JPH08260038A - Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance - Google Patents

Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance

Info

Publication number
JPH08260038A
JPH08260038A JP6460195A JP6460195A JPH08260038A JP H08260038 A JPH08260038 A JP H08260038A JP 6460195 A JP6460195 A JP 6460195A JP 6460195 A JP6460195 A JP 6460195A JP H08260038 A JPH08260038 A JP H08260038A
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
less
room temperature
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6460195A
Other languages
Japanese (ja)
Inventor
Satoru Kawakami
哲 川上
Akihiko Takahashi
明彦 高橋
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6460195A priority Critical patent/JPH08260038A/en
Publication of JPH08260038A publication Critical patent/JPH08260038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide heat treatment conditions for refining a martensitic stainless steel into low strength. CONSTITUTION: A martensitic stainless steel, having a composition consisting of 0.005-0.05% C, 1.5-6% Ni, 11-16% Cr, 0.5-3% Mo, and the balance essentially Fe with inevitable impurities or further containing 0.2-4% Cu, is used. This steel is hot-worked, naturally air-cooled down to room temp., heated up to a temp. at which the fraction of austenitic phase becomes 3-60% by area ratio in a two-phase temp. region between the Ac1 point and the Ac3 point, and naturally air-cooled down to room temp., and further, if necessary, this steel is heated up to a temp. between (Ac3 +30 deg.C) and (Ac3 +200 deg.C) and cooled down to room temp. prior to the heating treatment in the two-phase region and then tempered at a temp. between Ac1 and (Ac1 -150 deg.C) after the heating treatment in the two-phase region. The resultant martensitic stainless steel whose strength is regulated to a low value has excellent toughness and sulfide stress cracking resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に油井管として用い
られる場合にきわめて重要な特性となる耐CO2 腐食特
性と耐硫化物応力割れ(SSC; Sulfide Stress Crackin
g)性に優れたマルテンサイト系ステンレス鋼の製造法
に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to CO 2 corrosion resistance and sulfide stress crackin resistance (SSC), which are extremely important characteristics especially when used as oil country tubular goods.
g) The present invention relates to a method for producing martensitic stainless steel having excellent properties.

【0002】[0002]

【従来の技術】近年、CO2 を多量に含むガスを生産す
る油井ならびにガス井の開発や2次回収のためのCO2
インジェクションが広く行われるようになっている。こ
のような環境では鋼管の腐食が激しいため、耐CO2
食特性に優れたマルテンサイト系ステンレス鋼管が多く
使用されている。これまでのところ、よく使用されてい
るのはAISI type410,420系の鋼である。
2. Description of the Related Art In recent years, CO 2 for the development and secondary recovery of oil wells and gas wells that produce gas containing large amounts of CO 2.
Injection has become widespread. In such an environment, the corrosion of the steel pipe is severe, so that martensitic stainless steel pipes excellent in CO 2 corrosion resistance are often used. So far, the most commonly used steel is AISI type 410, 420 series steel.

【0003】しかし、近年、油井の深井戸化に伴い、よ
り高温での耐CO2 腐食特性ならびに含H2 S環境下で
割れ抵抗性を有する鋼のニーズが高まっている。このよ
うなユーザーニーズに対し、耐CO2 腐食特性および耐
SSC性を改善したマルテンサイト系ステンレス鋼とし
て、特公平6−43626号公報にはNi,Mo添加鋼
が、また、特開平2−217444号公報にはCuと選
択元素としてNi,Moを添加した鋼などが提案されて
いる。
However, in recent years, with the deepening of wells in oil wells, there is an increasing need for steels having CO 2 corrosion resistance at higher temperatures and crack resistance under H 2 S-containing environment. As a martensitic stainless steel having improved CO 2 corrosion resistance and SSC resistance, Japanese Patent Publication No. 6-43626 discloses Ni- and Mo-added steels and JP-A-2-217444. Japanese Patent Laid-Open Publication proposes a steel containing Cu and Ni, Mo added as selective elements.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな鋼にNiを数%添加するとAc1 点が600℃以下
になるほど非常に低くなるため、焼戻し処理が低い温度
範囲に限定され、調質可能な強度範囲がAPI(米国石
油協会)の規格でP110級(YS(降伏応力)が758 〜86
1MPa))またはそれを超える非常に高い強度に限られると
いう難点を有する。材料強度が高まるほど含H2 S環境
における材料の割れ抵抗性(耐SSC性)は低下するこ
とが、「金属の腐食損傷と防食技術」アグネ社刊(19
83)p197などに記載されている。
However, when a few% of Ni is added to such a steel, the Ac 1 point becomes so low that it becomes 600 ° C. or less, so that the tempering process is limited to a low temperature range and tempering is possible. The strength range is API (American Petroleum Institute) standard, P110 grade (YS (yield stress) is 758-86.
It has the drawback of being limited to very high strengths of 1 MPa)) or more. As the strength of the material increases, the crack resistance (SSC resistance) of the material in an H 2 S-containing environment decreases, see “Corrosion Damage of Metals and Anticorrosion Technology,” published by Agne Inc. (19
83) p197 and the like.

【0005】したがって、これらの鋼において良好な耐
サワー性を得るには、L80級(YS; 551〜655MPa)あ
るいはC95級(YS;655〜758MPa)程度に調質できる製
造条件を見出すことと、添加元素の効果を明らかにする
ことが必要である。
Therefore, in order to obtain good sour resistance in these steels, it is necessary to find manufacturing conditions capable of adjusting to L80 grade (YS; 551 to 655 MPa) or C95 grade (YS; 655 to 758 MPa). It is necessary to clarify the effect of additional elements.

【0006】このような必要性に対し、焼戻し処理の前
に2相域加熱処理を施すと比較的低い強度に調質でき、
これに伴い靭性は改善されることが特開平5−1128
18号公報に開示されている。しかし、耐SSC性にお
よぼす効果については明確にされていない。さらに、そ
の後の詳細な研究の結果、2相域加熱処理を施してもそ
の条件によっては低強度に調質できない場合があるばか
りか、引張試験の応力−歪曲線がきわめて低い弾性限を
示し安定した強度を得ることが困難な場合もあることが
明らかとなっている。
[0006] In response to such a need, if the two-phase region heat treatment is performed before the tempering treatment, the tempering can be performed to a relatively low strength,
As a result, the toughness is improved.
No. 18 publication. However, the effect on SSC resistance has not been clarified. Furthermore, as a result of detailed research after that, not only the heat treatment may not be performed to low strength depending on the condition even if the two-phase heat treatment is applied, the stress-strain curve of the tensile test shows an extremely low elastic limit and is stable. It has become clear that it may be difficult to obtain such strength.

【0007】[0007]

【課題を解決するための手段】本発明者らは多くの研究
により、まず、耐SSC性はMoの添加と材料強度を低
くすることにより、改善されることを知見した。図1に
1%Mo含有鋼(図中、◆,◇)、Mo無添加鋼(●,
○)を用いた場合のSSC感受性におよぼすH2 S分
圧、pHの影響を示す。◇,○は割れが発生しなかった
もの、◆,●は割れが発生したものを示す。1%のMo
の添加によりSSCが発生する限界pHは5から4まで
低下し、耐サワー性の向上が明らかに認められる。ま
た、このようなマルテンサイト系ステンレス鋼におい
て、耐SSC性をさらに向上させるには、前述のように
材料強度を低下させた方が良い。
DISCLOSURE OF THE INVENTION The present inventors have found by many studies that the SSC resistance is first improved by adding Mo and lowering the material strength. 1% Mo-containing steel (◆, ◇ in the figure), Mo-free steel (●,
The influence of H 2 S partial pressure and pH on SSC sensitivity when (○) is used is shown. ◇ and ○ indicate that no cracks occurred, and ◆ and ● indicate that cracks occurred. 1% Mo
Addition of SSC decreases the critical pH at which SSC is generated from 5 to 4, and it is clearly recognized that the sour resistance is improved. Further, in such a martensitic stainless steel, in order to further improve the SSC resistance, it is better to lower the material strength as described above.

【0008】そこで、本発明者らは、焼戻し時に析出し
材料強度を析出強化により高める能力の強いMoあるい
はさらにCuを含有したマルテンサイト系ステンレス鋼
における熱処理特性を詳細に調査した。その結果、Ac
1 点以上Ac3 点以下のフェライト・オーステナイト2
相域に加熱すればYSを低下させることが可能であると
いう知見を得た。
Therefore, the present inventors have investigated in detail the heat treatment characteristics of the martensitic stainless steel containing Mo or Cu which has a strong ability to precipitate during tempering and increase the material strength by precipitation strengthening. As a result, Ac
Ferrite / austenite with 1 or more and Ac 3 or less 2
It was found that YS can be reduced by heating in the phase region.

【0009】2相域温度に加熱すると、焼戻しマルテン
サイト相を主体とする母相中に逆変態オーステナイト相
が混在した組織となる。このとき、母相中においてはC
r,Moなどの炭化物が析出するが、過時効状態となる
ために析出強化による強度の上昇は小さい。また、逆変
態により生成したオーステナイト相中にC,Cu,Ni
などのオーステナイト安定化元素が濃縮し、母相中では
逆にこれらの元素の濃度が低下するために固溶強化能が
低減する。以上の機構により、2相域温度に加熱するこ
とにより、強度を安定して低下させることが可能とな
る。
When heated to the temperature of the two-phase region, a structure in which the reverse-transformed austenite phase is mixed in the matrix mainly composed of the tempered martensite phase is formed. At this time, C in the mother phase
Although carbides such as r and Mo are precipitated, the increase in strength due to precipitation strengthening is small because they are overaged. Further, in the austenite phase generated by the reverse transformation, C, Cu, Ni
The austenite-stabilizing elements such as and the like are concentrated, and the concentration of these elements is decreased in the matrix. With the above mechanism, the strength can be stably reduced by heating to the two-phase region temperature.

【0010】この強度の低下効果はオーステナイト相分
率に依存することを明らかとした。図2に0.03%C
−1.1%Cu−4.7%Ni−12%Cr−1.7%
Mo−0.05%N鋼のYS(0.2%オフセット耐
力)におよぼす熱処理条件ならびに2相域温度における
オーステナイト相分率の関係を示す。本鋼のAc1 変態
点は615℃、Ac3 変態点は820℃である。オース
テナイト相分率が3%未満の場合には、目標とするL8
0(YS;551〜654MPa),C95(YS;654〜758MPa)級の
強度に調質することは困難である。また、オーステナイ
ト相分率が60%を超えると、2相域加熱処理後Ac1
変態点直下で焼戻し処理を施した場合にC95級以下の
強度に調質できないことが明らかである。それ故、最適
な調質条件は2相域温度範囲のうち、オーステナイト相
分率が3〜60%となる温度である。さらに、引張強度
を低く安定させ実質的な強度を低下させるには、2相域
加熱処理の前に焼準処理を施すか、あるいはさらに2相
域加熱処理後に焼戻し処理を施すと良いという知見を得
た。
It has been clarified that this strength lowering effect depends on the austenite phase fraction. 0.03% C in Figure 2
-1.1% Cu-4.7% Ni-12% Cr-1.7%
The heat treatment conditions that affect YS (0.2% offset yield strength) of Mo-0.05% N steel and the relationship between the austenite phase fraction at the two-phase region temperature are shown. This steel has an Ac 1 transformation point of 615 ° C. and an Ac 3 transformation point of 820 ° C. If the austenite phase fraction is less than 3%, the target L8
It is difficult to adjust the strength to 0 (YS; 551 to 654 MPa) and C95 (YS; 654 to 758 MPa). Further, if the austenite phase fraction exceeds 60%, Ac 1 after the two-phase region heat treatment
It is clear that when tempered just below the transformation point, it cannot be tempered to a strength of C95 or lower. Therefore, the optimum tempering condition is the temperature at which the austenite phase fraction is 3 to 60% in the two-phase region temperature range. Furthermore, in order to stabilize the tensile strength at a low level and to reduce the substantial strength, it has been found that it is better to carry out a normalizing treatment before the two-phase region heat treatment or a tempering treatment after the two-phase region heat treatment. Obtained.

【0011】本発明は上記の知見に基づいて構成したも
のであり、その要旨は次の通りである。すなわち重量%
で、C :0.005〜0.05%、 Ni:1.
5〜6%、Cr:11〜16%、 M
o:0.5〜3%あるいはさらにCu:0.2〜4%を
含み、残部は実質的にFeおよび不可避的不純物からな
るマルテンサイト系ステンレス鋼を熱間加工し室温まで
自然放冷した後、フェライト+オーステナイト2相温度
域においてオーステナイト相分率が面積率で3%以上6
0%以下となる温度まで加熱して室温まで冷却し、さら
に必要に応じて、2相域加熱処理前にAc3 +30℃以
上Ac3 +200℃以下の温度まで加熱し室温まで冷却
することと、また、必要により2相域加熱処理後にAc
1 点以下Ac1 −150℃以上で焼戻し処理することを
特徴とする耐CO2 腐食特性ならびに耐硫化物応力割れ
性に優れたマルテンサイト系ステンレス鋼の製造法であ
る。
The present invention is constructed on the basis of the above findings, and its gist is as follows. Ie% by weight
And C: 0.005 to 0.05%, Ni: 1.
5-6%, Cr: 11-16%, M
o: 0.5 to 3% or further Cu: 0.2 to 4%, the balance being substantially Fe and unavoidable impurities after martensitic stainless steel is hot worked and naturally cooled to room temperature. , Ferrite + austenite 2 phase temperature range, austenite phase fraction is 3% or more in area ratio 6
Heating to a temperature of 0% or less and cooling to room temperature, and if necessary, heating to a temperature of Ac 3 + 30 ° C. or more and Ac 3 + 200 ° C. or less and cooling to room temperature before the two-phase region heat treatment, In addition, if necessary, after the two-phase region heat treatment, Ac
A method for producing martensitic stainless steel having excellent CO 2 corrosion resistance and sulfide stress cracking resistance, which is characterized by performing a tempering treatment at 1 point or less and Ac 1 −150 ° C. or more.

【0012】以下に本発明の内容をさらに詳しく説明す
る。まず、本発明におけるマルテンサイト系ステンレス
鋼の成分限定理由を以下に述べる。 C:Cは最も強力なオーステナイト安定化元素であり、
熱間加工時にキズや割れをもたらすδ−フェライト相の
生成を抑える作用がある。そのため、添加することが望
ましいが、0.005%以下の添加では上記効果は小さ
いために、それ以上の添加が必要である。一方、熱処理
時にCrと結びついて炭化物を生成し、耐食性に有効な
固溶Cr量の低下を招くばかりか、析出した炭化物はカ
ソード反応サイトとなり腐食反応を促進するために耐食
性の低下をもたらす。特に、C量が0.05%を超える
と耐食性の低下が著しくなることから添加量の上限とし
た。なお、熱間加工時のオーステナイト相安定性および
より安定な高耐食性を両立するには0.01〜0.03
%の範囲に調整することが望ましい。
The contents of the present invention will be described in more detail below. First, the reasons for limiting the components of the martensitic stainless steel in the present invention will be described below. C: C is the most powerful austenite stabilizing element,
It has the effect of suppressing the formation of the δ-ferrite phase that causes scratches and cracks during hot working. Therefore, it is desirable to add it. However, if the addition amount is 0.005% or less, the above effect is small, and therefore it is necessary to add more than that. On the other hand, not only does the amount of solid solution Cr, which is effective in corrosion resistance, decrease due to the formation of carbides by combining with Cr during heat treatment, and the precipitated carbides become cathode reaction sites, which promotes the corrosion reaction and thus decreases corrosion resistance. In particular, when the C content exceeds 0.05%, the corrosion resistance remarkably decreases, so the upper limit of the addition amount was made. In order to achieve both austenite phase stability during hot working and more stable high corrosion resistance, 0.01 to 0.03 is required.
It is desirable to adjust to the range of%.

【0013】Cr:Crは一般的な耐食性を向上させる
ために必要な元素である。その効果は添加量が11%未
満の少ない含有量の場合には小さいことから、添加量の
下限を11%とした。また、Crは強力なフェライト安
定化元素であり、16%を超える過剰な添加では熱間加
工時にδ相を生成して熱間加工性の低下をもたらす。し
たがって、添加量の範囲を11〜16%の間とした。望
ましくは12〜15%が最適添加範囲である。
Cr: Cr is an element necessary for improving general corrosion resistance. Since the effect is small when the added amount is a small amount less than 11%, the lower limit of the added amount is set to 11%. Further, Cr is a strong ferrite stabilizing element, and if added in excess of 16%, a δ phase is generated during hot working, resulting in deterioration of hot workability. Therefore, the range of the added amount is set to be 11 to 16%. Desirably, 12 to 15% is the optimum addition range.

【0014】Ni:Niはオーステナイト安定化元素で
あり、熱間加工温度域にてδ相の生成を抑える効果を有
する。また、δ相が存在してもその形態を制御し、熱間
加工性に無害となるような作用を示す。その効果は1.
5%以上の添加によりもたらされるため、添加量の最小
値を1.5%とした。しかしながら、多量に添加すると
コストが上昇することと、マルテンサイトの不安定化が
生じるために、その上限を6%とした。望ましくは3〜
5%の添加が最適である。
Ni: Ni is an austenite stabilizing element and has the effect of suppressing the formation of the δ phase in the hot working temperature range. Further, even if the δ phase is present, the morphology is controlled, and the hot workability is harmed. The effect is 1.
Since it is brought about by the addition of 5% or more, the minimum addition amount is set to 1.5%. However, the addition of a large amount increases the cost and destabilizes martensite, so the upper limit was made 6%. Desirably 3 ~
Addition of 5% is optimal.

【0015】Mo:Moは図1を用いて説明したよう
に、H2 Sを含む環境で耐局部腐食特性を向上させ、微
小割れを抑える作用を有し、耐SSC性を改善させる。
その効果は0.5%未満の添加では不十分であることか
ら、添加量の最小値を0.5%とした。一方、強力なフ
ェライト安定化元素であり、3%を超える添加を行うと
熱間加工温度域でδ相を生成させ、熱間加工性の低下を
もたらす。このような知見から添加量の範囲を0.5〜
3%とした。ただし、より安定した耐SSC性を付与す
るには、1%以上の添加が望ましい。
Mo: As described with reference to FIG. 1, Mo has the effect of improving the local corrosion resistance in an environment containing H 2 S, suppressing microcracks, and improving the SSC resistance.
The effect is not sufficient if less than 0.5% is added, so the minimum value of the added amount was set to 0.5%. On the other hand, it is a strong ferrite stabilizing element, and if it is added in excess of 3%, a δ phase is generated in the hot working temperature range, resulting in deterioration of hot workability. From such knowledge, the range of addition amount is 0.5-
It was 3%. However, in order to impart more stable SSC resistance, addition of 1% or more is desirable.

【0016】Cu:CuはCO2 を含む環境での耐食性
を向上させる作用がある。特に、Niとの複合添加によ
り耐食限界温度を200℃程度まで高めることが可能と
なることから、含CO2 環境での耐食性が必要な場合に
は添加することが望ましい。ただし0.2%未満の添加
ではその効果が不十分である。また、過剰に添加すると
熱間加工温度域でオーステナイト粒界に偏析し、粒界強
度を低下させて熱間加工性の劣化をもたらす。特に、こ
の熱間加工性の低下はCu量が4%を超えると著しくな
る。したがって、Cuの添加範囲は0.2〜4%とし
た。望ましくは0.5%以上の添加が最適である。
Cu: Cu has the function of improving the corrosion resistance in an environment containing CO 2 . In particular, since it is possible to raise the corrosion resistance limit temperature to about 200 ° C. by adding Ni in combination, it is desirable to add Ni when corrosion resistance in a CO 2 -containing environment is required. However, if less than 0.2% is added, the effect is insufficient. Further, if added excessively, it segregates at the austenite grain boundaries in the hot working temperature range, lowering the grain boundary strength and degrading the hot workability. In particular, this decrease in hot workability becomes remarkable when the Cu content exceeds 4%. Therefore, the Cu addition range is set to 0.2 to 4%. It is desirable to add 0.5% or more.

【0017】このような化学成分を有する鋼は熱間加工
し室温まで放冷することにより、大部分がマルテンサイ
トより構成される組織を示す。これをAc1 点以上Ac
3 点以下の2相域温度に加熱すると、過飽和のC原子が
Fe,Cr,Moなどと結合して炭化物の形で析出し
た、いわゆる焼戻しマルテンサイト組織と、旧オーステ
ナイト粒界あるいはC,Niなどのオーステナイト安定
化元素が濃化した領域において、C,Niなどのオース
テナイト安定化元素が凝集して生成した逆変態オーステ
ナイトを大部分とする2相共存組織を呈する。このと
き、焼戻しマルテンサイト組織内では析出した炭化物の
凝集、粗大化が生じCが再溶解して、逆変態オーステナ
イト相を新たに生成するか、あるいは近くにあるオース
テナイト相へのCの固相拡散が繰り返し起こる。
Steel having such a chemical composition shows a structure in which most of it is composed of martensite when hot-worked and allowed to cool to room temperature. Ac 1 or more points Ac
When heated to two-phase temperature below 3 points, supersaturated C atoms combine with Fe, Cr, Mo, etc. and precipitate in the form of carbides, so-called tempered martensite structure, and old austenite grain boundaries or C, Ni, etc. In the region in which the austenite stabilizing element is concentrated, a two-phase coexisting structure having a majority of reverse transformed austenite formed by aggregation of austenite stabilizing elements such as C and Ni is exhibited. At this time, in the tempered martensite structure, the precipitated carbides agglomerate and coarsen to re-dissolve C and newly generate a reverse transformation austenite phase, or solid-phase diffusion of C into a nearby austenite phase. Occurs repeatedly.

【0018】こうして、母相である焼戻しマルテンサイ
ト中のC,Ni濃度が低下し、析出強化ならびに固溶体
強化の効果が低下するために全体の強度は低下する。こ
のとき、図2で示したように、オーステナイト相分率が
3%以上60%以下の場合にYSはL80,C95級に
安定することが明らかである。一方、オーステナイト相
分率が3%以下の場合には強度がL80級以下に極端に
低下する。これは、2相域加熱後の空冷によりオーステ
ナイト相が安定化し、マルテンサイト変態せずに一部残
留オーステナイトを含むことに起因すると思われる。ま
た、オーステナイト分率が60%を超える温度に加熱す
ると、オーステナイト相が過剰に存在し、C,Niなど
の濃度差がつきにくくなるためにC,Niなどは十分に
拡散できない。これに伴い、マトリクスの強度低下がほ
とんど起こらず、通常の焼入れ(または、焼準)・焼戻
し処理に比べて、強度が変わらないと考えられる。した
がって、このオーステナイト+フェライト2相域加熱処
理温度はオーステナイト相分率で3%から60%の間に
する必要がある。特に、強度低下効果が大きいのはオー
ステナイト相分率で3%から40%の間であるため、こ
れをもたらす温度範囲に加熱することが望ましい。
In this way, the C and Ni concentrations in the tempered martensite, which is the matrix phase, decrease, and the effects of precipitation strengthening and solid solution strengthening decrease, so the overall strength decreases. At this time, as shown in FIG. 2, when the austenite phase fraction is 3% or more and 60% or less, it is clear that YS is stable in the L80, C95 class. On the other hand, when the austenite phase fraction is 3% or less, the strength extremely decreases to L80 class or less. It is considered that this is because the austenite phase is stabilized by air cooling after heating in the two-phase region and a part of retained austenite is included without undergoing martensite transformation. When heated to a temperature at which the austenite fraction exceeds 60%, C, Ni, etc. cannot be sufficiently diffused because the austenite phase is excessively present and the difference in the C, Ni, etc. concentrations is less likely to occur. Along with this, it is considered that the strength of the matrix is hardly reduced and the strength does not change as compared with the usual quenching (or normalizing) / tempering treatment. Therefore, the heat treatment temperature of the austenite + ferrite two-phase region must be between 3% and 60% in terms of austenite phase fraction. In particular, since the strength-reducing effect is large in the austenite phase fraction between 3% and 40%, it is desirable to heat to a temperature range that brings about this.

【0019】また、さらに優れた耐サワー性および靭性
は、2相域加熱処理前に焼準処理を、あるいはさらに、
2相域加熱処理後に焼戻し処理を施すことにより、安定
的に付与することが可能となることも明らかにした。
Further, the more excellent sour resistance and toughness can be obtained by normalizing before the two-phase region heat treatment, or further,
It was also clarified that it is possible to stably impart the material by performing the tempering treatment after the two-phase region heat treatment.

【0020】まず、焼準処理は2相域加熱処理時のオー
ステナイト粒径を同等のサイズ・形状に調整し、それに
より2相域加熱時の逆変態オーステナイトのサイズ・形
状をほぼ等しく揃える効果に基づき、強度低下効果を安
定的にもたらすことを目的に、必要に応じて行う。しか
し、このときの加熱温度がAc3 +30℃以下の場合に
はオーステナイト相中でCr,Mo炭化物あるいは炭窒
化物などの析出が生じ、その後に2相域加熱処理を施し
ても十分に再溶解せずに析出強化作用をもたらすため
に、十分に強度が低下しない。また、加熱温度がAc3
+200℃以上の場合には、炭化物が完全に固溶するこ
とに伴い、オーステナイト粒が急激に成長し、いわゆる
結晶粒の粗大化が生じる。このように初期オーステナイ
ト粒径が粗大な場合には、2相域加熱時の逆変態オース
テナイトは不均一に生成するために、安定した強度低下
が得られないばかりか、靭性が低下する。このようなこ
とから、焼準処理の加熱温度はAc3 +30℃〜Ac3
+200℃の範囲が好ましい。特に、2相域加熱処理に
よる効果を安定なものとするには、Ac3 +50℃〜A
3 +150℃の範囲に加熱することが望ましい。この
ような温度にてオーステナイト化処理した後は、空冷以
上の速度にて室温まで冷却し、引き続いて2相域加熱処
理を施せば良い。
First, the normalizing treatment has the effect of adjusting the austenite grain size during heat treatment in the two-phase region to an equivalent size and shape, thereby making the size and shape of the reverse-transformed austenite during heating in the two-phase region substantially equal. On the basis of the above, it is performed as necessary for the purpose of stably providing the strength lowering effect. However, when the heating temperature at this time is Ac 3 + 30 ° C. or lower, precipitation of Cr, Mo carbides or carbonitrides occurs in the austenite phase, and even if the two-phase region heat treatment is performed after that, it is sufficiently redissolved. However, the strength is not sufficiently reduced because the precipitation strengthening effect is brought about. Also, the heating temperature is Ac 3
When the temperature is + 200 ° C. or higher, austenite grains rapidly grow due to the complete solid solution of carbides, and so-called coarsening of crystal grains occurs. As described above, when the initial austenite grain size is coarse, the reverse transformation austenite during heating in the two-phase region is nonuniformly generated, so that not only stable strength reduction cannot be obtained but also toughness decreases. Therefore, the heating temperature of the normalizing treatment is Ac 3 + 30 ° C. to Ac 3
The range of + 200 ° C is preferred. In particular, in order to stabilize the effect of heat treatment in the two-phase region, Ac 3 + 50 ° C to A
It is desirable to heat in the range of c 3 + 150 ° C. After the austenitizing treatment is performed at such a temperature, the temperature may be cooled to room temperature at a rate of air cooling or more, and subsequently the two-phase region heat treatment may be performed.

【0021】また、2相域加熱処理の後に必要に応じて
焼戻し処理を施す。この処理は2相域加熱後にマルテン
サイト組織中に残存する固溶Cなどの析出ならびに転位
の回復を起こさせ、強度の安定化・靭性の向上をもたら
すものであり、これにより、降伏強度はやや上昇する
が、引張強度は低下し、さらにより安定な強度・靭性を
得ることが可能となる。ただし、加熱温度がAc1 点−
150℃以下であると、Cr炭化物などが微細に析出し
て析出強化作用をもたらすことから、強度が不必要に上
昇してしまうため、加熱温度の下限とした。また、Ac
1 点を超える加熱処理は2相域加熱処理の繰り返しであ
り意味をなさないことから、焼戻し処理の加熱温度の上
限とした。望ましくは、Ac1 点−100℃からAc1
点の間で加熱した方が強度低下と強度安定化効果は大き
い。
If necessary, a tempering treatment is applied after the two-phase region heat treatment. This treatment causes precipitation of solid solution C and the like remaining in the martensite structure after the heating in the two-phase region and recovery of dislocations, and stabilizes the strength and improves the toughness. Although it increases, the tensile strength decreases and it becomes possible to obtain more stable strength and toughness. However, the heating temperature is Ac 1 point-
When the temperature is 150 ° C. or less, Cr carbide and the like are finely precipitated to bring about a precipitation strengthening action, so that the strength unnecessarily increases, so the lower limit of the heating temperature was set. Also, Ac
Since the heat treatment exceeding 1 point is meaningless because it repeats the two-phase region heat treatment, the upper limit of the heating temperature of the tempering treatment was set. Desirably, Ac 1 point −100 ° C. to Ac 1
Heating between the points has a greater effect on strength reduction and strength stabilization.

【0022】以上のように、Ac1 点が低く焼戻し温度
を高く設定することのできないマルテンサイト系ステン
レス鋼においても、熱間加工後に2相域加熱処理を採用
し、あるいはさらに必要に応じて、熱間加工後2相域加
熱処理前に焼準処理と2相域加熱処理後に焼戻し処理の
いずれか一方もしくは両方を施すことにより、L80級
もしくはC95級への調質を可能とし耐サワー性ならび
に靭性を向上させることが可能となる。
As described above, even in the martensitic stainless steel having a low Ac 1 point and a high tempering temperature that cannot be set, the two-phase heat treatment is adopted after the hot working, or further, if necessary, By performing either one or both of the normalizing treatment after the hot working and before the heat treatment in the two-phase region and the tempering treatment after the heat treatment in the two-phase region, it is possible to perform heat treatment to L80 class or C95 class, sour resistance and It is possible to improve toughness.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明の内容をさらに
詳細に説明する。表1に示す成分の鋼を用い、強度・靭
性、耐CO2 腐食特性、耐SSC特性を調べた。各鋼に
ついて測定した変態点(Ac1 ,Ac3 ,Ms ,Mf
を表1に併記した。
EXAMPLES The contents of the present invention will be described in more detail with reference to the following examples. Using the steels having the components shown in Table 1, the strength / toughness, CO 2 corrosion resistance and SSC resistance were examined. Transformation points (Ac 1 , Ac 3 , M s , M f ) measured for each steel
Is also shown in Table 1.

【0024】各鋼に施した熱処理条件および特性の結果
を表2に示す。YSは0.2%オフセット耐力である。
靭性は2mmVノッチ入り試験片を用い−40℃でシャル
ピー衝撃試験を行ったときの衝撃吸収エネルギーの値
(vE-40 ;J)で評価した。耐CO2 腐食特性は16
0℃の人工海水中に4MPa のCO2 を飽和させた環境で
の腐食速度(C.R.;mm/y)で示した。腐食速度が
0.1mm/y以下であればこの環境で耐食性を有するとい
える。また、耐SSC特性は、10%H2 S+N2の混
合ガスをpH;3.5の5%NaCl溶液中で飽和させ
た環境下で、定荷重引張試験を行ったときのRs値(=
σth/YS)により評価した。σthは720時間で破断
を生じないしきい応力値である。Rsが0.8以上であ
れば耐SSC性を有すると評価できる。
Table 2 shows the results of heat treatment conditions and properties applied to each steel. YS is 0.2% offset proof stress.
The toughness was evaluated by the impact absorption energy value (vE- 40 ; J) when a Charpy impact test was performed at -40 ° C using a test piece with a 2 mm V notch. CO 2 corrosion resistance is 16
The corrosion rate (CR; mm / y) in an environment where 4 MPa of CO 2 was saturated in 0 ° C. artificial seawater was shown. If the corrosion rate is 0.1 mm / y or less, it can be said that it has corrosion resistance in this environment. Further, the SSC resistance is Rs value (= Rs value when a constant load tensile test is performed in an environment in which a mixed gas of 10% H 2 S + N 2 is saturated in a 5% NaCl solution having a pH of 3.5.
It was evaluated by σ th / YS). σ th is a threshold stress value at which breakage does not occur at 720 hours. If Rs is 0.8 or more, it can be evaluated as having SSC resistance.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】本発明鋼はすべて油井管のグレードでL8
0級(YS;551MPa〜655MPa)あるいはC95級(YS;65
5MPa〜758MPa)を有すると同時に靭性、耐CO2 腐食特
性ならびに耐SSC性に優れていることがわかる。一
方、比較鋼はいずれも強度がL80級、C95級からは
ずれているか、上記特性のうちいずれかが発明鋼に比べ
て劣っていることが明らかである。
The steels of the present invention are all L8 grade oil well pipes.
Class 0 (YS; 551 MPa to 655 MPa) or Class C95 (YS; 65
It can be seen that it has excellent toughness, CO 2 corrosion resistance and SSC resistance at the same time as having 5 MPa to 758 MPa. On the other hand, it is clear that each of the comparative steels has a strength deviated from the L80 grade and the C95 grade, or one of the above characteristics is inferior to the invention steel.

【0028】[0028]

【発明の効果】以上説明したように本発明法により、強
度を低く調整されたマルテンサイト系ステンレス鋼は、
良好な靭性、ならびに優れた耐CO2 腐食特性、耐硫化
物応力割れ性を有する。
As described above, the martensitic stainless steel whose strength is adjusted to be low by the method of the present invention is
It has good toughness, excellent CO 2 corrosion resistance, and sulfide stress cracking resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】含硫化流下水素環境下での割れ感受性におよぼ
すMo量の影響を示す図。
FIG. 1 is a diagram showing the effect of the amount of Mo on cracking susceptibility in a hydrogen-containing flow-containing environment.

【図2】強度(YS=0.2%オフセット耐力)におよ
ぼす熱処理条件および2相域加熱時のオーステナイト相
分率を示す図。
FIG. 2 is a diagram showing heat treatment conditions affecting strength (YS = 0.2% offset proof stress) and austenite phase fraction during heating in a two-phase region.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.005〜0.05%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac1 点以上A
3 点以下のフェライト+オーステナイト2相温度域に
おいてオーステナイト相分率が面積率で3%以上60%
以下となる温度まで加熱して室温まで冷却することを特
徴とする耐CO2 腐食特性ならびに耐硫化物応力割れ性
に優れたマルテンサイト系ステンレス鋼の製造法。
1. By weight%, C: 0.005 to 0.05%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5 to 3%, the balance being substantially After martensitic stainless steel consisting of Fe and unavoidable impurities is hot worked and naturally cooled to room temperature, Ac 1 point or more A
c Austenite phase fraction in the area of 2 phases of ferrite + austenite of 3 points or less is 3% to 60% in area ratio
A method for producing martensitic stainless steel excellent in CO 2 corrosion resistance and sulfide stress cracking resistance, characterized by heating to the temperature below and cooling to room temperature.
【請求項2】 重量%で、 C :0.005〜0.05%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac1 点以上A
3 点以下のフェライト+オーステナイト2相温度域に
おいてオーステナイト相分率が面積率で3%以上60%
以下となる温度まで加熱して室温まで冷却し、Ac1
以下Ac1 −150℃以上の温度で焼戻し処理すること
を特徴とする耐CO2 腐食特性ならびに耐硫化物応力割
れ性に優れたマルテンサイト系ステンレス鋼の製造法。
2. By weight%, C: 0.005 to 0.05%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5 to 3%, and the balance substantially. After martensitic stainless steel consisting of Fe and unavoidable impurities is hot worked and naturally cooled to room temperature, Ac 1 point or more A
c Austenite phase fraction in the area of 2 phases of ferrite + austenite of 3 points or less is 3% to 60% in area ratio
And heated to a temperature equal to or less than the cooling to room temperature, excellent resistance to CO 2 corrosion properties as well as sulfide stress cracking resistance, characterized in that the tempering treatment at Ac 1 point below Ac 1 -150 ° C. or more temperature Martensite Site-based stainless steel manufacturing method.
【請求項3】 重量%で、 C :0.005〜0.05%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac3 +30℃
以上Ac3 +200℃以下の温度まで加熱し室温まで冷
却し、続いてAc1 点以上Ac3 点以下のフェライト+
オーステナイト2相温度域においてオーステナイト相分
率が面積率で3%以上60%以下となる温度まで加熱し
て室温まで冷却することを特徴とする耐CO2 腐食特性
ならびに耐硫化物応力割れ性に優れたマルテンサイト系
ステンレス鋼の製造法。
3. By weight%, C: 0.005 to 0.05%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5 to 3%, and the balance substantially. Of martensitic stainless steel consisting of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, then Ac 3 + 30 ° C
Above, it is heated to a temperature of Ac 3 + 200 ° C or less and cooled to room temperature, and then ferrite of Ac 1 point or more and Ac 3 points or less +
Excellent in CO 2 corrosion resistance and sulfide stress cracking resistance characterized by heating to a temperature at which the austenite phase fraction is 3% or more and 60% or less in area ratio in the austenite two-phase temperature range and cooling to room temperature Martensitic stainless steel manufacturing method.
【請求項4】 重量%で、 C :0.005〜0.05%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac3 +30℃
以上Ac3 +200℃以下の温度まで加熱し室温まで冷
却し、続いてAc1 点以上Ac3 点以下のフェライト+
オーステナイト2相温度域においてオーステナイト相分
率が面積率で3%以上60%以下となる温度まで加熱し
て室温まで冷却し、Ac1 点以下Ac1 −150℃以上
の温度で焼戻し処理することを特徴とする耐CO2 腐食
特性ならびに耐硫化物応力割れ性に優れたマルテンサイ
ト系ステンレス鋼の製造法。
4. By weight%, C: 0.005 to 0.05%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5 to 3%, and the balance substantially. Of martensitic stainless steel consisting of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, then Ac 3 + 30 ° C
Above, it is heated to a temperature of Ac 3 + 200 ° C or less and cooled to room temperature, and then ferrite of Ac 1 point or more and Ac 3 points or less +
In the austenite two-phase temperature range, heating to a temperature at which the austenite phase fraction is 3% or more and 60% or less in area ratio, cooling to room temperature, and tempering at a temperature of Ac 1 point or less and Ac 1 -150 ° C or more, A method for producing martensitic stainless steel having excellent CO 2 corrosion resistance and sulfide stress cracking resistance.
【請求項5】 重量%で、 C :0.005〜0.05%、 Cu:0.2〜4%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac1 点以上A
3 点以下のフェライト+オーステナイト2相温度域に
おいてオーステナイト相分率が面積率で3%以上60%
以下となる温度まで加熱して室温まで冷却することを特
徴とする耐CO2 腐食特性ならびに耐硫化物応力割れ性
に優れたマルテンサイト系ステンレス鋼の製造法。
5. By weight%, C: 0.005 to 0.05%, Cu: 0.2 to 4%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5. After martensite stainless steel containing ~ 3% and the balance consisting essentially of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, Ac 1 point or more A
c Austenite phase fraction in the area of 2 phases of ferrite + austenite of 3 points or less is 3% to 60% in area ratio
A method for producing martensitic stainless steel excellent in CO 2 corrosion resistance and sulfide stress cracking resistance, characterized by heating to the temperature below and cooling to room temperature.
【請求項6】 重量%で、 C :0.005〜0.05%、 Cu:0.2〜4%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac1 点以上A
3 点以下のフェライト+オーステナイト2相温度域に
おいてオーステナイト相分率が面積率で3%以上60%
以下となる温度まで加熱して室温まで冷却し、Ac1
以下Ac1 −150℃以上の温度で焼戻し処理すること
を特徴とする耐CO2 腐食特性ならびに耐硫化物応力割
れ性に優れたマルテンサイト系ステンレス鋼の製造法。
6. By weight%, C: 0.005 to 0.05%, Cu: 0.2 to 4%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5. After martensite stainless steel containing ~ 3% and the balance consisting essentially of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, Ac 1 point or more A
c Austenite phase fraction in the area of 2 phases of ferrite + austenite of 3 points or less is 3% to 60% in area ratio
And heated to a temperature equal to or less than the cooling to room temperature, excellent resistance to CO 2 corrosion properties as well as sulfide stress cracking resistance, characterized in that the tempering treatment at Ac 1 point below Ac 1 -150 ° C. or more temperature Martensite Site-based stainless steel manufacturing method.
【請求項7】 重量%で、 C :0.005〜0.05%、 Cu:0.2〜4%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac3 +30℃
以上Ac3 +200℃以下の温度まで加熱し室温まで冷
却し、続いてAc1 点以上Ac3 点以下のフェライト+
オーステナイト2相温度域においてオーステナイト相分
率が面積率で3%以上60%以下となる温度まで加熱し
て室温まで冷却することを特徴とする耐CO2 腐食特性
ならびに耐硫化物応力割れ性に優れたマルテンサイト系
ステンレス鋼の製造法。
7. By weight%, C: 0.005 to 0.05%, Cu: 0.2 to 4%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5. ~ 3%, the balance consisting essentially of Fe and unavoidable impurities martensitic stainless steel is hot worked and allowed to cool naturally to room temperature, then Ac 3 + 30 ° C.
Above, it is heated to a temperature of Ac 3 + 200 ° C or less and cooled to room temperature, and then ferrite of Ac 1 point or more and Ac 3 points or less +
Excellent in CO 2 corrosion resistance and sulfide stress cracking resistance characterized by heating to a temperature at which the austenite phase fraction is 3% or more and 60% or less in area ratio in the austenite two-phase temperature range and cooling to room temperature Martensitic stainless steel manufacturing method.
【請求項8】 重量%で、 C :0.005〜0.05%、 Cu:0.2〜4%、 Ni:1.5〜6%、 Cr:11〜16%、 Mo:0.5〜3%を含み、残部は実質的にFeおよび
不可避的不純物からなるマルテンサイト系ステンレス鋼
を熱間加工し室温まで自然放冷した後、Ac3 +30℃
以上Ac3 +200℃以下の温度まで加熱し室温まで冷
却し、続いてAc1 点以上Ac3 点以下のフェライト+
オーステナイト2相温度域においてオーステナイト相分
率が面積率で3%以上60%以下となる温度まで加熱し
て室温まで冷却し、Ac1 点以下Ac1 −150℃以上
の温度で焼戻し処理することを特徴とする耐CO2 腐食
特性ならびに耐硫化物応力割れ性に優れたマルテンサイ
ト系ステンレス鋼の製造法。
8. In% by weight, C: 0.005 to 0.05%, Cu: 0.2 to 4%, Ni: 1.5 to 6%, Cr: 11 to 16%, Mo: 0.5. ~ 3%, the balance consisting essentially of Fe and unavoidable impurities martensitic stainless steel is hot worked and allowed to cool naturally to room temperature, then Ac 3 + 30 ° C.
Above, it is heated to a temperature of Ac 3 + 200 ° C or less and cooled to room temperature, and then ferrite of Ac 1 point or more and Ac 3 points or less +
In the austenite two-phase temperature range, heating to a temperature at which the austenite phase fraction is 3% or more and 60% or less in area ratio, cooling to room temperature, and tempering at a temperature of Ac 1 point or less and Ac 1 -150 ° C or more, A method for producing martensitic stainless steel having excellent CO 2 corrosion resistance and sulfide stress cracking resistance.
JP6460195A 1995-03-23 1995-03-23 Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance Pending JPH08260038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6460195A JPH08260038A (en) 1995-03-23 1995-03-23 Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6460195A JPH08260038A (en) 1995-03-23 1995-03-23 Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance

Publications (1)

Publication Number Publication Date
JPH08260038A true JPH08260038A (en) 1996-10-08

Family

ID=13262952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6460195A Pending JPH08260038A (en) 1995-03-23 1995-03-23 Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JPH08260038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662244B2 (en) 2001-10-19 2010-02-16 Sumitomo Metal Industries, Ltd. Martensitic stainless steel and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662244B2 (en) 2001-10-19 2010-02-16 Sumitomo Metal Industries, Ltd. Martensitic stainless steel and method for manufacturing same

Similar Documents

Publication Publication Date Title
US8021502B2 (en) Method for producing martensitic stainless steel pipe
WO2017162160A1 (en) Steel for hydrogen sulfide stress corrosion cracking resistant martensitic stainless steel oil casing pipe, and oil casing pipe and production method therefor
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP2001026820A (en) MANUFACTURE OF 95 ksi-GRADE MARTENSITIC STAINLESS STEEL EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08260038A (en) Production of martensitic stainless steel excellent in co2 corrosion resistance and sulfide stress cracking resistance
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP4046165B2 (en) Manufacturing method of martensitic stainless steel with excellent CO2 corrosion resistance and sulfide stress cracking resistance
JPS59182918A (en) Production of two-phase stainless steel oil well pipe having high strength
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP4952708B2 (en) Martensitic stainless steel and method for producing the same
JPH06264189A (en) High strength and high toughness stainless steel excellent in low temperature impact characteristic and its production
JPH08109444A (en) Production of seamless martensitic stainless steel tube for oil well use, excellent in crushing pressure
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH11310823A (en) Manufacture of martensitic stainless steel tube excellent in toughness at low temperature
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224