を添加して、脱水ケーキ中のN
i(OH)2 とZn(OH)2 をpH0.5〜2に維持
して溶解する。希釈水としては脱塩水や水道水が使用で
き、その水量は回収液のNi又はZnあるいはNi+Z
n濃度が約100g/リットルとなるように添加する。
次に、No.2pH調整槽(25)にNaOH(14)
を添加して、回収再利用に適したpH3〜5に調整す
る。No.2SS分離槽(26)において、第5工程で
添加した粉末活性炭(23)を分離する。粉末活性炭は
No.2脱水ケーキスラリー(28)として第2工程に
戻され、第4工程で脱水されて、本発明の回収系外に除
かれる。
No. No. 2 dehydrated cake (19b) is No. Two
The total of Ni concentration and Zn concentration in the melting tank (24) is 100 m.
Diluting water (36) was injected so as to be less than or equal to g / liter, and H 2 SO 4 was added to add N in the dehydrated cake.
i (OH) 2 and Zn (OH) 2 are dissolved while maintaining pH 0.5-2. Demineralized water or tap water can be used as the diluting water, and the amount of the water is Ni or Zn or Ni + Z in the recovered liquid.
It is added so that the n concentration becomes about 100 g / liter.
Next, No. 2 pH adjusting tank (25) with NaOH (14)
Is added to adjust the pH to 3-5, which is suitable for recovery and reuse. No. In the 2SS separation tank (26), the powdered activated carbon (23) added in the fifth step is separated. The powdered activated carbon is No. It is returned to the second step as the 2-dehydrated cake slurry (28), dehydrated in the fourth step, and removed outside the recovery system of the present invention.

【0017】第6工程:No.2SS分離槽(26)の
上澄液はUF原水槽(27)に導かれ、分画分子量2万
〜10万のUF膜モジュール(30)に供給され、その
上澄液中の微細なSSが除去される。UF濃縮液(2
9)は各々UF原水槽(27)とNo.2pH調整槽
(25)に戻される。UF原水槽のSS濃度を2%以下
に維持するためにUF濃縮液(29)中のSSをNo.
2SS分離槽で除去する。 第7工程:UF膜透過液(31)を活性炭吸着塔(3
2)にSV3リットル/h以下で通水する。これによっ
てUF膜透過液(31)中に残留し、メッキ性に悪影響
を与える有機物を吸着除去する。上記有機物が除かれた
活性炭吸着塔出口水をNi又はZnとNi回収液(3
3)としてメッキ浴に再利用される。
Sixth step: No. The supernatant of the 2SS separation tank (26) is guided to the UF raw water tank (27) and supplied to the UF membrane module (30) having a molecular weight cutoff of 20,000 to 100,000, and fine SS in the supernatant is obtained. To be removed. UF concentrate (2
9) are UF raw water tank (27) and No. 9 respectively. It is returned to the 2 pH adjusting tank (25). In order to maintain the SS concentration in the UF raw water tank at 2% or less, the SS in the UF concentrate (29) was changed to No.
Remove in 2SS separation tank. 7th step: The UF membrane permeate (31) is passed through an activated carbon adsorption tower (3
Water is passed to 2) at an SV of 3 liter / h or less. As a result, the organic substances remaining in the UF membrane permeation liquid (31) and adversely affecting the plating property are adsorbed and removed. The activated carbon adsorption tower outlet water from which the organic substances have been removed is used as Ni or Zn and Ni recovery liquid (3
3) It is reused in the plating bath.

【0018】[0018]

【作用】Ni、Zn含有廃液中の有機物の大部分は、廃
液処理工程で生成するNi(OH)2 やZn(OH)2
に吸着し、凝集沈澱汚泥に移行するとともにその有機物
濃度が濃縮される。先願によれば、この凝集沈澱汚泥を
鉱酸で溶解し、Ni、Zn塩とした後、不純物であるF
e(OH)3 やCaSO4 を固液分離するだけであり、
Ni、Zn廃液から移った有機物はそのままNi、Zn
回収液に高濃度で残留する。そのような高濃度の有機物
をすべて活性炭吸着で除去しようとしても完全に除去す
るのは非常に困難である。
Most of the organic substances in the waste liquid containing Ni and Zn are Ni (OH) 2 and Zn (OH) 2 produced in the waste liquid treatment process.
Is adsorbed on and is transferred to the coagulating sedimentation sludge and the concentration of the organic matter is concentrated. According to the prior application, the coagulated sedimented sludge is dissolved with a mineral acid to form Ni and Zn salts, and then F which is an impurity.
Only solid-liquid separation of e (OH) 3 and CaSO 4
The organic substances transferred from the Ni, Zn waste liquid are directly Ni, Zn
High concentration remains in the recovered liquid. Even if it is attempted to remove all such high-concentration organic substances by activated carbon adsorption, it is extremely difficult to completely remove them.

【0019】一方、本発明によれば、有機物を含む凝集
沈澱汚泥を鉱酸で溶解し、中和後、SS化しやすいFe
(OH)3 やCaSO4 をまず除去し、ついで、液中か
ら目的成分であるZn,Niを水酸化物として固液分離
する。このように多量の有機物を含む液からZn(O
H)2 やNi(OH)2 として分離し、再び鉱酸で溶解
することにより不純物の非常に少ないZn,Ni回収液
を得ることができ、そのZn,Ni回収液に微量の有機
物が残留する場合は活性炭で吸着除去することも可能で
ある。
On the other hand, according to the present invention, Fe that easily dissolves coagulated sedimented sludge containing an organic matter with mineral acid and neutralizes it to form Fe
First, (OH) 3 and CaSO 4 are removed, and then the target components Zn and Ni are separated into solid and liquid as hydroxides. From a liquid containing such a large amount of organic matter, Zn (O
It can be separated into H) 2 and Ni (OH) 2 and dissolved again with mineral acid to obtain a Zn / Ni recovery liquid containing very few impurities, and trace amounts of organic substances remain in the Zn / Ni recovery liquid. In some cases, it is possible to remove by adsorption with activated carbon.

【0020】[0020]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はない。 実施例1 図1に示した工程図に従って、下記性状のZn,Ni含
有廃液中から以下のようにしてZn,Ni塩を回収し
た。 pH : 5.8 Ni : 500 mg/リットル Zn : 243 mg/リットル SS : 3 mg/リットル T−Fe : 10 mg/リットル TOC : 880 mg/リットル TOCとは有機体炭素で有機物濃度を表す指標である。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 According to the process chart shown in FIG. 1, Zn, Ni salt was recovered as follows from the Zn, Ni-containing waste liquid having the following properties. pH: 5.8 Ni: 500 mg / liter Zn: 243 mg / liter SS: 3 mg / liter T-Fe: 10 mg / liter TOC: 880 mg / liter TOC is an index representing organic matter concentration in organic carbon. is there.

【0021】空気酸化槽(4)において、上記Zn,N
i含有廃液に、Ca(OH)2 (和光純薬工業(株)製
試薬、化学用)1300mg/リットルを添加してpH
を7に調整すると共に、空気酸化槽(4)において、空
気散気管(5)から廃液中に空気を吹き込んで、30分
間空気酸化処理した。次に、凝集槽(6)でCa(O
H)2 を添加して合計1700mg/リットル添加し
て、液のpHを10に調整した後、これを沈澱槽(7)
で凝集沈澱処理した。凝集沈澱処理水(35)の水質は
次の通りである。 pH : 10 Ni : 1 mg/リットル Zn : 1 mg/リットル SS : 1 mg/リットル T−Fe : 0.1 mg/リットル TOC : 65 mg/リットル
In the air oxidation tank (4), the Zn, N
To the i-containing waste solution, Ca (OH) 2 (Wako Pure Chemical Industries, Ltd. reagent, for chemistry) 1300 mg / liter was added to adjust the pH.
Was adjusted to 7 and air was blown into the waste liquid from the air diffuser pipe (5) in the air oxidation tank (4) to perform air oxidation treatment for 30 minutes. Next, Ca (O
H) 2 was added to adjust the pH of the solution to 10 by adding 1700 mg / liter in total, and then the solution was added to the precipitation tank (7).
Coagulation and precipitation treatment was carried out. The water quality of the coagulation sedimentation treated water (35) is as follows. pH: 10 Ni: 1 mg / liter Zn: 1 mg / liter SS: 1 mg / liter T-Fe: 0.1 mg / liter TOC: 65 mg / liter

【0022】発生した凝集沈殿汚泥を沈澱槽(7)にお
いて約18時間静置すると、濃縮汚泥濃度が10kg/
3 となった。この濃縮汚泥にNo.1溶解槽(12)
内でH2 SO4 を添加するとCaSO4 が生成した。そ
の時pHは1であった。次に、No.1pH調整槽(1
3)でNaOHを添加して、pH4として不純物である
Fe3+をFe(OH)3 の不溶性に変えたのち前述のC
aSO4 と共にNo.1SS分離槽(15)において、
上澄液(16)とNo.1脱水ケーキスラリー(17)
とに固液分離する。No.1脱水ケーキスラリーはN
o.1フィルタープレス(18a)で脱水されて、含水
率70%の脱水ケーキはNiの鉱石代替として再利用す
る。
When the generated coagulated sedimented sludge is left to stand in the sedimentation tank (7) for about 18 hours, the concentration of the concentrated sludge becomes 10 kg /
It became m 3 . No. 1 dissolution tank (12)
When H 2 SO 4 was added therein, CaSO 4 was produced. At that time the pH was 1. Next, No. 1 pH adjustment tank (1
In step 3), NaOH was added to adjust the pH to 4 so that Fe 3+ as an impurity becomes insoluble in Fe (OH) 3.
aSO 4 together with No. In the 1SS separation tank (15),
The supernatant (16) and No. 1 dehydrated cake slurry (17)
Solid-liquid separation is carried out. No. 1 dehydrated cake slurry is N
o. The dehydrated cake having a water content of 70%, which was dehydrated by a filter press (18a), is reused as a substitute for ore of Ni.

【0023】この脱水ケーキの乾燥重量あたりの組成は
次の通り。 Ni(OH)2 : 16 % Zn(OH)2 : 10 % Fe(OH)3 : 8 % CaSO4 : 89 % 回収対象のNiとZnを含む脱水ろ液はNo.1溶解槽
(12)に戻される。NiとZnを含む上澄液(16)
は反応槽(21)でNaOHを添加されて、pH11に
調整し、NiをNi(OH)2 に、ZnをZn(OH)
2 にして不溶化させる。次に、混合槽(22)において
粉末活性炭(エバダイヤ、(株)荏原製作所製)をSS
あたり10%添加して、約15分間攪はんした。
The composition of the dehydrated cake per dry weight is as follows. Ni (OH) 2: 16% Zn (OH) 2: 10% Fe (OH) 3: 8% CaSO 4: 89% recovered dewatering filtrate containing Ni and Zn in the target No. 1 Returned to the dissolution tank (12). Supernatant containing Ni and Zn (16)
Was adjusted to pH 11 by adding NaOH in the reaction tank (21), Ni to Ni (OH) 2 and Zn to Zn (OH) 2.
Set to 2 and insolubilize. Next, in the mixing tank (22), powdered activated carbon (EVA DIA, manufactured by EBARA CORPORATION) is SS
10% was added and the mixture was stirred for about 15 minutes.

【0024】粉末活性炭を含んだ状態でNo.2フィル
タープレス(18b)で脱水し、含水率70%のNo.
2脱水ケーキ(19b)を得た。この脱水ケーキの乾燥
重量あたりの組成は次の通りである。 Ni(OH)2 : 61 % Zn(OH)2 : 29 % その他(活性炭) : 10 % 脱水ろ液(20b)には活性炭を主成分とするSSが数
10mg/リットル含まれるので、空気酸化槽(4)に
戻す。一方、No.2脱水ケーキ(19b)はNo.2
溶解槽(24)でNi濃度とZn濃度の合計が100g
/リットル以下になるように希釈水(36)として脱塩
水を注入し、H2 SO4 を添加して、pH2に維持しつ
つ30分間攪拌して、溶解させた。
No. 1 in the state of containing powdered activated carbon. No. 2 with a water content of 70% was dehydrated with a filter press (18b).
2 Dehydrated cake (19b) was obtained. The composition per dry weight of this dehydrated cake is as follows. Ni (OH) 2 : 61% Zn (OH) 2 : 29% Others (activated carbon): 10% Since the dehydrated filtrate (20b) contains several 10 mg / liter of SS containing activated carbon as a main component, an air oxidation tank. Return to (4). On the other hand, No. No. 2 dehydrated cake (19b) is No. Two
The total of Ni concentration and Zn concentration in the melting tank (24) is 100 g.
Demineralized water was injected as dilution water (36) so as to be not more than 1 / liter, H 2 SO 4 was added, and the mixture was stirred for 30 minutes while maintaining pH 2 to dissolve it.

【0025】その後、NaOHを添加して、pH4に調
整した後、水面積負荷5mm/分、滞留時間6時間のN
o.2SS分離槽(26)で予め沈み易いSSを除去し
た。固液分離したNo.2脱水スラリー(28)中のS
SはNo.1溶解槽(12)に戻して、No.1SS分
離槽やNo.1フィルタープレス(18a)で本発明の
回収系外に排出される。No.2SS分離槽(26)か
らの上澄液のSS濃度は300mg/リットルであり、
この上澄液を分画分子量2万のポリスルフォン系のUF
膜を組み込んだ管型モジュール(30)(膜面積:0.
034m2 )に、膜面流速:2m/秒、操作圧力:2k
gf/cm2 、供給液量:2リットル/時間の条件によ
って連続通水した。この時の透過液量は約1リットル/
時間であった。
After that, by adding NaOH to adjust the pH to 4, a water area load of 5 mm / min and a residence time of 6 hours were used.
o. In the 2SS separation tank (26), precipitable SS was removed in advance. The solid-liquid separated No. 2 S in the dehydrated slurry (28)
S is No. Returning to No. 1 dissolution tank (12), No. 1 1SS separation tank or No. It is discharged to the outside of the recovery system of the present invention by 1 filter press (18a). No. The SS concentration of the supernatant from the 2SS separation tank (26) is 300 mg / liter,
This supernatant is used as a polysulfone-based UF having a molecular weight cut off of 20,000.
A tubular module (30) incorporating a membrane (membrane area: 0.
034m 2 ), membrane surface velocity: 2 m / sec, operating pressure: 2 k
Water was continuously supplied under the conditions of gf / cm 2 and the amount of the supplied liquid: 2 liters / hour. The permeated liquid volume at this time is about 1 liter /
It was time.

【0026】本発明で得られたZn、Ni回収液の性状
は下記のとおりであり、メッキ浴として十分に再利用可
能な品質であった。 pH : 4.0 SS : 1 mg/リットル以下 Ni : 66 g/リットル Zn : 32 g/リットル T−Fe : 0.1 mg/リットル以下 Pb : 0.1 mg/リットル Cu : 0.1 mg/リットル Cd : 0.1 mg/リットル以下 Cr : 0.1 mg/リットル以下 TOC : 3 mg/リットル以下
The properties of the Zn and Ni recovery solution obtained in the present invention are as follows, and the quality was sufficiently reusable as a plating bath. pH: 4.0 SS: 1 mg / liter or less Ni: 66 g / liter Zn: 32 g / liter T-Fe: 0.1 mg / liter or less Pb: 0.1 mg / liter Cu: 0.1 mg / liter Liters Cd: 0.1 mg / liter or less Cr: 0.1 mg / liter or less TOC: 3 mg / liter or less

【0027】実施例2 TOCが1360mg/リットルでその他の液組成が実
施例1と同じZn,Ni含有廃液を用い、実施例1と同
様にZn、Ni塩の回収実験をした。得られたUF膜透
過液の組成は次の通りであった。 pH : 4.0 SS : 1 mg/リットル以下 Ni : 66 g/リットル Zn : 32 g/リットル T−Fe : 0.1 mg/リットル以下 Pb : 0.1 mg/リットル Cu : 0.1 mg/リットル Cd : 0.1 mg/リットル以下 Cr : 0.1 mg/リットル以下 TOC : 13 mg/リットル 前記UF膜透過液(31)を繊維状活性炭を充填した活
性炭吸着塔(32)にSV:1リットル/hで通水し、
有機物を除去したところ、Zn、Ni回収液のTOCは
4mg/リットルとなり、得られたZn、Ni回収液は
メッキ浴として十分に再利用可能な品質であった。
Example 2 A Zn, Ni salt recovery experiment was carried out in the same manner as in Example 1 using the waste liquid containing Zn and Ni having the same TOC content of 1360 mg / liter and other liquid compositions as in Example 1. The composition of the obtained UF membrane permeate was as follows. pH: 4.0 SS: 1 mg / liter or less Ni: 66 g / liter Zn: 32 g / liter T-Fe: 0.1 mg / liter or less Pb: 0.1 mg / liter Cu: 0.1 mg / liter Liters Cd: 0.1 mg / liter or less Cr: 0.1 mg / liter or less TOC: 13 mg / liter The activated carbon adsorption tower (32) filled with the UF membrane permeated liquid (31) is a SV: 1. Water is passed at liter / h,
When the organic matter was removed, the TOC of the Zn and Ni recovery liquid was 4 mg / liter, and the obtained Zn and Ni recovery liquid had a quality that was sufficiently reusable as a plating bath.

【0028】比較例1 図2に示した工程に従って、Zn,Ni塩の回収実験を
実施した。実施例1で使用したのと同じZn,Ni含有
廃液を使用し、図2に示した空気酸化槽(4)、凝集槽
(6)および沈澱槽(7)において実施例1と同様の条
件で凝集沈殿処理した。沈澱槽(7)で約18時間静置
させた凝集沈澱汚泥(11)をフィルタープレス(1
1)で圧搾圧力15kg/cm、圧搾時間15分の条件
で脱水した結果、脱水ケーキ(19)の含水率は75%
になった。
Comparative Example 1 A Zn, Ni salt recovery experiment was carried out according to the process shown in FIG. Using the same Zn, Ni-containing waste liquid as that used in Example 1, the same conditions as in Example 1 were used in the air oxidation tank (4), the flocculation tank (6) and the precipitation tank (7) shown in FIG. Coagulation-precipitation treatment was performed. The coagulated sedimented sludge (11), which was allowed to stand for about 18 hours in the sedimentation tank (7), was filtered (1
As a result of dehydration under the conditions of 1) in which the pressing pressure was 15 kg / cm and the pressing time was 15 minutes, the water content of the dehydrated cake (19) was 75%.
Became.

【0029】得られた脱水ケーキ(19)の乾燥重量あ
たりの組成は次の通りであった。 Ni(OH)2 : 51 % Zn(OH)2 : 24 % Fe(OH)3 : 1 % CaSO4 : 14 % 前記脱水ケーキ14kgを溶解槽(12)に送り、溶解
槽においてH2 SO4(9)を添加し、pHを1に維持
しつつ、脱水ケーキを溶解させた。未溶解物の残渣はN
o.1SS分離槽(15)において分離した。この上澄
液をpH調整槽(13)に送り、pH調整槽でNaOH
(14)を添加して、pHを4に維持しつつ30分間攪
拌した。その結果生成したFe(OH)3 等のSSを水
面積負荷5mm/分以下のNo.2SS分離槽(26)
に導き、沈降しやすいSSをあらかじめ除去した。
The composition of the obtained dehydrated cake (19) per dry weight was as follows. Ni (OH) 2: 51% Zn (OH) 2: 24% Fe (OH) 3: 1% CaSO 4: 14% Feed the dehydrated cake 14kg to dissolving tank (12), H 2 SO 4 in the dissolution vessel ( 9) was added and the dehydrated cake was dissolved while maintaining the pH at 1. Undissolved residue is N
o. It separated in the 1SS separation tank (15). This supernatant liquid is sent to the pH adjusting tank (13), and NaOH is added in the pH adjusting tank.
(14) was added and the mixture was stirred for 30 minutes while maintaining the pH at 4. The resulting SS such as Fe (OH) 3 was added to No. 5 having a water area load of 5 mm / min or less. 2SS separation tank (26)
Then, SS which is apt to settle was removed in advance.

【0030】No.2SS分離槽からの上澄液のSS濃
度は1%であり、この上澄液を分画分子量2万のポリス
ルフォン系のUF膜を組み込んだ管型モジュール(3
0)(膜面積:0.034m2 )に、膜面流速:2m/
秒、操作圧力:2kgf/cm2 、供給液量:2リット
ル/時間の条件によって連続通水した。この時の透過液
量は約0.8リットル/時間であった。ついでこのUF
膜透過液(31)を活性炭繊維を用いた活性炭吸着塔
(32)に送り、活性炭吸着塔において液中の有機物を
除去した。得られたZn,Ni回収液(33)のTOC
濃度が160mg/リットルと高く、メッキ浴としての
再利用は難しい。
No. The SS concentration of the supernatant from the 2SS separation tank was 1%, and this supernatant was incorporated into a tubular module (3 with a polysulfone UF membrane having a molecular weight cut off of 20,000).
0) (membrane area: 0.034 m 2 ), membrane surface velocity: 2 m /
Water was continuously supplied under the conditions of seconds, operating pressure: 2 kgf / cm 2 , and supply amount of liquid: 2 liters / hour. The amount of permeated liquid at this time was about 0.8 liter / hour. Then this UF
The membrane permeated liquid (31) was sent to an activated carbon adsorption tower (32) using activated carbon fibers, and organic matter in the liquid was removed in the activated carbon adsorption tower. TOC of the obtained Zn, Ni recovery liquid (33)
Since the concentration is as high as 160 mg / liter, it is difficult to reuse it as a plating bath.

【0031】[0031]

【発明の効果】本発明によればNi回収液の凝集沈澱処
理において、多量に発生する高Ni含有汚泥から高濃度
のNiを含み、かつ不純物が非常に少ないNi回収液を
得ることができた。この得られたNi回収液をメッキ浴
に再利用することで、生産コストの低減、省エネルギー
及び省資源に対する寄与が大である。
INDUSTRIAL APPLICABILITY According to the present invention, in the coagulation / precipitation treatment of the Ni recovery liquid, it was possible to obtain a Ni recovery liquid containing a high concentration of Ni and containing very few impurities from a large amount of high Ni-containing sludge. . By reusing the obtained Ni recovery liquid in the plating bath, it greatly contributes to reduction of production cost, energy saving and resource saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回収方法で用いる装置の一例を示す工
程図。
FIG. 1 is a process diagram showing an example of an apparatus used in a recovery method of the present invention.

【図2】比較例で用いた装置の工程図。FIG. 2 is a process drawing of an apparatus used in a comparative example.

【符号の説明】[Explanation of symbols]

1:Zn、Ni含有廃液、2:Ca(OH)2 、3:高
分子凝集剤、4:空気酸化槽、5:空気散気管、6:凝
集槽、7:沈殿槽、8:中和槽、9:H2 SO4 、1
0:放流水、11:凝集沈殿汚泥、12:No.1溶解
槽、13:No.1pH調整槽、14:NaOH、1
5:No.1SS分離槽、16:上澄液、17:No.
1脱水ケーキスラリー、18a:No.1フィルタープ
レス、18b:No.2フィルタープレス、19a:N
o.1脱水ケーキ、19b:No.2脱水ケーキ、20
a:No.1脱水ろ液、20b:No.2脱水ろ液、2
1:反応槽、22:混合槽、23:無機脱水助剤、2
4:No.2溶解槽、25:No.2pH調整槽、2
6:No.2SS分離槽、27:UF原水槽、28:N
o.2脱水ケーキスラリー、29:UF濃縮液、30:
UF膜モジュール、31:UF膜透過液、32:活性炭
吸着塔、33:Zn、Ni回収液、34:攪拌機、3
5:凝集沈殿処理水、36:希釈水
1: Waste liquid containing Zn and Ni, 2: Ca (OH) 2 , 3: Polymer coagulant, 4: Air oxidation tank, 5: Air diffuser, 6: Coagulation tank, 7: Settling tank, 8: Neutralization tank , 9: H 2 SO 4 , 1
0: discharged water, 11: coagulated sedimentation sludge, 12: No. 1 melting tank, 13: No. 1 pH adjusting tank, 14: NaOH, 1
5: No. 1SS separation tank, 16: supernatant, 17: No.
1 dehydrated cake slurry, 18a: No. 1 filter press, 18b: No. 2 filter press, 19a: N
o. 1 dehydrated cake, 19b: No. 2 dehydrated cakes, 20
a: No. 1 dehydrated filtrate, 20b: No. 2 dehydrated filtrate, 2
1: reaction tank, 22: mixing tank, 23: inorganic dehydration aid, 2
4: No. 2 dissolution tank, 25: No. 2 pH adjusting tank, 2
6: No. 2SS separation tank, 27: UF raw water tank, 28: N
o. 2 dehydrated cake slurry, 29: UF concentrated liquid, 30:
UF membrane module, 31: UF membrane permeate, 32: activated carbon adsorption tower, 33: Zn, Ni recovery liquid, 34: stirrer, 3
5: coagulation sedimentation treated water, 36: dilution water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北島 一嗣 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 正田 喬一 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Katsuji Kitajima 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor, Keiichi Shoda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni又はZnとNi含有廃液から精製さ
れたそれらの塩の含有液を回収する方法において、次の
(a)〜(f)の工程を順次行うことを特徴とするNi
塩又はZnとNi塩の回収方法。 (a)Ni又はZnとNi含有廃液を凝集分離処理する
第1工程、(b)第1工程で発生する凝集分離汚泥を鉱
酸で溶解する第2工程、(c)第2工程の酸溶解液をア
ルカリ剤でpH3〜5に調整する第3工程、(d)第3
工程で生成するSSを固液分離する第4工程、(e)第
4工程の分離液にアルカリ剤と無機系脱水助剤を添加し
て脱水する第5工程、(f)第5工程の脱水ケーキを鉱
酸で溶解し、アルカリ剤でpH調整後、生成するSSと
無機系脱水助剤を膜分離する第6工程。
1. A method for recovering a solution containing Ni or Zn and a salt thereof purified from a waste solution containing Ni, characterized in that the following steps (a) to (f) are sequentially performed.
Method for recovering salt or Zn and Ni salt. (A) First step of coagulating and separating Ni or Zn and a waste liquid containing Ni, (b) Second step of dissolving coagulating and separating sludge generated in the first step with mineral acid, (c) Acid dissolution of the second step Third step of adjusting the liquid to pH 3 to 5 with an alkaline agent, (d) third
Fourth step of solid-liquid separation of SS produced in the step, (e) fifth step of adding alkaline agent and inorganic dehydration auxiliary agent to the separated solution of the fourth step, and (f) fifth step of dehydration A sixth step in which the cake is dissolved with a mineral acid, the pH is adjusted with an alkaline agent, and then the produced SS and the inorganic dehydration aid are separated by a membrane.
【請求項2】 前記工程(f)の後に、第6工程の膜分
離水を活性炭吸着処理する第7工程を有することを特徴
とする請求項1記載のNi塩又はZnとNi塩の回収方
法。
2. The method for recovering Ni salt or Zn and Ni salt according to claim 1, further comprising a seventh step after the step (f) in which the membrane-separated water in the sixth step is subjected to activated carbon adsorption treatment. .
JP7084605A 1995-03-17 1995-03-17 Method for recovering Ni or Zn and their salts from Ni-containing waste liquid Expired - Lifetime JP3014614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084605A JP3014614B2 (en) 1995-03-17 1995-03-17 Method for recovering Ni or Zn and their salts from Ni-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084605A JP3014614B2 (en) 1995-03-17 1995-03-17 Method for recovering Ni or Zn and their salts from Ni-containing waste liquid

Publications (2)

Publication Number Publication Date
JPH08260161A true JPH08260161A (en) 1996-10-08
JP3014614B2 JP3014614B2 (en) 2000-02-28

Family

ID=13835327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084605A Expired - Lifetime JP3014614B2 (en) 1995-03-17 1995-03-17 Method for recovering Ni or Zn and their salts from Ni-containing waste liquid

Country Status (1)

Country Link
JP (1) JP3014614B2 (en)

Also Published As

Publication number Publication date
JP3014614B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US4332687A (en) Removal of complexed heavy metals from waste effluents
US5266210A (en) Process for removing heavy metals from water
JP2001515406A (en) Sludge treatment method from wastewater treatment
CN103755075A (en) Technical method for treating silicon carbide acidic wastewater
CN110759532A (en) High-salt concentrated water treatment process for producing iron phosphate by sodium method
US9555362B2 (en) Method for separating arsenic and heavy metals in an acidic washing solution
CN112897730B (en) System and method for treating and recycling high-arsenic high-fluorine waste acid
JP5796703B2 (en) Calcium fluoride recovery method and recovery apparatus
US6936177B2 (en) Method for removing metal from wastewater
JP3325689B2 (en) Treatment method for metal-containing wastewater
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP3014614B2 (en) Method for recovering Ni or Zn and their salts from Ni-containing waste liquid
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
CN108996752B (en) Method for recovering low-concentration nickel from nickel extraction waste water
JP3549560B2 (en) Method for recovering valuable metals and calcium fluoride from waste solution of pickling process
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
CN206069459U (en) A kind of recycle device of industrial acidic wastewater
JPS59222292A (en) Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate
JP3420777B2 (en) Aluminum insolubilization method
JP4596897B2 (en) Anaerobic digestion of organic waste
CN113461202B (en) High-phosphorus and high-calcium magnesium recycling treatment method
JPH0797643A (en) Recovering method of ni salt or zn and ni salt from waste solution containing ni or zn and ni
JP4142874B2 (en) Method for recovering metal from neutralized sludge or neutralized slurry
JPH08132066A (en) Treatment of metal-containing waste water