JPH08256759A - Control of fermentation and measurement of acidity of lactic acid - Google Patents

Control of fermentation and measurement of acidity of lactic acid

Info

Publication number
JPH08256759A
JPH08256759A JP7091278A JP9127895A JPH08256759A JP H08256759 A JPH08256759 A JP H08256759A JP 7091278 A JP7091278 A JP 7091278A JP 9127895 A JP9127895 A JP 9127895A JP H08256759 A JPH08256759 A JP H08256759A
Authority
JP
Japan
Prior art keywords
fermentation
lactic acid
attenuation
microwave
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7091278A
Other languages
Japanese (ja)
Other versions
JP2860887B2 (en
Inventor
Yasuhiko Shiiki
靖彦 椎木
Makoto Higashimura
誠 東村
Kensuke Ito
健介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP9127895A priority Critical patent/JP2860887B2/en
Publication of JPH08256759A publication Critical patent/JPH08256759A/en
Application granted granted Critical
Publication of JP2860887B2 publication Critical patent/JP2860887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE: To provide a practical fermentation-controlling method of microbial fermentation by yeast and lactic acid, capable of integrating by online. CONSTITUTION: Acidity of lactic acid which is a raw material is obtained by irradiating microwave having 200MHz to 20GHz frequency to the raw material being in fermentation and measuring the decline of transmitted wave and the change in fermentation state is confirmed to control the fermentation. The control of fermentation process is facilitated by practicing online measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波を用いた微
生物による発酵状態の管理方法に関する。さらに本発明
は乳酸発酵における発酵液中の乳酸酸度の測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a fermentation state by microorganisms using microwaves. Furthermore, the present invention relates to a method for measuring the degree of lactic acid in a fermented liquid during lactic acid fermentation.

【0002】[0002]

【従来の技術】微生物を用いた発酵は、食品から医薬
品、工業原料の生産など広く普及した技術である。通
常、これらの発酵の管理は目的の物質の生産量をモニタ
リングしながら行われている。このモニタリングはイン
ラインセンサーによる測定や、バッチ式サンプリングに
よる分析などによる。特に発酵食品の生産にあたって
は、発酵により生産される主要産物である、有機酸やア
ルコールなどを指標として発酵状態を管理している。ま
たこのような主要産物の測定に代えてpHや溶存酸素濃
度、濁度などを測定する場合もある。発酵食品のなかで
も、乳酸菌あるいは酵母を利用した発酵は、特に食品や
飲料などの製造に古くから用いられている。例えば発酵
乳、乳酸菌飲料などは乳酸菌を用いた発酵の代表的な製
品例であり、ビール、ワイン、清酒などは酵母を用いた
発酵の代表例である。これらの乳酸発酵食品、飲料の製
造方法は一般的には以下に述べるようなものである。
Fermentation using microorganisms is a widely used technology for producing foods, pharmaceuticals, and industrial raw materials. Usually, these fermentations are controlled by monitoring the production amount of the target substance. This monitoring is based on measurement by an in-line sensor or analysis by batch type sampling. Especially in the production of fermented foods, the fermentation state is managed using organic acids, alcohols, etc., which are the main products produced by fermentation, as indicators. Further, instead of measuring such main products, pH, dissolved oxygen concentration, turbidity, etc. may be measured. Among fermented foods, fermentation using lactic acid bacteria or yeast has been used for a long time, particularly in the production of foods and beverages. For example, fermented milk, a lactic acid bacterium drink, etc. are typical product examples of fermentation using lactic acid bacteria, and beer, wine, sake, etc. are typical examples of fermentation using yeast. The method for producing these lactic acid-fermented foods and beverages is generally as described below.

【0003】乳を原料とした乳酸発酵食品にあっては牛
乳、脱脂乳に脱脂粉乳あるいは濃縮乳を添加したりして
副原料を調合混和する。これを常法に従い均質化、殺菌
処理を行い、30〜50℃に冷却後、混合乳酸菌スター
ターあるいは単独スターターを2〜3%接種し、30〜
40℃に保温し、乳酸発酵させて製造される。発酵の停
止は、発酵基質(通常、乳あるいは、脱脂乳液または副
原料を添加した調製液)を冷却、または加熱殺菌するこ
とによって行う。その発酵停止のタイミングの判定は、
一般に乳酸発酵によって生成した乳酸を予めその濃度が
測定されているアルカリ標準液(通常水酸化ナトリウム
溶液)を用いた滴定方法による乳酸酸度の測定、あるい
はpHを測定し、予めこの測定pHと酸度の相関を求め
ておき、この相関から決定する。しかし、これらの測定
による判定は、測定者によるばらつきがあることや、イ
ンライン測定には不向きであることや、温度による影響
が大きいなどの欠点を有する。特に、乳酸酸度測定によ
る発酵停止を判定する方法の場合は、測定操作が煩雑な
ため測定時間に長時間を要し、その測定の間に発酵が進
み、停止のタイミングを外れてしまい、過発酵となって
しまうこともある。アルコール発酵は、その製品により
種々の発酵形態がとられているが、通常は糖化した原料
に酵母スターターを加えたもろみを発酵させ、通常、ア
ルコール濃度5〜20%に達した時点で発酵を終了さ
せ、もろみ分離を行う。この場合にはもろみを採取し、
ろ過を行い、このろ液の分析を行うが、ろ過操作や分析
に時間を要して適切な発酵管理を行なえないなどの問題
点がある。
In a lactic acid fermented food using milk as a raw material, skimmed milk powder or concentrated milk is added to milk or skim milk to mix and mix auxiliary raw materials. This is homogenized and sterilized by a conventional method, cooled to 30 to 50 ° C., and inoculated with a mixed lactic acid bacterium starter or a single starter in an amount of 2 to 3%.
It is produced by lactic acid fermentation while keeping the temperature at 40 ° C. The fermentation is stopped by cooling or sterilizing the fermentation substrate (usually milk or a skim milk liquid or a preparation liquid to which an auxiliary material is added). Judgment of the timing of the fermentation stop,
In general, the concentration of lactic acid produced by lactic acid fermentation is measured in advance using an alkaline standard solution (usually sodium hydroxide solution) to measure the lactic acid acidity by a titration method, or the pH is measured, and the measured pH and acidity are measured in advance. Correlation is calculated and determined from this correlation. However, the determinations by these measurements have drawbacks such as variations depending on the operator, unsuitable for in-line measurement, and great influence by temperature. In particular, in the case of the method of determining fermentation stoppage by measuring lactic acidity, the measurement operation is complicated, and thus the measurement time is long, and during the measurement, fermentation progresses and the timing of stoppage is missed, resulting in overfermentation. Sometimes it becomes. Alcohol fermentation takes various fermentation forms depending on the product, but normally, mash is fermented with saccharified raw material and yeast starter, and the fermentation is usually terminated when the alcohol concentration reaches 5 to 20%. Then, the moromi is separated. In this case, collect moromi,
Although the filtrate is analyzed and the filtrate is analyzed, there is a problem that it takes time for the filtration operation and the analysis, and proper fermentation management cannot be performed.

【0004】また、乳酸発酵では、インラインで発酵過
程をモニターする方法として、pHセンサーをタンク内
に設置してそのpH変化をモニターする方法などが試み
られている。しかしpH電極の構造上から電極の内部液
の発酵基質中への流出は避けられず、食品製造用のイン
ライン測定法としては不適当である。このため、食品の
発酵管理でpHセンサーを使用する例は殆どない。これ
らの問題を解決する手段として、特公平2−9780号
公報では電磁誘導型の電気伝導率計を用いた発酵管理法
を提示している。しかし、この方法では電気伝導率の温
度による影響が大きく、電気伝導率の値が基質成分によ
って大きく異なり、従来の乳酸酸度との対応が一義的に
決まらないなどの欠点がある。さらに、近赤外線の吸光
度測定により乳酸発酵を管理する方法も提示されている
(Giuseppe Vaccariら, "A Near-Infrared Spectroscop
y Technique for theControl Fermentation Process: A
n Application to Lactic Fermentation", Biotechnolo
gy and Bioengineering, Vol. 43, pp.913-917, 199
4)。しかし、この方法は基質成分が発酵毎に異なった場
合には、再度吸光度と乳酸酸度などの管理値との回帰式
を求めなければならないという欠点を有している。
Further, in the lactic acid fermentation, as a method for monitoring the fermentation process in-line, a method of installing a pH sensor in a tank and monitoring the pH change has been attempted. However, due to the structure of the pH electrode, the outflow of the internal liquid of the electrode into the fermentation substrate is unavoidable, which is unsuitable as an in-line measurement method for food production. Therefore, there are few examples of using a pH sensor in the fermentation control of foods. As a means for solving these problems, Japanese Patent Publication No. 2-9780 discloses a fermentation control method using an electromagnetic induction type electric conductivity meter. However, this method has a drawback that the temperature of the electric conductivity has a great influence, the value of the electric conductivity greatly differs depending on the substrate component, and the correspondence with the conventional lactic acid acidity cannot be uniquely determined. Furthermore, a method for controlling lactic acid fermentation by measuring near-infrared absorbance has been proposed (Giuseppe Vaccari et al., "A Near-Infrared Spectroscop
y Technique for theControl Fermentation Process: A
n Application to Lactic Fermentation ", Biotechnolo
gy and Bioengineering, Vol. 43, pp.913-917, 199
Four). However, this method has a drawback in that when the substrate component is different for each fermentation, the regression equation between the absorbance and the control value such as the lactic acid degree must be obtained again.

【0005】ヨーグルト製造方法には、容器内で発酵さ
せる方法とタンク内で発酵させた後攪拌して製品にする
方法がある。前者の方法の場合、容器内の発酵状態をモ
ニターする必要がある。例えば、特公平2−23614
1号公報には、発酵して固化する食品を容器に入れシー
ルした後、容器ごと減衰自由振動させて減衰自由振動の
周期、又は減衰自由振動数及び振幅を測定して発酵管理
する方法が提示されている。この方法は発酵停止のタイ
ミングを任意に設定することが不可能であるという欠点
がある。また、アルコール発酵では、特開昭60─14
9374号公報に開示されたような、発酵に伴って生産
される炭酸ガスおよびエチルアルコールガスを赤外線分
析計により測定して、発酵もろみの発酵状態を管理する
方法が提案されている。しかしこれはあくまで、ガス化
した成分を測定しているのであって、もろみ中の成分を
測定して、発酵状態を管理しているものではなく、発酵
状態の正確な測定の面で満足のいくものではなかった。
以上のように、これまでの発酵管理の方法には多くの問
題点があり、発酵状態を精度良く管理する方法は提案さ
れていない。
The yogurt production method includes a method of fermenting in a container and a method of fermenting in a tank and then stirring to obtain a product. In the case of the former method, it is necessary to monitor the fermentation state in the container. For example, Japanese Patent Publication 2-23614
Japanese Patent Laid-Open No. 1 discloses a method for fermentation management by putting a food that is fermented and solidified into a container and sealing the container, and then subjecting the container to damping free vibration to measure the cycle of the damping free vibration or the damping free frequency and amplitude. Has been done. This method has a drawback that it is impossible to arbitrarily set the timing of stopping the fermentation. Further, in alcohol fermentation, JP-A-60-14
As disclosed in Japanese Patent No. 9374, there has been proposed a method for controlling the fermentation state of fermentation mash by measuring carbon dioxide gas and ethyl alcohol gas produced by fermentation with an infrared analyzer. However, this is only measuring the gasified component, not the component in the moromi to control the fermentation state, and it is satisfactory in terms of accurate measurement of the fermentation state. It wasn't something.
As described above, there are many problems in the conventional fermentation management methods, and no method for accurately managing the fermentation state has been proposed.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、マイク
ロ波を用いた非破壊分析について検討を行い、その発酵
管理への応用について検討を行っていたが、微生物によ
る発酵過程、特に乳酸発酵において、マイクロ波の透過
波の減衰量を測定することによって発酵状態の変化を正
確に確認することが可能なことを初めて見い出すことが
できた。また、このマイクロ波の減衰変化は、発酵液中
の乳酸酸度と強い相関関係を有することを見い出した。
本発明は、このような知見に基づいてなされたもので、
微生物による発酵過程の管理をマイクロ波を用いて行う
方法を提供することを課題とする。また、このマイクロ
波の減衰量を測定することによって発酵液中の乳酸の定
量測定を行う方法を提供することを課題とする。
The present inventors have studied non-destructive analysis using microwaves and their application to fermentation control. However, the fermentation process by microorganisms, particularly lactic acid fermentation, has been investigated. For the first time, it was found that it is possible to accurately confirm the change in the fermentation state by measuring the attenuation of the transmitted wave of the microwave. It was also found that the change in microwave attenuation has a strong correlation with the degree of lactic acid in the fermentation broth.
The present invention was made based on such findings,
It is an object of the present invention to provide a method for controlling the fermentation process by microorganisms using microwaves. Another object of the present invention is to provide a method for quantitatively measuring lactic acid in a fermentation broth by measuring the amount of microwave attenuation.

【0007】[0007]

【課題を解決するための手段】ヨーグルト等の乳酸発酵
食品は、予め原料を混合したミックスに乳酸菌を接種し
たものを容器中に充填し、これを発酵させる方法が採用
される。この発酵は発酵室と呼ばれる恒温室中で行わ
れ、この発酵状態を非破壊的に検出することが必要とな
る。所望の発酵状態に達した製品、例えばヨーグルトな
どは速やかに冷却して発酵を停止し、製品として出荷さ
れる。この非破壊分析にあたって、本発明においてはマ
イクロ波を用いることが大きな特徴である。マイクロ波
等の電磁波を被測定物又は試料に照射し、その透過波あ
るいは反射波から得られる測定情報として、減衰、位相
差、反射インピ−ダンスあるいは伝送速度等がある。本
発明者らは、発酵中の食品に電磁波を照射し、その透過
波又は反射波の照射波に対する減衰を測定し、その測定
値から測定対象物の乳酸含量を求めることができること
を見出した。電磁波を物質に照射した時の、透過波の減
衰aは、照射物の物理量である比誘電率εr と誘電正接
tanδが公知である場合、以下の関係式数1から求め
ることができる(岡田文明著、マイクロ波工学、学献社
刊、1993年)。
As a lactic acid fermented food such as yogurt, a method is used in which a mixture prepared by mixing raw materials inoculated with lactic acid bacteria is filled in a container and fermented. This fermentation is carried out in a constant temperature room called a fermentation room, and it is necessary to detect this fermentation state nondestructively. Products that have reached the desired fermentation state, such as yogurt, are quickly cooled to stop fermentation and shipped as products. In this non-destructive analysis, the use of microwave is a major feature of the present invention. The measurement information obtained by irradiating an object to be measured or a sample with an electromagnetic wave such as a microwave and the resulting transmitted wave or reflected wave includes attenuation, phase difference, reflected impedance, transmission speed, and the like. The present inventors have found that the fermented food is irradiated with electromagnetic waves, the attenuation of the transmitted wave or reflected wave with respect to the irradiation wave is measured, and the lactic acid content of the measurement target can be determined from the measured value. The attenuation a of a transmitted wave when an electromagnetic wave is applied to a substance can be calculated from the following relational expression 1 when the relative permittivity ε r and the dielectric loss tangent tan δ, which are physical quantities of the irradiated object, are known (Okada Bunmei, Microwave Engineering, Gakukensha, 1993).

【0008】[0008]

【数1】 α=ω(ε0 εr )1/2 ((1− tanδ)/2)1/2 (1+tan2δ)1/2−1)1/2 (1) 式 a=−8.686 αL (2) 式 εr =ε/ε0 (3) 式 但し、αは減衰定数(1/m)、ωは角速度(rad/
s)、εは測定誘電率、ε0 は真空の誘電率( 8.854
×10-12 F/m)、εr は比誘電率、tanδは誘電正
接、Lは試料厚み(m)、aは減衰(dB)。
## EQU1 ## α = ω (ε 0 ε r ) 1/2 ((1−tan δ) / 2) 1/2 (1 + tan 2 δ) 1/2 −1) 1/2 (1) Formula a = −8.686 αL (2) Formula ε r = ε / ε 0 (3) Formula where α is the damping constant (1 / m), and ω is the angular velocity (rad /
s), ε is the measured permittivity, and ε 0 is the permittivity of the vacuum (8.854).
× 10 −12 F / m), ε r is the relative permittivity, tan δ is the dielectric loss tangent, L is the sample thickness (m), and a is the attenuation (dB).

【0009】ここで求められる比誘電率εr と誘電正接
tanδは、物質固有の物理量である。また、誘電正接
tanδは、測定物質の電気伝導度の変数でも表すこと
ができ、この場合、下記の(4)式で示すことができ
る。
The relative permittivity ε r and the dielectric loss tangent tan δ obtained here are physical quantities peculiar to the substance. The dielectric loss tangent tan δ can also be represented by a variable of electric conductivity of the substance to be measured, and in this case, it can be represented by the following formula (4).

【0010】[0010]

【数2】 tanδ=σ/(ωε0 εr ) (4) 式 但し、σは測定物質の電気伝導度である。Tan δ = σ / (ωε 0 ε r ) (4) Equation (4) where σ is the electric conductivity of the substance to be measured.

【0011】電気伝導度は、乳酸発酵が進ことによって
変化し増加することが知られている。発酵食品の場合
ω、ε0 、εr は測定対象によって固有の値であること
が経験的に知られており、従って発酵状態の変化は誘電
正接の変化であると言える。従って誘電正接を測定する
ことで発酵状態の変化を知ることが可能である。さらに
(4) 式と(1) 式、(2) 式より、マイクロ波の減衰aを誘
電率σを変数とする式で表すことができる。
It is known that the electrical conductivity changes and increases with the progress of lactic acid fermentation. In the case of fermented foods, it is empirically known that ω, ε 0 , and ε r have unique values depending on the measurement target, and therefore it can be said that the change in the fermentation state is the change in dielectric loss tangent. Therefore, it is possible to know the change in the fermentation state by measuring the dielectric loss tangent. further
From the expressions (4), (1), and (2), the attenuation a of the microwave can be expressed by an expression having the dielectric constant σ as a variable.

【0012】[0012]

【数3】 減衰a= −8.686 ω( ε0 εr ) 1/2(1/2 (1−σ/ ωε0 εr ))1/2((1+( σ / ωε0 εr )2)1/2−1)1/2 L (5) 式(3) Attenuation a = −8.686 ω (ε 0 ε r ) 1/2 (1/2 (1−σ / ωε 0 ε r )) 1/2 ((1+ (σ / ωε 0 ε r ) 2 ) 1/2 -1) 1/2 L (5) formula

【0013】上記(5) 式は、マイクロ波の減衰は、試料
の電気伝導度を変数とする式と解することができる。従
って、試料に照射したマイクロ波の減衰を知ることで、
試料電気伝導度の変化を知ることができ、これは発酵状
態の変化を知ることになる。この理論に基づいて、種々
の試料について検討を行ったところ、実施例に示すよう
に、乳酸発酵においては、乳酸量の変化と照射したマイ
クロ波の減衰はさらに試料温度変化又は試料の周辺の温
度変化を変数とする回帰式で表すことが確認できた。
The above equation (5) can be understood as an equation in which the microwave attenuation has the electric conductivity of the sample as a variable. Therefore, by knowing the attenuation of the microwave applied to the sample,
It is possible to know the change in the electrical conductivity of the sample, which means the change in the fermentation state. When various samples were examined based on this theory, as shown in the examples, in lactic acid fermentation, the change in the amount of lactic acid and the attenuation of the irradiated microwaves were further caused by the change in the sample temperature or the temperature around the sample. It was confirmed that it was represented by a regression equation with change as a variable.

【0014】なお、公知の測定装置であるベクトルネッ
トワークアナライザーを用いることにより、直接目的と
する物理量である誘電正接tanδと比誘電率εr を求
めることができ( なおベクトルネットワークアナライザ
ーはTransaction on Instrumentation and Measuremen
t. Vol.37,No.3,June,1989 等の文献に詳細が開示され
ており、その用途や機能は広く知られている) 、さらに
減衰を求めることができる。さらにまた、電磁波を被検
物質に照射し、透過波の減衰を検出するための方法とし
ては、公知のマイクロ波発生装置と、マイクロ波検出装
置を用い装置を構成することができる。またこのような
装置は市販の装置を用いることもできる。例えば特開昭
59─102146号公報や特開平2─19750号公
報に開示されたマイクロ波による水分測定装置など、水
分測定を目的とした装置であって、透過波の位相変化と
減衰を測定できる装置であれば使用可能である。通常
は、マイクロ波の発信用のアンテナと受信用のアンテナ
を装置の構成に含んでいるものであれば使用可能であ
る。またこのような、透過マイクロ波を検出測定する市
販の装置としては、ベルトホルド社(ドイツ)から「マ
イクロモイスト」の商品名で販売されているマイクロ波
利用の水分計が知られており、本発明をオンラインで使
用する時の仕様に適している。さらにまた、上記に示し
たベクトルネットワークアナライザーとホーンアンテナ
を組み合わせた構成とした装置によってもマイクロ波の
減衰を測定することもできる。
By using a vector network analyzer which is a known measuring device, it is possible to directly obtain the target physical quantities, the dielectric loss tangent tan δ and the relative permittivity ε r (Note that the vector network analyzer is Transaction on Instrumentation and Measuremen
Details are disclosed in documents such as t. Vol.37, No.3, June, 1989, etc., and their uses and functions are widely known), and further attenuation can be obtained. Furthermore, as a method for irradiating a test substance with an electromagnetic wave and detecting the attenuation of a transmitted wave, a known microwave generator and a known microwave detector can be used to configure the apparatus. A commercially available device can also be used as such a device. For example, a device for measuring water content, such as a water content measuring device using microwaves disclosed in JP-A-59-102146 and JP-A-2-19750, can measure the phase change and attenuation of a transmitted wave. Any device can be used. In general, any device that includes a microwave transmitting antenna and a microwave receiving antenna in the device configuration can be used. Further, as such a commercially available device for detecting and measuring transmitted microwaves, there is known a moisture analyzer using microwaves sold by Berthold (Germany) under the product name of “Micromoist”. Suitable for online specifications. Furthermore, the attenuation of microwaves can also be measured by a device having a configuration in which the vector network analyzer and the horn antenna shown above are combined.

【0015】このようにして得られた被測定物にマイク
ロ波を照射した時の減衰と公知の温度測定装置を用い
て、試料の温度又は試料の周辺温度を得て、乳酸含量を
求める回帰式を得ることができる。回帰式を得るために
は、測定しようとする乳酸含量の異なった試料を5〜3
0サンプル程度を予め準備し、従来の測定方法で乳酸含
量を求めておき、マイクロ波の減衰と乳酸含量の関係を
重回帰分析を行って重回帰式を求める。この重回帰式
は、乳酸含量(乳酸酸度%)をy、被測定物に照射した
マイクロ波の減衰をx1 、試料の温度または周辺温度を
2 とした時、それぞれ次の(6)式の重回帰式で表さ
れる。
A regression equation for obtaining the lactic acid content by obtaining the temperature of the sample or the ambient temperature of the sample by using a known temperature measuring device and the attenuation when the object to be measured thus obtained is irradiated with microwaves Can be obtained. To obtain the regression equation, 5 to 3 samples with different lactic acid contents to be measured
About 0 samples are prepared in advance, the lactic acid content is obtained by the conventional measurement method, and the multiple regression equation is obtained by performing multiple regression analysis on the relationship between the microwave attenuation and the lactic acid content. This multiple regression equation is expressed by the following equation (6), where y is the lactic acid content (lactic acid degree%), x 1 is the attenuation of the microwave radiated to the object to be measured, and x 2 is the sample temperature or ambient temperature. It is expressed by the multiple regression equation of.

【0016】[0016]

【数3】 乳酸酸度%(y)=A+Bx1 +Cx2 (6) 式 ただし、A 、B 、Cは、重回帰分析を行って得た回
帰係数を表す。
## EQU00003 ## Lactic acid degree% (y) = A + Bx 1 + Cx 2 (6) where A, B and C represent regression coefficients obtained by performing multiple regression analysis.

【0017】このような重回帰分析によって得られた回
帰式(6)式に、説明変数である、マイクロ波の減衰
(dB)の値x1 、測定対象物の温度又は周辺温度値x
2 を代入して目的とする乳酸酸度%を求めることができ
る。乳酸酸度がこのような関係式を得て、この関係式に
被測定物によるマイクロ波の減衰x1 、被測定物の試料
又は周辺温度の値x2 を代入して求めることができるこ
とは、本発明者らが初めて見い出したものである。
In the regression formula (6) obtained by such a multiple regression analysis, the microwave attenuation (dB) value x 1 , the temperature of the object to be measured or the ambient temperature value x, are explanatory variables.
By substituting 2 , the desired% lactic acid acidity can be obtained. The fact that the lactic acid acidity can be obtained by obtaining such a relational expression and substituting the microwave attenuation x 1 by the object to be measured and the sample or ambient temperature value x 2 of the object to be measured into this relational expression It was discovered by the inventors for the first time.

【0018】電磁波を被検物質に照射、被検物質での吸
収や減衰を確認する場合、上記のように透過波を検出す
るか、反射波を検出するかいずれかの方法を選択するこ
とができる。透過波を検出する場合には、単純な1回通
過による減衰や位相変化を見るため、装置的には簡単な
構成でよい。一方、反射波を検出する場合は、電磁波照
射部での反射を取り除いて、減衰、位相差を測定しなけ
ればならず、装置構成上複雑になりやすい。また上記の
ベクトルネットワークアナライザーを用いることにより
複雑な装置構成とする必要がなく、簡便に比誘電率及び
誘電正接を求めることができる。本発明においては、反
射波、透過波いずれの場合であっても採用できるが透過
波が特に好ましい。
When irradiating a test substance with an electromagnetic wave and confirming absorption or attenuation in the test substance, it is possible to select either the transmitted wave or the reflected wave as described above. it can. In the case of detecting a transmitted wave, a simple configuration is sufficient for the apparatus because the attenuation and the phase change due to a simple single pass are observed. On the other hand, when detecting a reflected wave, it is necessary to remove the reflection at the electromagnetic wave irradiation section and measure the attenuation and the phase difference, which is likely to be complicated in the device configuration. Further, by using the above vector network analyzer, it is not necessary to have a complicated device configuration, and the relative permittivity and the dielectric loss tangent can be easily obtained. In the present invention, either a reflected wave or a transmitted wave can be used, but a transmitted wave is particularly preferable.

【0019】なお、乳酸酸度の測定方法は、アルカリ滴
定法が一般的であるが、電量滴定法等の方法を試料の状
態や濃度範囲、試料の量、試料の数によって適宜選択す
ることができる。
The lactic acid acidity is generally measured by an alkali titration method, but a method such as a coulometric titration method can be appropriately selected according to the state of the sample, the concentration range, the amount of the sample, and the number of samples. .

【0020】このようにして予め得た、乳酸酸度を測定
した試料と同一または同質の試料を、上記のマイクロ波
照射装置またはベクトルネットワークアナライザーで、
一定の条件下に照射し、その透過波を検出し、減衰を測
定する。測定にあたっては、測定に使用する装置の仕様
にしたがって装置及び、試料を調製する。本発明におい
て、マイクロ波の周波数は本発明の効果に大きな影響を
及ぼすため、200MHz−20GHzに調整するが、
それ以外の発信エネルギーや、検出感度は、使用する装
置に従って行ってよい。透過波を検出する方法では、発
信マイクロ波が200MHz以下の場合ホーンアンテナ
を大きくしなければならず、実用困難になるなどの影響
が出現する。また、20GHz以上の場合には、被検体
への電磁波の吸収が大きく、透過波の電圧が小さくな
り、検出できなくなる。また位相変化に対する被検体の
厚みの影響が大きくなるなどの影響が出現する。ベクト
ルネットワークアナライザーを用いて測定する場合には
測定用プローブを被測定物中に設置し、直接比誘電率ε
r の値、誘電正接tanδの値を求める。この時、被測
定物に照射するマイクロ波は200MHz〜20GHz
の範囲の特定の周波数を設定し、この周波数で測定す
る。周波数は任意に選択できる。
A sample of the same or the same quality as the sample for which the lactic acid acidity was measured, which was obtained in advance in this way, was treated with the above microwave irradiator or vector network analyzer.
Irradiation is performed under certain conditions, the transmitted wave is detected, and the attenuation is measured. In the measurement, prepare the device and the sample according to the specifications of the device used for the measurement. In the present invention, since the frequency of the microwave has a great influence on the effect of the present invention, it is adjusted to 200 MHz-20 GHz.
Other transmission energy and detection sensitivity may be determined according to the device used. In the method of detecting the transmitted wave, the horn antenna has to be made large when the transmitted microwave is 200 MHz or less, which causes an influence such as practical difficulty. Further, in the case of 20 GHz or more, the electromagnetic wave is largely absorbed by the subject, the voltage of the transmitted wave becomes small, and detection becomes impossible. In addition, the influence of the thickness of the subject on the phase change becomes large. When measuring with a vector network analyzer, install a measurement probe in the DUT and directly measure the relative permittivity ε.
The value of r and the value of dielectric loss tangent tan δ are obtained. At this time, the microwave applied to the DUT is 200 MHz to 20 GHz.
Set a specific frequency in the range and measure at this frequency. The frequency can be arbitrarily selected.

【0021】試料は必要に応じて容器中に入ったままの
状態で測定することができるし、またライン中に上記の
ベクトルネットワークアナライザーのプローブを設置し
て、この部分に試料が流動もしくは移動するようにして
連続的に測定することもできる。このようにして5〜1
5検体以上の試料の透過波の減衰と、さらに適当な測定
方法で試料の温度または試料周辺の温度を説明変数とし
て、先に測定した従来の方法で測定した乳酸酸度を基
に、重回帰分析を行い、重回帰式(6)を求める。この
数式を得た後は、被検物質に重回帰式を求めたと同様の
条件で電磁波を照射し、透過波を検出し、この透過波の
減衰と試料の温度を測定し、これを式(6)に代入し、
目的とする試料の乳酸酸度を得て、これを発酵状態の管
理指標値として用いて、発酵を管理する。なお、この重
回帰式の算出と、測定試料による透過波の減衰と温度を
予めコンピュータにプログラムしておき、測定と同時に
乳酸酸度を表示することもできる。このため、本発明方
法によって得られた測定結果を製造工程にフィードバッ
クすることによりリアルタイムで製造条件を制御するこ
とが可能となる。なお、以下の例はベクトルネットワー
クアナライザーにホーンアンテナを設置した装置を用い
て、容器内のヨーグルトの発酵状態を測定したものであ
るが、この測定に限定されるものでないことは言うまで
もない。以下に実施例を示し、本発明をさらに詳細に説
明する。
The sample can be measured as it is in the container, if necessary, and the probe of the above vector network analyzer is installed in the line, and the sample flows or moves to this part. Thus, it is possible to measure continuously. 5 to 1 in this way
Multiple regression analysis based on the lactic acid acidity measured by the conventional method, with the attenuation of the transmitted wave of five or more samples and the temperature of the sample or the temperature around the sample by an appropriate measurement method as explanatory variables. And multiple regression equation (6) is obtained. After obtaining this formula, the test substance was irradiated with electromagnetic waves under the same conditions as those for which the multiple regression formula was obtained, the transmitted wave was detected, the attenuation of this transmitted wave and the temperature of the sample were measured, and this was calculated using the formula ( Substituting in 6),
Fermentation is controlled by obtaining the lactic acid acidity of the target sample and using this as a control index value for the fermentation state. Note that the calculation of this multiple regression equation, the attenuation of the transmitted wave by the measurement sample, and the temperature may be programmed in advance in a computer to display the lactic acid acidity at the same time as the measurement. Therefore, by feeding back the measurement results obtained by the method of the present invention to the manufacturing process, it becomes possible to control the manufacturing conditions in real time. In the following examples, the fermentation state of yogurt in the container was measured using a device in which a horn antenna was installed in a vector network analyzer, but it goes without saying that the measurement is not limited to this measurement. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0022】[0022]

【実施例1】本実施例においては、ラクトバチラス・ア
シドフィルス(Lactobacillus acidophilus) とストレプ
トコッカス・サーモフィルス(Streptococcus thermophi
lus)の混合スターターを用いた乳酸発酵による発酵乳の
生産管理に本発明方法が使用可能なことを示す。 (発酵乳ミックスの調製)12重量%となるように脱脂
粉乳を水に溶解し、95℃で20分間殺菌し、40℃ま
で冷却させた。この殺菌乳に予め調製したスターターを
3重量%になるように添加混合し、500ml容量の合
成樹脂製容器(ポリエチレン製)に充填し、アルミ箔で
シールした。 (測定)この容器を図1に示すような構成装置を用い
て、ホーンアンテナ間に置き、この装置全体を40℃に
制御した空気恒温槽内に設置した。なお、装置は再現性
を向上させるために、設置位置および高さを厳密に設定
した。即ち、ホーンアンテナの開口部の大きさは107
×138mmのものを使用し、これらのホーンアンテナ
の間隔は200mmに設定した。透過マイクロ波の発
信、受信はネットワークアナライザー(ヒューレットパ
ッカード社製HP8720C)を用いて操作し、アンテ
ナとネットワークアナライザーは同軸導波管変換器(I
CER R32)を介して、フレキシブル同軸ケーブル
で接続した。マイクロ波は、3GHzで測定するように
装置を調整した。なお、装置のキャリブレーションは装
置の使用操作方法の説明に従い、レスポンス校正のスル
ーモードで行った。また温度変化は、容器の周囲に抵抗
式温度センサーを設置して自動的に測定を行った。 (酸度変化の測定)酸度変化の測定は、0.1 Nの標準水
酸化ナトリウム水溶液を用いた容量滴定法によって行っ
た。
Example 1 In this example, Lactobacillus acidophilus and Streptococcus thermophis were used.
It shows that the method of the present invention can be used for production control of fermented milk by lactic acid fermentation using a mixed starter of lus). (Preparation of Fermented Milk Mix) Skim milk powder was dissolved in water so as to be 12% by weight, sterilized at 95 ° C for 20 minutes, and cooled to 40 ° C. To this sterilized milk, a starter prepared in advance was added and mixed so as to be 3% by weight, filled in a synthetic resin container (made of polyethylene) having a capacity of 500 ml, and sealed with an aluminum foil. (Measurement) This container was placed between the horn antennas using a device as shown in FIG. 1, and the entire device was placed in an air thermostatic chamber controlled at 40 ° C. In addition, in order to improve the reproducibility of the device, the installation position and height were set strictly. That is, the size of the opening of the horn antenna is 107
A 138 mm antenna was used, and the distance between these horn antennas was set to 200 mm. Transmission and reception of transmitted microwaves are operated using a network analyzer (HP8720C manufactured by Hewlett-Packard Co.), and the antenna and the network analyzer are coaxial waveguide converters (I
It was connected with a flexible coaxial cable via CER R32). Microwave tuned the instrument to measure at 3 GHz. The device calibration was performed in the through mode of response calibration according to the description of the operating method of the device. The temperature change was automatically measured by installing a resistance temperature sensor around the container. (Measurement of Acidity Change) The acidity change was measured by a volumetric titration method using a 0.1 N standard aqueous sodium hydroxide solution.

【0023】(測定結果)図2に、本装置で測定したヨ
ーグルトの発酵過程における、マイクロ波の減衰の経時
変化を示す。発酵の進行に伴ってマイクロ波の減衰が生
じていることが明らかである。しかし発酵初期の段階で
はマイクロ波の減衰ではなく、増幅が観察された。これ
は温度変化を因子として補正することができた。即ち、
図3に示すような温度変化が発酵中に生じており、この
変化を上記に述べたように、変数として処理することが
できた。以上の、各乳酸酸度測定時のマイクロ波の減衰
と周辺温度の測定結果を表1に示す。
(Measurement Results) FIG. 2 shows changes with time in the attenuation of microwaves during the yogurt fermentation process measured by this apparatus. It is clear that microwave attenuation occurs with the progress of fermentation. However, in the early stage of fermentation, amplification was observed rather than microwave attenuation. This could be corrected by the temperature change. That is,
A temperature change as shown in Fig. 3 occurred during fermentation, and this change could be treated as a variable as described above. Table 1 shows the measurement results of the microwave attenuation and the ambient temperature at the time of measuring each lactic acid acidity.

【0024】[0024]

【表1】 [Table 1]

【0025】上記の測定値を使用して、乳酸酸度とマイ
クロ波の減衰、周辺温度それぞれの関係を求めるために
重回帰分析し、マイクロ波の減衰をx1 、試料の温度ま
たは周辺温度を説明変数とする(7)式を得た。
Using the above measured values, multiple regression analysis was performed to obtain the relationship between lactic acid acidity, microwave attenuation, and ambient temperature. Microwave attenuation was x 1 , sample temperature or ambient temperature was explained. Equation (7), which is a variable, is obtained.

【0026】[0026]

【数4】 乳酸酸度%=−4.316 −1.172 x1 +0.127 x2 (7)式[Formula 4] Lactic acid degree% = -4.316 -1.172 x 1 +0.127 x 2 (7) formula

【0027】上記(7)式に基づいて、マイクロ波の減
衰を測定して得られた乳酸酸度と、同時に32ポイント
で滴定法により乳酸酸度を測定した結果をプロットした
結果を図4に示した。両者の相関関係は、相関係数0.
984とほぼ完全に一致した。なお、図4中の点線は、
±0.05%の誤差範囲を示している。
FIG. 4 shows a plot of the lactic acid acidity obtained by measuring the attenuation of microwaves based on the above equation (7) and the result of measuring the lactic acid acidity by the titration method at 32 points at the same time. . The correlation between the two has a correlation coefficient of 0.
Almost perfectly matched with 984. In addition, the dotted line in FIG.
The error range of ± 0.05% is shown.

【0028】[0028]

【実施例2】本実施例においては、実施例1と同様に調
製し、ラクトバチラス・アシドフィルス(Lactobacillus
acidophilus) とストレプトコッカス・サーモフィルス
(Streptococcus thermophilus)の混合スター ターを用
いた乳酸発酵において、発酵温度を39℃に調整した発
酵室で、実施例1と同様にして、経時的に乳酸酸度を測
定し、発酵時間との関係を観察した。なお、マイクロ波
の減衰と温度測定は実施例1と同様に行い、(7)の回
帰式を用いた。図5に示すように、乳酸酸度は滴定法に
よる測定と一致し、また発酵状態も確認できることが明
らかとなった。従ってマイクロ波の減衰を測定すること
で、乳酸酸度を知ることができ、この結果から発酵状態
を知ることができた。また本発明は、非破壊的に測定で
きるため、密閉容器中での発酵状態を知ることができ、
ヨーグルトなど発酵管理に特に適することが明らかとな
った。
Example 2 In this example, Lactobacillus was prepared in the same manner as in Example 1.
acidophilus) and Streptococcus thermophilus
In the lactic acid fermentation using the mixed starter of (Streptococcus thermophilus), the lactic acid acidity was measured with time in the same manner as in Example 1 in a fermentation chamber in which the fermentation temperature was adjusted to 39 ° C, and the relationship with the fermentation time was measured. I observed. Microwave attenuation and temperature measurement were performed in the same manner as in Example 1, and the regression equation (7) was used. As shown in FIG. 5, it was revealed that the degree of lactic acid was in agreement with the measurement by the titration method, and the fermentation state could be confirmed. Therefore, by measuring the attenuation of microwaves, it was possible to know the lactic acid acidity, and from this result it was possible to know the fermentation state. Further, the present invention, because it can be measured non-destructively, it is possible to know the fermentation state in a closed container,
It became clear that it is particularly suitable for fermentation management such as yogurt.

【0029】[0029]

【発明の効果】本発明の実施により、微生物による発酵
過程の管理をマイクロ波を用いて行う方法が提供され
る。また、このマイクロ波の減衰を測定することによっ
て発酵液中の乳酸の定量測定を行うことができる。
Industrial Applicability According to the present invention, there is provided a method of controlling the fermentation process by microorganisms using microwaves. Further, by measuring the attenuation of the microwave, it is possible to quantitatively measure lactic acid in the fermentation liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる測定装置の構成を示した図であ
る。
FIG. 1 is a diagram showing a configuration of a measuring device used in the present invention.

【図2】乳酸発酵時の透過マイクロ波の減衰経時変化を
示す。
FIG. 2 shows the time-dependent decay of transmission microwave during lactic acid fermentation.

【図3】乳酸発酵時の容器周辺温度の変化を示す。FIG. 3 shows changes in the temperature around the container during lactic acid fermentation.

【図4】本発明方法による測定結果と、滴定法による乳
酸酸度の測定結果の相関関係を求めた結果を示す。
FIG. 4 shows a result of obtaining a correlation between a measurement result by the method of the present invention and a measurement result of lactic acid acidity by a titration method.

【図5】経時的にヨーグルトの発酵状態を本発明方法に
よる測定した結果と、滴定法による乳酸酸度の測定結果
を示す。
FIG. 5 shows the results of measuring the fermentation state of yogurt with time by the method of the present invention and the results of measuring the lactic acid acidity by the titration method.

【符号の説明】[Explanation of symbols]

○:滴定法による乳酸酸度測定値 ●:本発明方法による乳酸酸度測定値 ◯: Lactic acid content measured by titration method ●: Lactic acid content measured by the method of the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発酵食品の生産にあたり、発酵中の基質
にマイクロ波を照射し、透過波の減衰を測定することに
より基質の乳酸酸度を求め、発酵状態の変化を確認する
ことを特徴とする発酵管理方法。
1. When producing a fermented food, the substrate during fermentation is irradiated with microwaves and the attenuation of the transmitted wave is measured to determine the lactic acid acidity of the substrate, and the change in the fermentation state is confirmed. Fermentation management method.
【請求項2】 照射するマイクロ波の周波数領域が20
0MHz以上、20GHz以下である請求項1記載の発
酵管理方法。
2. The frequency range of the microwave to be applied is 20
The fermentation control method according to claim 1, which is 0 MHz or more and 20 GHz or less.
【請求項3】 乳酸発酵基質にマイクロ波を照射し、透
過波の減衰を測定し、予め測定したマイクロ波の減衰量
と乳酸酸度の関係式に基づいて乳酸酸度を測定する方
法。
3. A method of irradiating a lactic acid fermentation substrate with microwaves, measuring the attenuation of transmitted waves, and measuring the degree of lactic acid based on a relational expression between the amount of microwave attenuation and the degree of lactic acid measured in advance.
【請求項4】 マイクロ波の減衰量と乳酸酸度の関係式
が、マイクロ波の減衰と、乳酸発酵基質の温度又は雰囲
気温度を変数とする重回帰分析で得られる回帰式である
請求項3記載の方法。
4. The relational expression between the microwave attenuation and the lactic acid acidity is a regression equation obtained by multiple regression analysis using the microwave attenuation and the temperature of the lactic acid fermentation substrate or the ambient temperature as variables. the method of.
JP9127895A 1995-03-24 1995-03-24 Fermentation management method and lactate acidity measurement method Expired - Fee Related JP2860887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9127895A JP2860887B2 (en) 1995-03-24 1995-03-24 Fermentation management method and lactate acidity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9127895A JP2860887B2 (en) 1995-03-24 1995-03-24 Fermentation management method and lactate acidity measurement method

Publications (2)

Publication Number Publication Date
JPH08256759A true JPH08256759A (en) 1996-10-08
JP2860887B2 JP2860887B2 (en) 1999-02-24

Family

ID=14021999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9127895A Expired - Fee Related JP2860887B2 (en) 1995-03-24 1995-03-24 Fermentation management method and lactate acidity measurement method

Country Status (1)

Country Link
JP (1) JP2860887B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861847B2 (en) 2002-03-27 2005-03-01 Junichi Yamagishi Fermentation controller
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
CN103048342A (en) * 2012-12-12 2013-04-17 江苏大学 Fermentation monitoring device and fermentation monitoring method based on single frequency L wave band electromagnetic wave
CN109259180A (en) * 2018-08-28 2019-01-25 季华实验室 Brewing method, brewing apparatus and brewing system
JP2020091149A (en) * 2018-12-04 2020-06-11 浜松ホトニクス株式会社 Fermentation state monitoring device and method for monitoring state of fermentation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861847B2 (en) 2002-03-27 2005-03-01 Junichi Yamagishi Fermentation controller
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
CN103048342A (en) * 2012-12-12 2013-04-17 江苏大学 Fermentation monitoring device and fermentation monitoring method based on single frequency L wave band electromagnetic wave
CN109259180A (en) * 2018-08-28 2019-01-25 季华实验室 Brewing method, brewing apparatus and brewing system
CN109259180B (en) * 2018-08-28 2022-07-19 季华实验室 Brewing method, brewing device and brewing system
JP2020091149A (en) * 2018-12-04 2020-06-11 浜松ホトニクス株式会社 Fermentation state monitoring device and method for monitoring state of fermentation
CN111272689A (en) * 2018-12-04 2020-06-12 浜松光子学株式会社 Fermentation state monitoring device and fermentation state monitoring method

Also Published As

Publication number Publication date
JP2860887B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
CN109668858A (en) Method based near infrared spectrum detection fermentation process biomass and concentration of component
US20110151503A1 (en) Device and method for bacteriological testing on plasma
US20020119575A1 (en) Method and apparatus for rapid fat content determination
CN109613026B (en) Device for detecting water content of granular solid sample by utilizing microwave
US6920399B2 (en) Method and apparatus for determining the composition of fluids
JP2860887B2 (en) Fermentation management method and lactate acidity measurement method
CN109557014A (en) A kind of method of lactic acid bacteria number in quick detection acidified milk
Akiyama et al. Monitoring the progress of lactic acid fermentation in yogurt manufacturing using terahertz time-domain–attenuated total-reflection spectroscopy
US6333629B1 (en) Method for non-invasively and without contact, inspecting foil enclosed packages, using magnetic resonance techniques
JP2900979B2 (en) Lactic acidity measurement method of lactic acid fermentation broth using infrared ATR method
EP0851027B1 (en) Method for controlling culture of lactic bacteria
JP3087939B2 (en) Simultaneous measurement of food moisture and salt
CN106404819B (en) Method based on quality comparison during Electron Spin Resonance Spectra technology for detection Holothurian machining
Saeedi et al. Non-contact time domain ultra wide band milk spectroscopy
Herrmann et al. In situ diagnostics of zeolite crystallization by ultrasonic monitoring
Hester et al. Quantitative analysis of food products by pulsed NMR: I. Rapid determination of water in skim milk powder and cottage cheese curds
US3701943A (en) Process and double-bridge arrangement for examination of rapid phase and amplitude changes of high-frequency waves caused by a medium under test
EP0435432B1 (en) Method and apparatus for examining and determining the viscosity of a liquid in a container
CN112305067B (en) Method and detection instrument for improving milk quality ultrasonic detection precision
US5269174A (en) Method and apparatus for examining and determining the viscosity of a liquid in a container
CN108333034A (en) A kind of air film for Surface enhanced Raman spectroscopy detection detaches sample pretreatment device
Bridal et al. Frequency dependence of acoustic backscatter from 5 to 65 MHz (0.06< ka< 4.0) of polystyrene beads in agarose
FLEISCHER et al. Estimation of yeast numbers in fruit mix for yogurt
CN109490349B (en) Low-field nuclear magnetic nondestructive analysis method for detecting water activity of white spirit wine
Havmand et al. Measurement of water-holding capacity in fermented milk using near-infrared spectroscopy combined with chemometric methods

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees