JPH08260013A - Method for operating electric smelting furnace decreased in electrode consumption - Google Patents

Method for operating electric smelting furnace decreased in electrode consumption

Info

Publication number
JPH08260013A
JPH08260013A JP9145095A JP9145095A JPH08260013A JP H08260013 A JPH08260013 A JP H08260013A JP 9145095 A JP9145095 A JP 9145095A JP 9145095 A JP9145095 A JP 9145095A JP H08260013 A JPH08260013 A JP H08260013A
Authority
JP
Japan
Prior art keywords
voltage
furnace
coke
electrode
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9145095A
Other languages
Japanese (ja)
Other versions
JP3560677B2 (en
Inventor
Kenichi Katayama
賢一 片山
Takashi Yamauchi
隆 山内
Masahiro Harada
晶洋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP9145095A priority Critical patent/JP3560677B2/en
Publication of JPH08260013A publication Critical patent/JPH08260013A/en
Application granted granted Critical
Publication of JP3560677B2 publication Critical patent/JP3560677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To subjecting various kinds of oxide raw materials, such as dust and sludge, to electric furnace refining while maintaining the voltage between an electrode and a furnace bottom in an adequate range. CONSTITUTION: A tap voltage is increased or decreased in such a manner that the voltage (VT) between the electrode and the furnace bottom is kept in the range of 40 to 55V at the time of operating the electric smelting furnace to recover Ni-, Cr-contg. alloys by dissolving and reducing the oxide raw materials composed mainly of steel making dust and waste acid sludge. The supply rate of externally charged coke is so adjusted that the coke consumption unit attains <=350kg/ton. The compounding of CaO and SiO2 contents is so adjusted as to maintain the basicity (BS) of the slag at 2.4 to 3.0. These controls are executed simultaneously in parallel. As a result, the electric furnace operation which maintains the high productivity and electric power efficiency and is decreased in electric power consumption is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物を主体とする原
料を溶解,還元して金属を回収する電気製錬炉におい
て、生産能力を高く維持しながら電極の消耗を低減させ
た操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric smelting furnace for recovering metal by melting and reducing a raw material mainly composed of an oxide, and an operating method in which consumption of electrodes is reduced while maintaining high production capacity. Regarding

【0002】[0002]

【従来の技術】高炉,電気炉,転炉等を使用した製錬所
では、原料前処理工程や製錬炉内への原料供給時,或い
は製錬炉の運転中に金属分を含むダストが多量に発生す
る。また、表面処理ラインを備えた工場では、廃酸,廃
液処理工程や用水再生設備においても多量のスラッジ等
が発生する。発生したダスト,スラッジ等を処理する方
法の一つに、電極埋没式の抵抗加熱型電気炉で原料に使
用し合金を製造する方法が採用されている。この種の電
気炉においては、原料組成の安定が炉況の安定化に重要
な要因となるが、現実的には原料事情や突発的なトラブ
ル等によって操業中に炉況が変動することが避けられな
い。その結果、電極の異常消耗や電力消費の増大を引き
起こすことが問題となる。そこで、たとえば特開昭62
−211342号公報,特公昭63−5671号公報等
では、電極からのレジスタンス,リアクタンス等の電気
抵抗指標に基づき電極長さ又は電極先端位置を推定し、
推定結果に基づいて操業条件を制御している。
2. Description of the Related Art In a smelter using a blast furnace, an electric furnace, a converter or the like, dust containing a metal component is generated during a raw material pretreatment step or during supply of raw material into the smelting furnace or during operation of the smelting furnace. It occurs in large quantities. Further, in a factory equipped with a surface treatment line, a large amount of sludge or the like is generated in a waste acid treatment process, a waste liquid treatment process or a water recycling facility. As one of the methods of treating the generated dust, sludge, etc., a method of manufacturing an alloy by using it as a raw material in a resistance heating type electric furnace with a buried electrode is adopted. In this type of electric furnace, the stability of the raw material composition is an important factor in stabilizing the furnace conditions, but in reality it is possible to avoid fluctuations in the furnace conditions during operation due to raw material circumstances or sudden troubles. I can't. As a result, there is a problem that abnormal consumption of the electrodes and increase in power consumption are caused. Therefore, for example, Japanese Patent Laid-Open No. 62-62
-21342, JP-B-63-5671, etc., the electrode length or the electrode tip position is estimated based on the electrical resistance index such as resistance and reactance from the electrode,
The operating conditions are controlled based on the estimation results.

【0003】[0003]

【発明が解決しようとする課題】操業を安定化して電極
の異常消耗を防止する方法は、厳密な原料管理下におい
ても原料品質の変動や炉況変動によって安定したスラグ
の抵抗加熱ができにくい状況にある。特に特殊鋼や小ロ
ット多品種の鋼種を生産する工場,多種のスクラップを
原料とする製鋼所,或いは多様の表面処理ラインをもつ
工場等では、安定した炉況で操業することが困難であ
る。そのため、電力負荷を上げたり、場合によっては還
元剤を追加投入することにより、炉況を回復している。
しかし、これらアクションによって却って電力効率の低
下や、電極消耗の増大等を引き起こす場合がある。本発
明は、このような問題を解消すべく案出されたものであ
り、電極消耗量と炉内の電気的特性に着目し、電極の消
耗量が増加する状況を操業条件の制御によって回避する
ことにより、安定した炉況で電気炉を操業し、電極の消
耗を低減すると共に生産性の低下を防止することを目的
とする。
The method of stabilizing the operation to prevent abnormal consumption of the electrode is a situation in which stable resistance heating of slag is difficult due to fluctuations in raw material quality and furnace conditions even under strict raw material control. It is in. In particular, it is difficult to operate in a stable furnace condition in a factory that manufactures special steel or a large variety of small-lot steel types, a steel mill that uses various scraps as raw materials, or a factory that has various surface treatment lines. For this reason, the furnace condition is recovered by increasing the electric power load or by additionally adding a reducing agent in some cases.
However, these actions may rather cause a decrease in power efficiency, an increase in electrode wear, and the like. The present invention has been devised to solve such a problem, paying attention to the amount of electrode wear and the electrical characteristics in the furnace, and avoiding the situation where the amount of electrode wear increases by controlling operating conditions. This aims to operate the electric furnace in a stable furnace condition, reduce the consumption of the electrodes, and prevent the productivity from decreasing.

【0004】[0004]

【課題を解決するための手段】本発明の電気製錬炉操業
方法は、その目的を達成するため、製鋼ダスト及び廃酸
スラッジを主とする酸化物原料を溶解,還元してNi,
Cr含有合金を回収する電気製錬炉において、(1)〜
(3)の各制御を同時並行的に実施することを特徴とす
る。 (1)電極−炉底間の電圧(VT )を管理しながら、電
圧(VT )の変化量に基づいて電圧(VT )が40V未
満に低下した場合は現状のタップ電圧を上昇させ、電圧
(VT )が55V以上に上昇した場合は現状のタップ電
圧を低下させる制御 (2)原料配合工程でのブリケット内装コークス量及び
操業中の外装コークス切出し量から算出されたコークス
原単位(CT)に基づいて、コークス原単位が350k
g/トン以下になるように外装コークスの供給量を調整
する制御 (3)所定時間ごとにスラグの化学分析又は電気伝導度
の測定値から推定されるスラグの塩基度(BS )を2.
4〜3.0に維持するようにCaO及びSiO2 含有量
の配合を調整する制御
In order to achieve the object, an electric smelting furnace operating method of the present invention is to dissolve and reduce an oxide raw material mainly containing steelmaking dust and waste acid sludge to obtain Ni,
In an electric smelting furnace for recovering a Cr-containing alloy,
It is characterized in that each control of (3) is executed in parallel at the same time. (1) electrode - while managing the voltage between the furnace bottom (V T), when the voltage the voltage based on the amount of change (V T) (V T) drops below 40V increases the tap voltage of the current , Control to reduce the current tap voltage when the voltage (V T ) rises to 55 V or higher (2) Coke basic unit calculated from the amount of briquette internal coke in the raw material blending process and the amount of external coke cut out during operation ( Based on CT), the coke intensity is 350k
Control for adjusting the amount of exterior coke supplied so as to be g / ton or less (3) The basicity (B S ) of the slag estimated from the chemical analysis of the slag or the measured value of the electrical conductivity every predetermined time is 2.
Control to adjust the composition of CaO and SiO 2 contents so as to maintain 4 to 3.0

【0005】電極−炉底間電圧(VT )が40〜55V
の範囲内で安定した後、電極−炉底間電圧(VT )が5
5Vを超えない範囲でタップ電圧を上昇させることが好
ましい。また、電極−炉底間電圧(VT )を40〜55
Vの範囲内で安定させた後、電力負荷が目標設定値未満
の場合、前チャージのスラグ中(%Cr23 )分析値
から還元状態を判定し、還元良と判定されたときにはコ
ークス切出し量を低減し、還元不良と判定されたときに
は更に前チャージの硫黄分配比(%S)/[%S]の実
績値から脱硫状態を判定し、脱硫良と判定されたときに
は塩基度を低下させ、脱硫不良と判定されたときには現
在の炉況を維持し、コークス切出し量の低減又は塩基度
を低下させた後、タップ電圧を上昇させるとき、電極消
耗を抑制しながら生産性を向上させた電気炉操業が可能
になる。
Electrode-furnace bottom voltage (V T ) is 40 to 55 V
After stabilizing within the range of, the voltage (V T ) between the electrode and the bottom of the furnace is 5
It is preferable to increase the tap voltage within a range not exceeding 5V. The electrode - furnace bottom between the voltage (V T) 40 to 55
After stabilizing within the range of V, if the power load is less than the target set value, the reduction state is judged from the analysis value during the slag of the previous charge (% Cr 2 O 3 ), and when it is judged that the reduction is good, the coke cutout is performed. When the reduction amount is determined to be poor, the desulfurization state is further determined from the actual value of the sulfur distribution ratio (% S) / [% S] of the previous charge, and when it is determined to be good desulfurization, the basicity is lowered. When it is determined that the desulfurization is poor, the current furnace conditions are maintained, and when the tap voltage is increased after the coke cutout amount is reduced or the basicity is decreased, the productivity is improved while suppressing the electrode consumption. Furnace operation becomes possible.

【0006】本発明は、電気製錬炉として高炉型電気
炉,低炉型電気炉等,特にゼーダベルグ式自焼成電極を
備えた電気炉において適した操業方法である。また、電
気製錬炉の原料となる製鋼ダスト及び廃酸スラッジを主
とする酸化物原料には、焼結炉,高炉,電気炉,転炉等
の製錬/精錬炉で発生する酸化鉄を主成分とするダスト
が使用される。更に、工場内での用水再生設備や廃酸,
廃液処理設備で発生するスラッジ類,その他の研磨粉や
研削くず等の酸化鉄等を含む酸化物も、本発明に従った
精錬法の酸化物原料として使用される。なかでも、ステ
ンレス鋼,特殊鋼等のNi,Cr等を含む鋼を生産する
工場で発生する酸化物を主原料とするとき、本発明の効
果が顕著になる。
The present invention is an operating method suitable for a blast furnace type electric furnace, a blast furnace type electric furnace and the like as an electric smelting furnace, and particularly for an electric furnace equipped with a Zedaberg type self-baking electrode. In addition, iron oxides generated in smelting / smelting furnaces such as sintering furnaces, blast furnaces, electric furnaces, converters, etc. are used as oxide raw materials mainly of steelmaking dust and waste acid sludge, which are the raw materials of electric smelting furnaces. Dust as the main component is used. In addition, water recycling equipment and waste acid in the factory,
Sludges generated in the waste liquid treatment facility and other oxides containing iron oxides such as abrasive powder and grinding debris are also used as oxide raw materials in the refining method according to the present invention. In particular, the effect of the present invention becomes remarkable when the main raw material is an oxide generated in a factory that produces steel containing Ni, Cr and the like such as stainless steel and special steel.

【0007】[0007]

【作用】本発明者等は、炉況の回復に及ぼす各種操業条
件の影響を調査した。その結果、電力負荷を上げたり、
場合によっては還元剤を追加投入することによりある程
度の生産性を回復できても、炉内抵抗が最適な範囲から
外れた状態になるとき、電力効率の低下や電極消耗速度
の上昇によって総合的にはマイナス面が大きくなること
を知見した。たとえば、炉内抵抗の低下は、主にスラグ
の電気伝導性が上昇し、導電性物質であるコークスの残
留量が増加することを意味するが、この状態のときに電
力負荷をかけると多量の電流が流れ易くなる。その結
果、電流制御型の電気炉では、電極が浮上する。そのた
め、炉底間電圧が上昇し、電極の消耗量が増加する。こ
のときの炉況は、電極が原料層深くまで没入していない
ため、炉上部への熱損失が大きくなり、結果として電流
効率、ひいては生産性を低下させる。そこで、本発明者
等は、電極−炉底間の電圧(以下、炉底間電圧という)
に直接的に反映する電力負荷,間接的に反映するスラグ
組成,コークス供給量等についてシステマティックに制
御するとき、最適な操業状態が得られることを見い出し
た。電力負荷は、通常タップ電圧で制御することができ
る。
The present inventors investigated the influence of various operating conditions on the recovery of furnace conditions. As a result, increase the power load,
Depending on the case, even if the productivity can be recovered to some extent by adding the reducing agent, when the in-furnace resistance is out of the optimum range, the power efficiency is reduced and the electrode consumption rate is increased, resulting in a comprehensive Found that the negative side becomes large. For example, a decrease in furnace resistance means that the electrical conductivity of slag mainly increases and the residual amount of coke, which is a conductive substance, increases. It becomes easier for current to flow. As a result, the electrodes float in the current-controlled electric furnace. Therefore, the voltage between the bottoms of the furnaces rises, and the consumption of the electrodes increases. In the furnace condition at this time, since the electrode is not deeply immersed in the raw material layer, heat loss to the upper part of the furnace becomes large, and as a result, current efficiency and eventually productivity are lowered. Therefore, the present inventors have found that the voltage between the electrode and the bottom of the furnace (hereinafter referred to as the bottom-bottom voltage).
It was found that an optimal operating condition can be obtained when systematically controlling the power load that directly reflects on slag, the slag composition that reflects indirectly, and the coke supply amount. The power load can usually be controlled by the tap voltage.

【0008】以下、電力負荷,コークス原単位,スラグ
組成等が操業条件に及ぼす影響を、図1〜3のフローシ
ートを参照しながら説明する。電極消耗量を低減させる
第1の条件は、炉底間電圧である。炉底間電圧は、直接
的に電力負荷に影響される。すなわち、電力負荷は、タ
ップ電圧を切り替えることにより調整でき、そのときの
スラグ組成やコークス添加量によって炉底間電圧が決ま
ってくる。炉底間電圧は、図4に示すように電極消耗量
や生産性指数に影響している。すなわち、炉底間電圧を
55V以下に抑えるとき、電極消耗量が著しく減少す
る。他方、生産性指数は、タップ時間当りの溶解度の最
大溶解速度に対する比率で示すとき、図4にみられるよ
うに40Vに達しない炉底間電圧では著しく低下する。
すなわち、タップ電圧を下げて電流負荷が低下した状態
になると、その炉の溶解能力から考えて生産性が低い状
態になるので好ましくない。そこで、本発明において
は、図1のフローに示すように、炉底間電圧が40V未
満にある場合にはタップ電圧を上昇させて電力負荷を増
大し、逆に炉底間電圧が55Vを超える場合にはタップ
電圧を下降させて電極消耗を低減する。
Hereinafter, the influence of the electric power load, the coke basic unit, the slag composition and the like on the operating conditions will be described with reference to the flow sheets of FIGS. The first condition for reducing the amount of electrode consumption is the furnace bottom voltage. The bottom-bottom voltage is directly affected by the power load. That is, the power load can be adjusted by switching the tap voltage, and the inter-furnace voltage is determined by the slag composition and the amount of coke added at that time. The bottom-bottom voltage affects the electrode consumption and the productivity index as shown in FIG. That is, when the voltage between the bottoms of the furnaces is suppressed to 55 V or less, the amount of electrode consumption is significantly reduced. On the other hand, the productivity index, when expressed as the ratio of the solubility per tap time to the maximum dissolution rate, drops significantly at a bottom-bottom voltage that does not reach 40 V as seen in FIG.
That is, if the tap voltage is lowered and the current load is lowered, the productivity is low considering the melting capacity of the furnace, which is not preferable. Therefore, in the present invention, as shown in the flow chart of FIG. 1, when the inter-furnace voltage is less than 40 V, the tap voltage is increased to increase the power load, and conversely, the inter-furnace voltage exceeds 55 V. In some cases, the tap voltage is lowered to reduce electrode consumption.

【0009】本発明では、自焼成電極が好適に使用され
る。たとえば、ゼーダベルグ式の自焼成電極は、図5に
示すように水冷シリンダー1を備えた電極ケース2に電
極原料3を装入しながら製錬する。電極ケース2内に装
入された電極原料3は、加熱によりペースト状4にな
り、ホルダー5内で焼成される。電極原料は、この焼成
過程を経て、焼成過程中のペースト6から十分に緻密な
組織になる。この緻密な組織となる箇所は、焼成点7と
呼ばれている。原料の焼成がホルダー5内で完了しない
とき、すなわち焼成点7がホルダー5内にないとき、ホ
ルダー5から出た焼成部8は、十分に緻密化しておら
ず、空気中の酸素と反応して粗大で脆い組織になる。こ
のような組織をもつ焼成部8からなる電極は、耐消耗性
が非常に劣り、赤熱部9となってスラグ10やメタル1
1に接したとき急速に消耗される。
In the present invention, a self-baking electrode is preferably used. For example, a Zedaberg type self-baking electrode is smelted while charging an electrode raw material 3 into an electrode case 2 equipped with a water-cooled cylinder 1 as shown in FIG. The electrode raw material 3 charged in the electrode case 2 becomes a paste 4 by heating and is baked in the holder 5. After the firing process, the electrode raw material becomes a sufficiently dense structure from the paste 6 during the firing process. The portion having this dense structure is called a firing point 7. When the firing of the raw material is not completed in the holder 5, that is, when the firing point 7 is not in the holder 5, the firing portion 8 coming out of the holder 5 is not sufficiently densified and reacts with oxygen in the air. The structure becomes coarse and brittle. The electrode composed of the firing part 8 having such a structure is extremely inferior in wear resistance, and becomes the red heating part 9 to form the slag 10 and the metal 1.
When it contacts 1, it is quickly consumed.

【0010】この自焼成電極を使用した電気製錬炉で、
炉底間電圧が高くなると電極ケース2を含む全体が上昇
するように制御される。そのため、電極没入深さが浅く
なったとき、結果的にホルダー5内の温度が低下し、十
分に緻密化されない組織をもつ原料がメタル11に送り
出されることになる。このような状態は、炉底間電圧が
55Vを超えるとき出現し、電極消耗量を急激に上昇さ
せる。炉内抵抗は、後述するようにスラグ組成の影響も
受けるが、コークス添加量によって左右される。スラグ
層に懸濁したコークスベッドには、最適なコークスベッ
ド生成状況が存在すると考えられる。本発明では、その
指標としてコークス原単位を最適化することにより、電
極の没入深さを最適なレベルに安定させ、炉底間電圧を
低く安定化することが可能である。
In an electric smelting furnace using this self-baking electrode,
When the voltage between the furnace bottoms becomes high, the whole including the electrode case 2 is controlled so as to rise. Therefore, when the electrode immersion depth becomes shallow, as a result, the temperature inside the holder 5 decreases, and a raw material having a structure that is not sufficiently densified is sent to the metal 11. Such a state appears when the voltage between the bottoms of the furnaces exceeds 55 V, and the amount of electrode consumption is sharply increased. The in-furnace resistance is influenced by the slag composition as described later, but depends on the coke addition amount. It is considered that the coke bed suspended in the slag layer has the optimum coke bed generation condition. In the present invention, by optimizing the coke intensity as the index, it is possible to stabilize the immersion depth of the electrode at an optimum level and to stabilize the inter-bottom voltage.

【0011】コークス原単位は、350kg/トン−メ
タル以下となるように設定する。コークス原単位が35
0kg/トン−メタルを超えると、図6に示すように炉
内抵抗の低下により電極の浮上が著しくなり、炉底間距
離が大きくなる。その結果、炉底間電圧が上昇し、電極
消耗量が増加する。また、二次的な現象として、スラグ
中SiO2 の還元が活発になり、スラグの組成変化、す
なわち塩基度の上昇によって電極消耗量が増加する。そ
こで、図2のフローに示すように、内装コークス及び外
装コークスの供給量を管理することにより、常に350
kg/トン−メタル以下のコークス原単位が維持する。
このとき、コークス原単位の下限値は、そのときに使用
される原料に含まれている酸化物の量、すなわち還元に
必要な炭素量によって決定される。コークス原単位が3
50kg/トン−メタルを超える場合には、外装コーク
スの切出し量を低減する。コークス原単位が350kg
/トン−メタル以下の場合には、一定時間経過後に少な
くとも外装コークスの供給ピッチ間隔で制御する。
The basic unit of coke is set to 350 kg / ton-metal or less. Coke basic unit is 35
When it exceeds 0 kg / ton-metal, the electrode resistance is remarkably increased due to the decrease in the furnace resistance as shown in FIG. 6, and the distance between the furnace bottoms becomes large. As a result, the voltage across the furnace bottom rises, and the amount of electrode wear increases. Further, as a secondary phenomenon, the reduction of SiO 2 in the slag becomes active, and the electrode consumption increases due to the composition change of the slag, that is, the increase in basicity. Therefore, as shown in the flow chart of FIG. 2, by controlling the supply amount of the internal coke and the external coke,
Coke intensity below kg / ton-metal is maintained.
At this time, the lower limit value of the basic unit of coke is determined by the amount of oxide contained in the raw material used at that time, that is, the amount of carbon required for reduction. 3 units of coke
When the amount exceeds 50 kg / ton-metal, the cut-out amount of the exterior coke is reduced. Coke basic unit is 350 kg
In the case of / ton-metal or less, control is performed at least at the supply pitch interval of the exterior coke after a certain time has elapsed.

【0012】スラグの電気伝導度を一定レベルに低く安
定させるとき、抵抗加熱効率が向上し、より少ない電力
での溶解が可能になり、結果として電極消耗が低減す
る。更に、操業中の電極が浮上し難くなり、炉底間距離
が増大しないので、炉底間電圧を低い状態に保つことが
可能になる。電気伝導度を低くするためには、スラグの
塩基度[(CaO+MgO)/SiO2 ]は低い方が好
ましく、[(CaO+MgO)/SiO2 ]=2.4〜
3.0が最適範囲である。スラグの塩基度は、図7に示
すように、電力負荷と炉底間距離との関係に影響を及ぼ
す。ある電力負荷範囲で塩基度が上昇すると、炉底間距
離が増大する傾向を示す。目標の炉底間電圧40〜55
Vを確保するためには、コークス条件にもよるが、炉底
から原料上面までの距離、すなわち炉の深さをHとする
とき、図6から操業中の平均値として炉底間距離を0.
4〜0.6Hにすることが必要である。また、この範囲
の炉底間距離とするためには、生産性を考慮したとき、
電力負荷75〜90%の条件下で塩基度を2.5〜3.
0の範囲に設定すればよいことが図7から判る。
When the electrical conductivity of the slag is stabilized at a low level, the resistance heating efficiency is improved, melting with less electric power is possible, and as a result, electrode consumption is reduced. Further, the electrode during operation becomes difficult to float, and the distance between the bottoms of the furnaces does not increase, so that the voltage between the bottoms of the furnaces can be kept low. In order to reduce the electric conductivity, it is preferable that the slag has a low basicity [(CaO + MgO) / SiO 2 ], and [(CaO + MgO) / SiO 2 ] = 2.4 to
3.0 is the optimum range. As shown in FIG. 7, the basicity of the slag affects the relationship between the electric power load and the distance between the bottoms of the furnaces. When the basicity increases within a certain power load range, the distance between the bottoms of the furnaces tends to increase. Target furnace bottom voltage 40-55
In order to secure V, depending on the coke conditions, when the distance from the bottom of the furnace to the upper surface of the raw material, that is, the depth of the furnace is H, the distance between the bottoms of the furnace is 0 as an average value during operation from FIG. .
It is necessary to set it to 4 to 0.6H. Also, in order to make the distance between the bottoms of this range, considering productivity,
The basicity is set to 2.5 to 3. under an electric power load of 75 to 90%.
It can be seen from FIG. 7 that the range should be set to 0.

【0013】塩基度が2.5未満では、電極は低い位置
を推移できる反面、スラグの抵抗値そのものが高いた
め、炉底間電圧をさほど低くすることができず、操業中
に吹上げ等が増加し、溶解歩留りが低下する傾向が強く
なる。他方、3.0を超える塩基度では、電気伝導度が
高すぎることにより炉底間距離が増大し、電極消耗量が
増加する。このとき、消耗量を減少しようとすると、電
力負荷を著しく低下しなければならない状態になる。し
かし、原料事情によっては、理想的なスラブ成分を常に
維持することができない場合が多い。そのため、スラグ
の塩基度をきめ細かく調整することが重要である。そこ
で、図3のフローに示すように、塩基度[(CaO+M
gO)/SiO2 ]が2.4未満であると、CaO成分
を増加させ、或いはSiO2 成分を減少させる。他方、
塩基度[(CaO+MgO)/SiO2 ]が3.0を超
える場合には、SiO2 成分を増加させ、或いはCaO
成分を減少させる。これにより、塩基度[(CaO+M
gO)/SiO2 ]が2.4〜3.0の範囲に維持され
るように、スラグ組成が調整される。このとき、調整材
としてCaO,SiO2含有原料を、場合によってはこ
れら成分のフラックスを供給する。ここでも、同様に一
定時間経過した後、この制御を行う。
When the basicity is less than 2.5, the electrode can move to a low position, but the resistance value of the slag itself is so high that the voltage between the bottoms of the furnace cannot be lowered so much that blowing up or the like occurs during operation. There is a strong tendency that the yield increases and the melting yield decreases. On the other hand, if the basicity exceeds 3.0, the electric conductivity is too high, so that the distance between the bottoms of the furnaces increases and the amount of electrode consumption increases. At this time, in order to reduce the amount of consumption, the power load must be significantly reduced. However, depending on the raw material circumstances, it is often the case that the ideal slab component cannot always be maintained. Therefore, it is important to finely adjust the basicity of the slag. Therefore, as shown in the flow chart of FIG. 3, the basicity [(CaO + M
When gO) / SiO 2 ] is less than 2.4, CaO content is increased or SiO 2 content is decreased. On the other hand,
When the basicity [(CaO + MgO) / SiO 2 ] exceeds 3.0, the SiO 2 component is increased or CaO is increased.
Reduce the ingredients. As a result, the basicity [(CaO + M
The slag composition is adjusted so that gO) / SiO 2 ] is maintained in the range of 2.4 to 3.0. At this time, a CaO, SiO 2 containing raw material is supplied as the adjusting material, and a flux of these components is supplied in some cases. In this case as well, this control is similarly performed after a certain time has elapsed.

【0014】操業中のスラグ塩基度は、スラグサンプル
の化学分析によって管理することができる。また、本発
明者等が先に出願した比電導度の測定によってスラグ組
成を推定する方法を採用するとき、迅速な対応が可能に
なる。すなわち、塩基度[(CaO+MgO)/SiO
2 ]の上昇は電気伝導度の上昇に反映され、逆に塩基度
[(CaO+MgO)/SiO2 ]の低下はスラグの電
気伝導度の低下に反映される。その結果に基づき、調整
用の原料供給を決定する。ここで、生産性を最大限とす
るために、本発明では、図1のフローに示すように、炉
底間電圧(VT )を40〜55Vの範囲内に安定させ、
一定時間経過後に炉底間電圧(VT )が55Vを超えな
い範囲でタップ電圧を上昇させることは好ましい。すな
わち、炉底間電圧を40〜55Vの範囲内に安定させた
場合でも、原料配合組成が目標と違って変動しているの
で、40〜55Vの範囲内でも炉底間電圧が上限までく
るように、常にタップ電圧を引き上げておくことは生産
性を向上させる上で有効である。
The slag basicity during operation can be controlled by chemical analysis of slag samples. In addition, when the method of estimating the slag composition by measuring the specific electric conductivity, which the present inventors previously applied for, is adopted, it is possible to quickly respond. That is, basicity [(CaO + MgO) / SiO
2 ] is reflected in an increase in electric conductivity, and conversely, a decrease in basicity [(CaO + MgO) / SiO 2 ] is reflected in a decrease in electric conductivity of slag. Based on the result, the raw material supply for adjustment is determined. Here, in order to maximize the productivity, in the present invention, as shown in the flow chart of FIG. 1, the inter-furnace voltage (V T ) is stabilized within the range of 40 to 55 V,
It is preferable to increase the tap voltage within a range in which the inter-furnace voltage (V T ) does not exceed 55 V after a certain time has elapsed. That is, even when the voltage between the bottoms of the furnaces is stabilized within the range of 40 to 55V, the composition of the raw materials is different from the target, so that the voltage between the bottoms of the furnaces reaches the upper limit even within the range of 40 to 55V. Moreover, it is effective to constantly increase the tap voltage in order to improve productivity.

【0015】更に、炉底間電圧(VT )を40〜55V
の範囲内に安定させた際、電力負荷が目標設定値を下回
る場合、前チャージの還元状況がスラグ中(%Cr2
3 )分析値から還元不良と判定されなければコークスの
切出し量を低減する。逆に還元不良と判定されるとき、
更に前チャージの脱硫状況を硫黄分配比((%S)/
[%S])の実績値で判定する。そして、脱硫不良と判
定されないとき、塩基度を低下させる。脱硫不良と判定
されるとき、現在の操業条件を維持する。たとえば、そ
のときの工場の生産状況から必要とされる生産性、すな
わち電力負荷で判断して130V以上のタップ電圧が必
要であると仮定する。ここで、実際のタップ電圧が13
0V未満の場合には、前チャージ中のスラグ中(%Cr
23 )が2.0%未満であれば、還元良好と判断して
コークス供給量を低減する。更に、前チャージの硫黄分
配比((%S)/[%S])が30以上であれば、脱硫
良好と判断してスラグの塩基度を低下させる。
Further, the furnace bottom voltage (V T ) is 40 to 55 V.
When the power load is below the target set value when stabilized within the range of, the reduction status of the previous charge is slagging (% Cr 2 O
3 ) Decrease the amount of coke cut out if it is not judged to be poor reduction from the analysis value. On the contrary, when it is determined that the return is defective,
In addition, the desulfurization status of the pre-charge was determined by the sulfur distribution ratio
[% S]) is used for the determination. Then, when it is not determined that the desulfurization is defective, the basicity is reduced. When it is judged that the desulfurization is poor, the current operating conditions are maintained. For example, it is assumed that the productivity required from the factory production situation at that time, that is, a tap voltage of 130 V or higher is required as judged by the power load. Here, the actual tap voltage is 13
If it is less than 0V, the slag (% Cr
If 2 O 3 ) is less than 2.0%, it is determined that the reduction is good, and the coke supply amount is reduced. Further, if the sulfur distribution ratio ((% S) / [% S]) of the precharge is 30 or more, it is determined that the desulfurization is good, and the basicity of the slag is reduced.

【0016】これにより、目標とする還元や脱硫の精錬
反応を維持しながら、タップ電圧を常に上方修正する炉
内抵抗を保つことができる。したがって、あるレベル以
上の精錬能と最大限の生産性を維持した状態で、電極の
消耗量を低減することが可能になる。コークスは、内装
及び外装の両法で供給される。外装法としては、通常の
操業で原料を供給するように、装入原料のレベル低下に
応じて追装する。コークスは、粉状,粒状,塊状等の様
々な形態で装入することが可能であるが、使用する電気
炉の特性や主原料及び副原料の粒度に応じて最適な形態
で装入される。内装法としては、最適な量及び粒度のコ
ークスをバインダーと共に酸化物原料に配合して混練
後、ブリケットやペレット等に製団し、必要に応じて乾
燥,焼結等の熱処理が施されたものを使用する。或い
は、製団後に数日間の養生期間をおき、ある程度の強度
を確保したものが装入原料とされる。
As a result, it is possible to maintain the in-furnace resistance that constantly corrects the tap voltage upward while maintaining the target reduction and desulfurization refining reactions. Therefore, it is possible to reduce the amount of electrode wear while maintaining the refining ability above a certain level and the maximum productivity. Coke is supplied both internally and externally. As the exterior method, the raw material is supplied in a normal operation, and the raw material is added according to the decrease in the level of the charged raw material. Coke can be charged in various forms such as powder, granules, and lumps, but it is charged in the optimum form according to the characteristics of the electric furnace used and the particle sizes of the main and auxiliary raw materials. . As an interior method, a coke having an optimum amount and particle size is mixed with a binder in an oxide raw material, kneaded, and then formed into briquettes, pellets, etc., and subjected to heat treatment such as drying and sintering as necessary. To use. Alternatively, a material having a certain degree of strength after a curing period of several days is used as a charging raw material.

【0017】[0017]

【実施例】【Example】

実施例1(チャージNo.100) 各種ステンレス鋼を生産する製鋼工場で発生した電気炉
ダスト,湿式回収した転炉ダスト,スケール等を、フィ
ルタプレスで脱水し、内燃式キルンで乾燥処理した。ま
た、ステンレス鋼帯の焼鈍酸洗により生じたスケール及
び廃酸処理工程で沈澱凝集によって回収した水酸化物類
を同様に脱水、乾燥処理した。これらの酸化物原料を、
コークス及びバインダーと混合し、ブリケットに混練・
製団した。ブリケットを数日間養生した後、ゼーダベル
グ式のサブマージド電気炉に供給した。操業中のタップ
電圧及び炉底間電圧の変化を図8に示すように、10分
おきのその時点の炉底間電圧から判断し、必要であれば
電圧を切り替え、炉底間電圧を目標の40〜55V範囲
内になるように制御した。一方、20分おきにスラグを
サンプリングし、分析した。分析結果に基づき塩基度
((%CaO+MgO)/SiO2 )が2.4〜3.0
の範囲になるように、CaO及びSiO2 含有原料を用
いて調整した。また、コークス供給量を、外装供給量で
コークス原単位が350kg/トン−メタルとなるよう
に調整した。このときの調整状況を、図8に示す。図8
にみられるように、炉況は比較的安定しており、最終的
に出銑までのこのチャージで消費した電極の量は、電力
当り7.1kg/MWHであった。
Example 1 (Charge No. 100) Electric furnace dust generated in a steelmaking plant producing various stainless steels, wet-collected converter dust, scales and the like were dehydrated by a filter press and dried by an internal combustion kiln. Further, the scale generated by annealing pickling of the stainless steel strip and the hydroxides recovered by precipitation aggregation in the waste acid treatment step were similarly dehydrated and dried. These oxide raw materials are
Mix with coke and binder and knead into briquettes
It was formed. The briquettes were cured for several days and then fed into a Zedaberg submerged electric furnace. As shown in Fig. 8, changes in tap voltage and hearth voltage during operation are judged from the hearth voltage at that time every 10 minutes, and if necessary, the voltage is switched, and the hearth voltage is set as a target. It was controlled so as to be in the range of 40 to 55V. On the other hand, the slag was sampled and analyzed every 20 minutes. Basicity based on the analysis result ((% CaO + MgO) / SiO 2) is 2.4 to 3.0
As the range of was adjusted with CaO and SiO 2 containing feedstock. Further, the coke supply amount was adjusted so that the coke consumption rate was 350 kg / ton-metal with the external supply amount. The adjustment situation at this time is shown in FIG. FIG.
As can be seen from Fig. 3, the furnace condition was relatively stable, and the amount of electrode consumed by this charge until the final tapping was 7.1 kg / MWH per electric power.

【0018】実施例2(チャージNo.101) 実施例1と同じ原料を使用し、同様の操業を行った。こ
の場合、10分おきにその時点の炉底間電圧から判断
し、必要であればタップ電圧を切り替え、炉底間電圧を
目標の40〜55Vの範囲内になるように制御した。一
方、20分おきにスラグをサンプリングし、分析した。
分析結果に基づき塩基度((%CaO+MgO)/Si
2 )が2.4〜3.0の範囲になるように、CaO及
びSiO2含有原料を用いて調整した。また、コークス
供給量を、外装供給量でコークス原単位が350kg/
トン−メタルとなるように調整した。そして、炉底間電
圧(VT )を40〜55Vの範囲内に安定させた上、一
定時間が経過した後で、炉底間電圧VT が55Vを超え
ない範囲でタップ電圧を上昇させた。このときの調整状
況を、図9に示す。この場合、通電開始後140分及び
220分目にタップ電圧を変更した。140分目にタッ
プ電圧を10V上昇させても、炉底間電圧(VT )が5
5Vを超えることはなかった。しかし、220分目では
タップ電圧の10V上昇により炉底間電圧(VT )が5
5Vを超えることが予想されたので、タップ電圧を5V
だけ上昇させた。その結果、通電開始から終了までの炉
底間電圧は、電極の上昇に伴って47Vから55Vに推
移した。最終的に出銑までのこのチャージで消費した電
極の量は、電力当り7.2kg/MWHであり、実施例
1に比較して0.1kg/MWH多いだけであった。他
方、出銑量は、実施例1に比較して0.2トン多かっ
た。
Example 2 (Charge No. 101) The same raw materials as in Example 1 were used and the same operation was performed. In this case, it was judged from the inter-furnace voltage at that time every 10 minutes, the tap voltage was switched if necessary, and the inter-furnace voltage was controlled to fall within the target range of 40 to 55V. On the other hand, the slag was sampled and analyzed every 20 minutes.
Basicity ((% CaO + MgO) / Si based on analysis results
O 2) is to be in the range of 2.4 to 3.0, was adjusted using CaO and SiO 2 containing feedstock. In addition, the coke supply rate is 350 kg /
Adjusted to become ton-metal. Then, after stabilizing the inter-furnace voltage (V T ) within the range of 40 to 55 V, the tap voltage was increased within a range where the inter-furnace voltage V T did not exceed 55 V after a lapse of a certain time. . The adjustment status at this time is shown in FIG. In this case, the tap voltage was changed 140 minutes and 220 minutes after the start of energization. Even if the tap voltage is increased by 10 V at 140 minutes, the inter-furnace voltage (V T ) is 5
It never exceeded 5V. However, at the 220th minute, the voltage between the bottoms (V T ) was 5 due to the tap voltage rising by 10V.
It was expected to exceed 5V, so tap voltage should be 5V
Only raised. As a result, the inter-furnace voltage from the start to the end of energization changed from 47V to 55V as the electrode was raised. The amount of electrode consumed by this charge until the final tapping was 7.2 kg / MWH per electric power, which was only 0.1 kg / MWH higher than that in Example 1. On the other hand, the amount of tapped metal was 0.2 tons higher than that in Example 1.

【0019】実施例3(チャージNo.102〜104) 実施例1と同じ原料を使用して同様の操業を行った。こ
の場合、炉底間電圧(VT )を40〜55Vの範囲内で
安定させ、一定時間が経過した後、炉底間電圧が55V
を超えない範囲でタップ電圧を上昇させた。ここでは、
電流値制御でタップ電圧130Vで電力負荷の目標設定
値を設定した。炉底間電圧(VT )を安定させた際、電
力負荷が目標設定値を下回る場合、前チャージ(10
1)の還元状況がスラグ中(%Cr23 )の分析値
2.0%から良好と判断されたので、コークス切出し量
を低減した。更に、硫黄分配比((%S)/[%S])
の実績値が45であり、前チャージの脱硫状況が不良と
判定されなかったので、スラグの塩基度を低下させ、更
に炉底間電圧が55Vを超えない範囲でタップ電圧を上
昇させた。
Example 3 (charge Nos. 102 to 104) The same raw materials as in Example 1 were used and the same operation was performed. In this case, the inter-furnace voltage (V T ) is stabilized within the range of 40 to 55 V, and after a certain time has elapsed, the inter-furnace voltage is 55 V.
The tap voltage was raised within the range not exceeding. here,
The target setting value of the power load was set at the tap voltage of 130 V by the current value control. When the voltage between the bottoms (V T ) is stabilized and the power load is below the target set value, the pre-charge (10
Since the reduction status of 1) was judged to be good from the analysis value of 2.0% in the slag (% Cr 2 O 3 ), the amount of coke cut out was reduced. Furthermore, sulfur distribution ratio ((% S) / [% S])
Since the actual value of No. was 45 and the desulfurization status of the precharge was not determined to be poor, the basicity of the slag was lowered, and the tap voltage was increased within a range where the inter-furnace voltage did not exceed 55V.

【0020】このときの操業状況は、図10に示すよう
に、150分目及び250分目にコークスを低減すると
共にSiO2 供給後にタップ電圧を変更した。炉底間電
圧は、このチャージ間で40Vから55Vへ推移した。
また、最終的に消費した電極の量は、電力当り7.0k
g/MWHであった。次のチャージ(103)では、炉
底間電圧(VT )を40〜55Vの範囲内で変化させた
際、同様に電力負荷がタップ電圧130Vの目標設定値
を下回る場合、前チャージ(102)の還元状況がスラ
グ中(%Cr23 )の分析値2.5%以上から不良と
判断された。そこで、コークス切出し量を低減せず、更
に前チャージ(102)の脱硫状況を硫黄分配比((%
S)/[%S])から判定した。そして、硫黄分配比
((%S)/[%S])の実績値が40であったことか
ら、脱硫不良と判断されなかったので、スラグの塩基度
を低下させ、更に炉底間電圧が55Vを超えない範囲で
タップ電圧を上昇させた。このときの操業状況を図11
に示すように、150分目及び260分目にSiO2
給後にタップ電圧を変更した。炉底間電圧は、このチャ
ージ間で45Vから55Vへ推移した。また、最終的に
消費した電極の量は、電力当り7.1kg/MWHであ
った。
As for the operating condition at this time, as shown in FIG. 10, the coke was reduced at 150 minutes and 250 minutes, and the tap voltage was changed after the supply of SiO 2 . The voltage across the furnace bottom changed from 40V to 55V during this charge.
Moreover, the amount of the electrode finally consumed is 7.0 k per electric power.
It was g / MWH. In the next charge (103), when the voltage (V T ) between the bottoms of the furnaces is changed within the range of 40 to 55V, if the power load similarly falls below the target set value of the tap voltage 130V, the previous charge (102). The reduction status of was judged to be defective from the analysis value of 2.5% or more in the slag (% Cr 2 O 3 ). Therefore, the desulfurization status of the pre-charge (102) is determined by the sulfur distribution ratio ((%
S) / [% S]). Since the actual value of the sulfur distribution ratio ((% S) / [% S]) was 40, it was not determined that the desulfurization was poor, so the basicity of the slag was reduced, and The tap voltage was raised within a range not exceeding 55V. Figure 11 shows the operating status at this time.
As shown in, the tap voltage was changed after supplying SiO 2 at the 150th and 260th minutes. The voltage across the furnace bottom changed from 45V to 55V during this charge. The finally consumed amount of the electrode was 7.1 kg / MWH per electric power.

【0021】次のチャージ(104)では、炉底間電圧
(VT )を40〜55Vの範囲内で安定させた。このと
き、同様に電力負荷がタップ電圧135Vの目標設定値
を下回る場合、前チャージ(103)ではスラグ中(%
Cr23 )の分析値が1.8%と還元が良好であった
ものの、硫黄分配比((%S)/[%S])が23と脱
硫能が若干低下した。そこで、塩基度を下げる制御を行
わなかった。この場合の操業状況を図12に示すよう
に、190分目及び250分目で、コークス供給量を低
減した後でタップ電圧を変更した。炉底間電圧は、この
チャージ間で40Vから55Vの間で推移した。また、
最終的に消費した電極の量は、電力当り7.2kg/M
WHであった。このように実施例3では、電力負荷が下
回った場合、前チャージの結果を基にコークス供給量及
び塩基度を調整している。この制御により、その後に電
力負荷(タップ電圧)の上方切換えによっても炉底間電
圧の上昇が抑制されていることが判る。そのため、高電
力負荷状態で操業しても、電極消耗量を抑え、高い生産
性が維持されることが確認された。
In the next charge (104), the inter-furnace voltage (V T ) was stabilized within the range of 40 to 55V. At this time, similarly, when the power load falls below the target set value of the tap voltage of 135 V, the pre-charge (103) is slagging (%).
The analysis value of Cr 2 O 3 ) was 1.8% and the reduction was good, but the sulfur distribution ratio ((% S) / [% S]) was 23, and the desulfurization ability was slightly lowered. Therefore, the control to lower the basicity was not performed. As shown in FIG. 12, the operation status in this case was that the tap voltage was changed after the coke supply amount was reduced at the 190th minute and the 250th minute. The voltage between the bottom of the furnace changed between 40V and 55V during this charge. Also,
The final amount of electrode consumed was 7.2 kg / M per power.
It was WH. As described above, in the third embodiment, when the power load is lower, the coke supply amount and the basicity are adjusted based on the result of the precharge. By this control, it can be seen that the rise in the voltage between the bottoms of the furnaces is suppressed even when the electric load (tap voltage) is subsequently switched upward. Therefore, it was confirmed that the electrode consumption was suppressed and the high productivity was maintained even when operating in a high power load state.

【0022】比較例1(チャージNo.120) 各種ステンレス鋼を生産する製鋼工場で発生した電気炉
ダスト,湿式回収した転炉ダスト,スケール等をフィル
タプレスで脱水し、内燃式キルンで乾燥処理した。ま
た、ステンレス鋼帯の焼鈍酸洗による発生したスケール
及び廃酸処理工程で沈澱凝集により回収した水酸化物類
を同様に脱水し、乾燥処理した。これら酸化物原料をス
ラグ組成がCaO/SiO2 =2.8になるように配合
し、コークス及びバインダーと共に混練し、ブリケット
に製団した。得られたブリケットを数日間養生し、ゼー
ダベルグ式の電気炉に供給した。操業条件は、実施例に
比較して電力負荷を高めに設定し、コークス原単位が平
均して300kg/トン−メタルとなるように外装法で
コークスを供給した。炉底間電圧は、通電開始から終了
までの期間で電極の上昇に伴って40Vから59Vの範
囲を幅広く推移した。なお、比較例1では、電力負荷を
調整しなかった。最終的にこのチャージ(120)で消
費した電極の量は、9.2kg/MWHであった。
Comparative Example 1 (Charge No. 120) Electric furnace dust generated in a steelmaking plant producing various stainless steels, wet-collected converter dust, scales, etc. were dehydrated by a filter press and dried by an internal combustion kiln. . Further, the scale generated by annealing and pickling the stainless steel strip and the hydroxides recovered by precipitation aggregation in the waste acid treatment step were similarly dehydrated and dried. These oxide raw materials were blended so that the slag composition was CaO / SiO 2 = 2.8, kneaded with a coke and a binder, and formed into a briquette. The obtained briquette was cured for several days and supplied to a Zedaberg type electric furnace. The operating condition was that the electric load was set higher than in the examples, and the coke was supplied by the exterior method so that the basic unit of coke was 300 kg / ton-metal on average. The voltage between the bottoms of the furnace varied widely in the range of 40V to 59V with the rise of the electrode during the period from the start to the end of energization. In Comparative Example 1, the power load was not adjusted. The final amount of electrode consumed by this charge (120) was 9.2 kg / MWH.

【0023】比較例2(チャージNo.121) 比較例1と同じ酸化物原料をスラグ組成がCaO/Si
2 =3.1になるように配合し、コークス及びバイン
ダーと共に混練し、ブリケットに製団した。得られたブ
リケットを数日間養生し、ゼーダベルグ式の電気炉に供
給した。操業中のコークス原単位が平均して360kg
/トン−メタルとなるように、外装法で所定量のコーク
スを供給した。そして、実施例と同様に電力負荷を制御
したが、通電開始から終了までの間で炉底間電圧が51
Vから62Vに推移し、炉底間電圧を目標範囲に収める
ことはできなかった。最終的にこのチャージ(121)
で消費した電極の量は、13.0kg/MWHと実施例
に比較して多量であった。以上の各例における操業結果
を表1にまとめて示す。表1にみられるように、本発明
に従った操業法では、電極消耗量を少なくして、しかも
高い生産性でメタルを製造できることが判る。
Comparative Example 2 (Charge No. 121) The same oxide raw material as in Comparative Example 1 was used and the slag composition was CaO / Si.
It was blended so that O 2 = 3.1, kneaded with a coke and a binder, and formed into a briquette. The obtained briquette was cured for several days and supplied to a Zedaberg type electric furnace. The average coke consumption during operation is 360 kg
A predetermined amount of coke was supplied by the exterior method so as to obtain / ton-metal. Then, the power load was controlled in the same manner as in the example, but the furnace bottom voltage was 51% from the start to the end of energization.
The voltage changed from V to 62 V, and the furnace bottom voltage could not be within the target range. Finally this charge (121)
The amount of electrode consumed in 13.0 kg was 13.0 kg / MWH, which was a large amount as compared with the examples. Table 1 shows the operation results in each of the above examples. As can be seen from Table 1, the operating method according to the present invention makes it possible to reduce the amount of electrode wear and to produce metal with high productivity.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上に説明したように、本発明において
は、電極−炉底間の電圧を適正範囲に維持しながらタッ
プ電圧,コークス供給量,スラグ塩基度等の操業条件を
制御することにより、電極消耗量を低減し、且つ安定し
た炉況下で電気炉操業を行うことができる。そのため、
スクラップ,製鋼ダスト,スラッジ,研磨粉,研削屑等
の酸化物原料を原料から有価金属が高効率で回収され
る。
As described above, in the present invention, by controlling the operating conditions such as tap voltage, coke supply amount, slag basicity, etc. while maintaining the voltage between the electrode and the bottom of the furnace within an appropriate range. It is possible to reduce the amount of electrode wear and to operate the electric furnace in a stable furnace condition. for that reason,
Valuable metals are highly efficiently recovered from oxide raw materials such as scrap, steelmaking dust, sludge, polishing powder, and grinding dust.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従ってタップ電圧を調整するフローFIG. 1 is a flow of adjusting a tap voltage according to the present invention.

【図2】 同じくコークス原単位を調整するフロー[Figure 2] Similarly, the flow for adjusting the coke intensity

【図3】 同じくスラグの塩基度を調整するフロー[Fig. 3] Similarly, a flow for adjusting the basicity of the slag

【図4】 炉底間電圧が電極消耗量及び生産性指数に及
ぼす影響を表したグラフ
FIG. 4 is a graph showing the influence of the bottom-bottom voltage on the electrode consumption and the productivity index.

【図5】 ゼーダベルグ式の自焼成電極の概略図FIG. 5 is a schematic diagram of a Zedaberg type self-baking electrode.

【図6】 コークス原単位が炉底間電極及び炉底間距離
の変動に及ぼす影響を表したグラフ
FIG. 6 is a graph showing the influence of the coke intensity on the fluctuation of the inter-furnace electrode and the bottom-furnace distance.

【図7】 電力負荷が炉底間距離に及ぼす影響を表した
グラフ
FIG. 7 is a graph showing the effect of electric power load on the distance between the bottoms of the furnaces.

【図8】 実施例1における通電開始後の時間経過に伴
ったタップ電圧,コークス原単位及び炉底間電圧の変動
を表したグラフ
FIG. 8 is a graph showing changes in tap voltage, coke intensity, and bottom-bottom voltage with time after the start of energization in Example 1.

【図9】 実施例2における通電開始後の時間経過に伴
ったタップ電圧,スラグ塩基度,コークス原単位及び炉
底間電圧の変動を表したグラフ
FIG. 9 is a graph showing variations in tap voltage, slag basicity, coke intensity, and bottom-bottom voltage with time after the start of energization in Example 2.

【図10】 実施例3における通電開始後の時間経過に
伴ったタップ電圧,スラグ塩基度,コークス原単位及び
炉底間電圧の変動を表したグラフ
FIG. 10 is a graph showing variations in tap voltage, slag basicity, coke intensity, and bottom-bottom voltage with time after the start of energization in Example 3.

【図11】 タップ電圧を上昇させた実施例3における
通電開始後の時間経過に伴ったタップ電圧,スラグ塩基
度,コークス原単位及び炉底間電圧の変動を表したグラ
FIG. 11 is a graph showing changes in tap voltage, slag basicity, coke intensity, and bottom-bottom voltage with time after the start of energization in Example 3 in which the tap voltage was increased.

【図12】 コークス供給低減後にタップ電圧を変更し
た実施例3における通電開始後の時間経過に伴ったタッ
プ電圧,スラグ塩基度,コークス原単位及び炉底間電圧
の変動を表したグラフ
FIG. 12 is a graph showing changes in tap voltage, slag basicity, coke intensity, and bottom-bottom voltage with time after the start of energization in Example 3 in which the tap voltage was changed after the reduction of coke supply.

【符号の説明】[Explanation of symbols]

1:水冷ケース 2:電極ケース 3:電極原料
4:ペースト状の電極原料 5:ホルダー 6:
焼成過程中のペースト 7:焼成点 8:焼成部
9:赤熱部 10:スラグ層 11:メタル
1: Water cooling case 2: Electrode case 3: Electrode raw material
4: Paste-like electrode raw material 5: Holder 6:
Paste during firing 7: Firing point 8: Firing part
9: Red heat part 10: Slag layer 11: Metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 製鋼ダスト及び廃酸スラッジを主とする
酸化物原料を溶解,還元してNi,Cr含有合金を回収
する電気製錬炉において、(1)〜(3)の各制御を同
時並行的に実施することを特徴とする電極消耗を低減し
た電気製錬炉の操業方法。 (1)電極−炉底間の電圧(VT )を管理しながら、電
圧(VT )の変化量に基づいて電圧(VT )が40V未
満に低下した場合は現状のタップ電圧を上昇させ、電圧
(VT )が55V以上に上昇した場合は現状のタップ電
圧を低下させる制御 (2)原料配合工程でのブリケット内装コークス量及び
操業中の外装コークス切出し量から算出されたコークス
原単位(CT)に基づいて、コークス原単位が350k
g/トン以下になるように外装コークスの供給量を調整
する制御 (3)所定時間ごとにスラグの化学分析又は電気伝導度
の測定値から推定されるスラグの塩基度(BS )を2.
4〜3.0に維持するようにCaO及びSiO2 含有量
の配合を調整する制御
1. An electric smelting furnace for recovering an Ni-, Cr-containing alloy by melting and reducing an oxide raw material mainly composed of steelmaking dust and waste acid sludge, and simultaneously controlling each of (1) to (3). A method for operating an electric smelting furnace with reduced electrode consumption, which is characterized in that it is carried out in parallel. (1) electrode - while managing the voltage between the furnace bottom (V T), when the voltage the voltage based on the amount of change (V T) (V T) drops below 40V increases the tap voltage of the current , Control to reduce the current tap voltage when the voltage (V T ) rises to 55 V or higher (2) Coke basic unit calculated from the amount of briquette internal coke in the raw material blending process and the amount of external coke cut out during operation ( Based on CT), the coke intensity is 350k
Control for adjusting the amount of exterior coke supplied so as to be g / ton or less (3) The basicity (B S ) of the slag estimated from the chemical analysis of the slag or the measured value of the electrical conductivity every predetermined time is 2.
Control to adjust the composition of CaO and SiO 2 contents so as to maintain 4 to 3.0
【請求項2】 電極−炉底間電圧(VT )が40〜55
Vの範囲内で安定した後、電極−炉底間電圧(VT )が
55Vを超えない範囲でタップ電圧を上昇させる請求項
1記載の電気製錬炉の操業方法。
2. The electrode-furnace bottom voltage (V T ) is 40 to 55.
The method for operating an electric smelting furnace according to claim 1, wherein the tap voltage is raised within a range where the electrode-furnace bottom voltage (V T ) does not exceed 55 V after stabilizing within the range of V.
【請求項3】 電極−炉底間電圧(VT )を40〜55
Vの範囲内で安定させた後、電力負荷が目標設定値未満
の場合、前チャージのスラグ中(%Cr23 )分析値
から還元状態を判定し、還元良と判定されたときにはコ
ークス切出し量を低減し、還元不良と判定されたときに
は更に前チャージの硫黄分配比(%S)/[%S]の実
績値から脱硫状態を判定し、脱硫良と判定されたときに
は塩基度を低下させ、脱硫不良と判定されたときには現
在の炉況を維持し、コークス切出し量の低減又は塩基度
を低下させた後、タップ電圧を上昇する請求項1記載の
電気製錬炉の操業方法。
3. An electrode-furnace bottom voltage (V T ) of 40 to 55.
After stabilizing within the range of V, if the power load is less than the target set value, the reduction state is judged from the analysis value during the slag of the previous charge (% Cr 2 O 3 ), and when it is judged that the reduction is good, the coke cutout is performed. When the reduction amount is determined to be poor, the desulfurization state is further determined from the actual value of the sulfur distribution ratio (% S) / [% S] of the previous charge, and when it is determined to be good desulfurization, the basicity is lowered. The method for operating an electric smelting furnace according to claim 1, wherein when it is determined that the desulfurization is poor, the current furnace condition is maintained, and the tap voltage is increased after the coke cutting amount is reduced or the basicity is decreased.
JP9145095A 1995-03-24 1995-03-24 Operating method of electric smelting furnace with reduced electrode consumption Expired - Fee Related JP3560677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9145095A JP3560677B2 (en) 1995-03-24 1995-03-24 Operating method of electric smelting furnace with reduced electrode consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9145095A JP3560677B2 (en) 1995-03-24 1995-03-24 Operating method of electric smelting furnace with reduced electrode consumption

Publications (2)

Publication Number Publication Date
JPH08260013A true JPH08260013A (en) 1996-10-08
JP3560677B2 JP3560677B2 (en) 2004-09-02

Family

ID=14026709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9145095A Expired - Fee Related JP3560677B2 (en) 1995-03-24 1995-03-24 Operating method of electric smelting furnace with reduced electrode consumption

Country Status (1)

Country Link
JP (1) JP3560677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018676A (en) * 1999-08-20 2001-03-15 장춘기 A recarburizer composition utilizing wastes
CN115354153A (en) * 2022-07-28 2022-11-18 嘉峪关宏电铁合金有限责任公司 Method for quickly recovering furnace condition after stopping silicon-manganese ore heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018676A (en) * 1999-08-20 2001-03-15 장춘기 A recarburizer composition utilizing wastes
CN115354153A (en) * 2022-07-28 2022-11-18 嘉峪关宏电铁合金有限责任公司 Method for quickly recovering furnace condition after stopping silicon-manganese ore heating furnace
CN115354153B (en) * 2022-07-28 2023-11-10 嘉峪关宏电铁合金有限责任公司 Method for quickly recovering furnace conditions after furnace shutdown of silicomanganese submerged arc furnace

Also Published As

Publication number Publication date
JP3560677B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
CN109913662B (en) Method for prolonging service life of high-titanium blast furnace slag carbonization electric furnace lining
CN105950804B (en) A kind of blast furnace slag restoring method
CN104141025A (en) Method for casting and dealuminizing ferrovanadium by electro-aluminothermic process
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
WO2001066809A1 (en) Chromium-containing metal and method for producing the same
JP3560677B2 (en) Operating method of electric smelting furnace with reduced electrode consumption
JP2006009146A (en) Method for refining molten iron
CN113416882A (en) Method for producing polycrystalline phase vanadium series alloy by utilizing waste rich material
CA1086503A (en) Process for the production of ferromolybdenum in an electric arc furnace
JP6954481B2 (en) Charcoal material and charcoal method using it
CN1023610C (en) Special smelting process &#34;electroslag induction refining&#34;
JP3510367B2 (en) Operating method of electric smelting furnace with improved desulfurization ability
CN106676226A (en) Silicon carbide deoxidation steel production process
JP3793473B2 (en) Operation method of a converter equipped with a hot metal storage furnace
US3126274A (en) Process for reduction smelting of
CN110699592A (en) Preparation process of high-carbon ferrochrome
CN115572787B (en) Process method for reducing thermal state slag through slag splashing protection
JP4355323B2 (en) Operation method of a converter equipped with a hot metal storage furnace
JPH08120354A (en) Operation of electric smelting furnace
JP3512514B2 (en) Method for reducing deposits in electric smelting furnace
CN115323112B (en) Process for pretreating molten iron by feeding KR into sintered return ores
US4412857A (en) Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge
JP3717625B2 (en) Electric arc furnace slag reduction method
CN111334703B (en) Production method of low-titanium-phosphorus iron alloy
SU1458411A1 (en) Method of melting high-carbon ferromanganese

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees