JP3087939B2 - Simultaneous measurement of food moisture and salt - Google Patents
Simultaneous measurement of food moisture and saltInfo
- Publication number
- JP3087939B2 JP3087939B2 JP06263224A JP26322494A JP3087939B2 JP 3087939 B2 JP3087939 B2 JP 3087939B2 JP 06263224 A JP06263224 A JP 06263224A JP 26322494 A JP26322494 A JP 26322494A JP 3087939 B2 JP3087939 B2 JP 3087939B2
- Authority
- JP
- Japan
- Prior art keywords
- salt
- water
- measurement
- electromagnetic wave
- attenuation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、食品中の水分及び塩分
の測定方法、特にバター、マーガリン、スープ等の食品
類の水分及び塩分の濃度の同時測定方法に関する。また
本発明は、塩分及び水分を含有する食品中の塩分を測定
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring water and salt content in foods , and more particularly to a method for simultaneously measuring water and salt concentrations in foods such as butter, margarine and soup. The present invention also relates to a method for measuring salt in foods containing salt and water.
【0002】[0002]
【従来の技術】水分及び塩分をともに含有する物質に
は、食品、医薬品、コンクリートミックス、化成品等の
多種多様の物質が存在するが、これらの物質の塩分と水
分の量は製品の品質を左右する重要な因子であり、品質
管理上最も重要な測定項目の一つである。特にバター、
マーガリン、スプレッド、ソース、スープ、ドレッシン
グ等の食品においては、製品の風味や組織の維持には、
水分及び塩分の含有量が決定的な役割を果たしており、
水分及び塩分の濃度の測定は品質管理の上で最重要のフ
ァクターとなっている。これらの食品の製造工程におい
て水分及び塩分濃度の同時のオンライン測定は、品質管
理上及び工程管理上、特に重要視され、その開発が強く
求められていた。2. Description of the Related Art There are a wide variety of substances containing both water and salt, such as foods, pharmaceuticals, concrete mixes, and chemical products. The amount of salt and water in these substances determines the quality of the product. It is an important factor that influences and is one of the most important measurement items for quality control. Especially butter,
In foods such as margarine, spreads, sauces, soups, and dressings, maintaining the flavor and texture of the product requires
Moisture and salt content play a decisive role,
Measurement of water and salt concentration is the most important factor in quality control. Simultaneous on-line measurement of water and salt concentration in the production process of these foods is particularly important in quality control and process control, and development thereof has been strongly demanded.
【0003】従来の食品等の水分測定法には、(1) 乾燥
減量から求める方法、(2) カールフィッシャー法、(3)
赤外線の吸光度から求める方法、(4) 近赤外線の吸光度
から求める方法、(5) マイクロ波の減衰から求める方
法、(6) 誘電率と水分との関係を用いた方法、(7) 容量
滴定法、(8) 電量滴定法等があり、同じく塩分測定法に
は、(9) 試料を水に抽出し、その抽出液を硝酸銀溶液で
滴定するモール法、(10)ナトリウムイオン又は塩素イオ
ンメーターを用いる方法等がある。これらの水分及び塩
分の測定方法は、一般的には食品の水分及び塩分の測定
に用いられるが、食品以外の医薬品、化成品等に対して
も同様に適用されている方法である。上記測定方法は、
水分及び塩分の濃度の個々の測定に用いられているが、
水分及び塩分を同時に測定する方法も検討されており、
例えば、同時測定方法として、(11)比重と誘電率を測定
し重回帰式を用いて水分と塩分を測定する方法(特開平
4-140660)、(12)電磁波の反射波又は透過波から誘電率
の分布を測定し、コンクリートの内部の水分及び塩分の
分布状況を検査する方法(特開昭61-17051)等が提示さ
れている。しかし、簡便で、正確で、且つ、オンライン
測定可能な水分及び塩分の各濃度の同時測定方法は未だ
提案されていなかった。[0003] Conventional methods for measuring the moisture content of foods and the like include (1) a method of obtaining from drying loss, (2) a Karl Fischer method, and (3)
(4) Method based on near-infrared absorbance, (5) Method based on microwave attenuation, (6) Method using relationship between permittivity and moisture, (7) Volumetric titration method , (8) Coulometric titration and the like.Similarly, salt measurement includes (9) the Mohr method, in which a sample is extracted into water and the extract is titrated with a silver nitrate solution, and (10) a sodium ion or chloride ion meter. There are methods to use. These methods for measuring water and salt content are generally used for measuring water and salt content of foods, but are also applied to pharmaceuticals, chemicals, and the like other than foods. The above measurement method is
Used for individual measurement of water and salt concentration,
A method to measure water and salt simultaneously has been studied,
For example, simultaneous measurement methods include (11) a method of measuring specific gravity and dielectric constant and measuring water and salt using a multiple regression equation (Japanese Patent Laid-Open No. 4-140660), and (12) a method of measuring a reflected or transmitted electromagnetic wave from a dielectric wave. A method of measuring the distribution of the rate and inspecting the distribution of water and salt in concrete (Japanese Patent Application Laid-Open No. 61-17051) has been proposed. However, a simple, accurate, and on-line method for simultaneously measuring the concentrations of water and salt has not yet been proposed.
【0004】[0004]
【発明が解決しようとする課題】食品の水分測定方法で
は、従来の水分及び塩分濃度の単独又は同時測定法はそ
れぞれいくつかの欠点を有している。例えば水分測定に
おいては、(1) では、乳及び乳製品の成分規格等に関す
る省令 (昭和26年12月27日、厚生省令第52号)
に規定される公定法であるが、測定に長時間を必要と
し、さらに製造工程中のオンライン測定ができず、(2)
の方法では分析に費用、時間を要し、さらにオンライン
測定にとり入れるためには困難な操作が多く、(3) の方
法では水分の吸収スペクトルに問題があり、測定可能な
水分含有量の範囲が狭く、高水分食品の測定には不向き
であり、(4) の方法では水以外の成分や温度等の測定条
件の影響因子が多く、測定が困難であり、(5) 及び(6)
の方法はオンラインには向いた測定法であるが、塩分を
含む場合には、水分の測定値に大きな影響を及ぼし、こ
の結果、水分値の測定誤差が大きくなり、(7) 及び(8)
の方法ではオンライン測定への組み込みが困難である。
また、塩分測定に関して、(9) の測定法では、測定に時
間を要しオンライン測定システムには組み込み難く、測
定に長時間を要し、(10)の方法は電極の汚れ等の影響が
大きく測定誤差が大きい。In the method of measuring water content of foods, the conventional methods of measuring water and salt concentration individually or simultaneously have some disadvantages. For example, in the measurement of water content, in (1), the ministerial ordinance on milk and dairy product component standards, etc.
Although it is an official method specified in, the measurement requires a long time and furthermore, online measurement during the manufacturing process is not possible, (2)
The method (3) requires cost and time for analysis, and there are many difficult operations to incorporate into the online measurement.The method (3) has a problem with the water absorption spectrum, and the range of the measurable water content is limited. It is not suitable for measurement of foods that are narrow and high moisture, and the method (4) has many factors that affect measurement conditions such as components other than water and temperature, making measurement difficult, and (5) and (6)
Although this method is suitable for online measurement, if it contains salt, it will have a large effect on the measured value of moisture, and as a result, the measurement error of the moisture value will increase, and (7) and (8)
It is difficult to incorporate this method into online measurement.
In addition, regarding the measurement of salinity, the measurement method of (9) requires a long time for measurement and is difficult to incorporate into an online measurement system, and requires a long time for measurement.The method of (10) is greatly affected by electrode contamination and the like. Large measurement error.
【0005】さらに、水分及び塩分の同時測定方法にお
いては、(11)の方法ではオンライン用の比重計と誘
電率測定装置が必要で、経済性が悪く、(12)の方法
では測定対象がコンクリートに限定され、誘電率の分布
のみの測定であるので、水分及び塩分を精度良く測定で
きない。上記測定法の検討の際に、本発明者らは塩分の
存在は水分の測定値に影響を与え、且つ、水分の存在は
塩分の測定に影響を与えることを発見し、結論的に上記
方法では同時測定できないことが確認された。このよう
に、従来方法は、水分及び塩分を迅速に、精度良く、測
定するには困難であった。そこで、本発明者らは水分及
び塩分を含有する食品中に対して照射したマイクロ波等
の電磁波の減衰と位相差の変化について注目し、検討を
行った。その結果、照射電磁波の透過波又は反射波の位
相差と減衰をオンラインで測定し、この測定値と従来の
方法(例えば、水分測定であれば(2)カールフィッシ
ャー法、塩分測定であれば(1)モール法などの精度の
高い測定法)を用いて測定し、求めた両者の各測定値の
重相関関係に着目し、これを検討したところ、電磁波の
透過波又は反射波の位相差と減衰を変数とする重回帰式
が成立し、それを用いて水分及び塩分を同時に精度良く
測定できることを見出し、本発明に至った。従って本発
明では、水分及び塩分を含有する食品中の水分及び塩分
を同時に、且つ、迅速に精度良く、食品に対して非破壊
・非接触で、オンラインで測定できる方法を提供するこ
とを課題とする。Furthermore, in the method for simultaneous measurement of water and salt, the method (11) requires an on-line specific gravity meter and a dielectric constant measuring device, which is inefficient, and the method (12) requires a concrete object. Since the measurement is limited to the distribution of the dielectric constant, moisture and salt cannot be measured with high accuracy. In examining the above measurement method, the present inventors have found that the presence of salt affects the measured value of moisture, and that the presence of water affects the measurement of salt content. It was confirmed that simultaneous measurement was not possible. Thus, it has been difficult to measure water and salt quickly, accurately, and with the conventional method. Therefore, the present inventors paid attention to and studied the attenuation of electromagnetic waves such as microwaves and changes in phase difference irradiated on foods containing water and salt. As a result, the phase difference and attenuation of the transmitted wave or reflected wave of the irradiation electromagnetic wave are measured online, and the measured value is compared with a conventional method (for example, (2) the Karl Fischer method for moisture measurement, or ( 1) Measured using a high-accuracy measurement method such as the molding method), focused on the multiple correlation between the measured values of the two, and examined this. The present inventors have found that a multiple regression equation with attenuation as a variable is established, and that it is possible to simultaneously measure water and salt with high accuracy using the equation. Therefore, an object of the present invention is to provide a method capable of measuring moisture and salt in a food containing water and salt simultaneously, quickly, accurately, non-destructively and non-contact with food , and online. I do.
【0006】[0006]
【課題を解決するための手段】一般に電磁波を試料に照
射したとき、その透過波あるいは反射波から得られる測
定項目として減衰、位相差、反射インピーダンスあるい
は伝送速度等があるが、本発明者らは、水分及び塩分を
含有する食品に電磁波を照射し、その透過波又は反射波
の照射波に対する減衰と位相差を同時に測定し、予め求
めた水分及び塩分の実測値とこれらの測定値との一定の
重相関関係を示す重回帰式を作っておき、この式に透過
波又は反射波のエネルギーの減衰と位相差の測定値を代
入することによって、水分と塩分濃度の変化量を短時間
に高精度で測定できることを見出した。この重回帰式
は、水分をy1、塩分をy2とし、透過又は反射電磁波
の位相差x1、減衰x2としたとき、それぞれ次の数
1、数2で表わされる。In general, when an electromagnetic wave is irradiated on a sample, attenuation, phase difference, reflection impedance, transmission speed, and the like are obtained as measurement items obtained from the transmitted or reflected wave. Irradiate foods containing water and salt with electromagnetic waves, simultaneously measure the attenuation and phase difference of the transmitted or reflected waves with respect to the irradiated waves, and keep the measured values of water and salt obtained in advance and these measured values constant By preparing a multiple regression equation that shows the multiple correlation of the above, and substituting the measured values of the energy attenuation and phase difference of the transmitted or reflected wave into this equation, the amount of change in the water and salt concentration can be quickly increased. It has been found that it can be measured with accuracy. This multiple regression equation is expressed by the following Equations 1 and 2 , when the moisture is y 1 , the salt content is y 2, and the phase difference x 1 and the attenuation x 2 of the transmitted or reflected electromagnetic wave are x 1 and x 2 , respectively.
【0007】[0007]
【数1】 (Equation 1)
【0008】[0008]
【数2】 (Equation 2)
【0009】重回帰分析は、複数の変数(説明変数)を
用いて、統計的に回帰関係を求める手法で、複数の独立
事象の関係を求める時に使用される。この統計手法は当
業者間では公知である〔新版品質管理便覧(1977年、日
本規格協会刊)などを参照〕。このような重回帰分析に
よって得られた回帰式(I)及び(II)に、変数である透過
又は反射電磁波の位相差x1 、減衰x2 の数値を代入し
て水分及び塩分を同時に求めることができる。塩分及び
水分がこのような重回帰式と、透過又は反射電磁波の位
相差x1 、減衰x2 から求められることは、本発明者ら
が初めて見いだしたものである。The multiple regression analysis is a technique for statistically obtaining a regression relationship using a plurality of variables (explanatory variables), and is used when obtaining a relationship between a plurality of independent events. This statistical method is well known to those skilled in the art (see, for example, New Edition Quality Control Handbook (1977, published by the Japan Standards Association)). Simultaneous determination of moisture and salinity by substituting the numerical values of the phase difference x 1 and attenuation x 2 of the transmitted or reflected electromagnetic waves as variables into the regression equations (I) and (II) obtained by such multiple regression analysis. Can be. The present inventors have found for the first time that the salt content and the water content can be determined from such a multiple regression equation and the phase difference x 1 and attenuation x 2 of the transmitted or reflected electromagnetic wave.
【0010】電磁波を被測定物に照射し、被測定物質の
吸収や減衰を測定する場合、上記のように透過波を検出
するか、反射波を検出するかいずれかの手段を選択する
ことができる。透過波を検出する場合には、単純な1回
通過による減衰及び位相変化を見るため、簡単な構成の
装置でよいが、反射波を検出する場合には、電磁波照射
部での反射を取り除いて、減衰及び位相差を測定しなけ
ればならず、装置の構成が複雑になりやすい。本発明の
方法においては、反射波、透過波いずれの場合も採用で
きるが、以下の説明及び実施例では、透過波を測定する
場合について説明を行う。なお、電磁波は電磁場の振動
を表わす用語であり、本発明においては、電磁波のうち
マイクロ波を含む100MHz以上、10GHz以下の
ものが用いられる。特に、波長1m以下、周波数1MH
z〜5GHzの電磁波が好ましい。When irradiating an object to be measured with an electromagnetic wave and measuring the absorption or attenuation of the substance to be measured, it is necessary to select either means for detecting a transmitted wave or detecting a reflected wave as described above. it can. When detecting a transmitted wave, it is sufficient to use a device with a simple configuration in order to see the attenuation and phase change due to a simple single pass, but to detect a reflected wave, remove the reflection at the electromagnetic wave irradiation unit. , Attenuation and phase difference must be measured, and the configuration of the apparatus tends to be complicated. In the method of the present invention, both the reflected wave and the transmitted wave can be adopted. In the following description and examples, the case where the transmitted wave is measured will be described. In addition, the electromagnetic wave is a term indicating the vibration of the electromagnetic field, and in the present invention, among the electromagnetic waves, those including microwaves of 100 MHz or more and 10 GHz or less are used. In particular, wavelength 1m or less, frequency 1MH
Electromagnetic waves of z to 5 GHz are preferred.
【0011】電磁波を被測定物に照射し、透過波を検出
する方法として、公知の電磁波発生装置と、電磁波検出
装置を用いた装置より求めることができ、このような装
置として市販の装置を使用することもできる。例えば特
開昭59−102146号公報及び特開平 2-19750号に開示され
たマイクロ波による水分測定装置は、水分測定を目的と
した装置であって、通常は、マイクロ波の発信用のアン
テナと受信用のアンテナを装置中に含むものであり、透
過波の位相変化と減衰を測定できる装置であればいずれ
も使用可能である。また、市販の装置として、ベルトホ
ルド社(ドイツ)からマイクロモイストの商品名で販売
されているマイクロ波利用の水分計があり、特に本発明
をオンラインで使用するときに適している。このベルト
ホルド社のマイクロモイストの装置の構成概念図を図1
に示した。このような発信側及び受信側ともに、ホーン
型アンテナを用いた装置は感度が優れ、使用上有利であ
り、容易に透過波の位相差及び減衰を検出することがで
きる。位相変化は、発信波の位相(度)に対する位相遅
れ(度)を測定し、透過による減衰は、発信マイクロ波
の出力と透過波のエネルギー比の対数値として求める。A method for irradiating an object to be measured with an electromagnetic wave and detecting a transmitted wave can be obtained from a known electromagnetic wave generating device and a device using an electromagnetic wave detecting device, and a commercially available device is used as such a device. You can also. For example, microwave moisture measuring devices disclosed in JP-A-59-102146 and JP-A-2-19750 are devices for measuring moisture, and usually have an antenna for transmitting microwaves. Any device that includes a receiving antenna in the device and can measure the phase change and attenuation of the transmitted wave can be used. As a commercially available device, there is a microwave-based moisture meter sold by Berthold (Germany) under the trade name of MicroMoist, which is particularly suitable when the present invention is used online. Fig. 1 shows a conceptual diagram of the configuration of this belt moist micro-moist device.
It was shown to. A device using a horn-type antenna on both the transmitting side and the receiving side has excellent sensitivity and is advantageous in use, and can easily detect the phase difference and attenuation of a transmitted wave. The phase change measures the phase delay (degree) with respect to the phase (degree) of the transmitted wave, and the attenuation due to transmission is obtained as a logarithmic value of the energy ratio of the output of the transmitted microwave to the transmitted wave.
【0012】本発明においては、このようなマイクロ波
発信及び検出装置を使用して、被測定物の水分及び塩分
を同時に測定することを特徴とする。このため、一定の
濃度範囲の試料の水分及び塩分を精度の良い測定法で予
め分析を行っておく必要がある。本発明の方法によれ
ば、実施例から推察すると、実測値は予め求めた重回帰
式と非常に密接な重相関関係を有しており、従来技術に
よる水分又は塩分の個々の測定値と非常に良く一致す
る。回帰式の統計的な信頼性は非常に高いことが確認で
きる。重回帰分析にあたって、測定試料数は、通常、統
計的手法において多数の試料を測定することにより、精
度は向上するので、20検体程度を測定して、重回帰式
を求めることが好ましいが、本発明の方法では10〜1
5検体の測定でも十分である。本発明方法の基礎となる
従来技術による水分又は塩分測定方法には以下の方法が
適用できる。水分測定法については、(1) 乾燥減量から
求める方法、(2) カールフィッシャー法、(3) 赤外線の
吸光度から求める方法、(4) 近赤外線の吸光度から求め
る方法、(5) マイクロ波の減衰から求める方法、(6) 誘
電率と水分との関係を用いた方法、(7) 容量滴定法及び
(8) 電量滴定法が、塩分測定法については(9) 硝酸銀溶
液で滴定するモール法、(10)ナトリウムイオン又は塩素
イオンメーターを用いた測定法が適用できるが、試料の
状態や濃度範囲、試料の量、試料の数によって適宜選択
すればよい。The present invention is characterized in that moisture and salt content of an object to be measured are simultaneously measured using such a microwave transmission and detection device. For this reason, it is necessary to analyze in advance the moisture and salt content of the sample in a certain concentration range by a highly accurate measurement method. According to the method of the present invention, as inferred from the examples, the actually measured values have a very close multiple correlation with the multiple regression equation determined in advance, and the actual measured values are extremely different from the individual measured values of the water or salt content according to the prior art. Matches well with It can be confirmed that the statistical reliability of the regression equation is very high. In the multiple regression analysis, the number of measurement samples is generally improved by measuring a large number of samples by a statistical method. Therefore, it is preferable to measure about 20 samples to obtain a multiple regression equation. In the method of the invention, 10-1
Measurement of five samples is sufficient. The following methods can be applied to the water or salt measurement method according to the prior art, which is the basis of the method of the present invention. As for the moisture measurement method, (1) method from loss on drying, (2) Karl Fischer method, (3) method from infrared absorbance, (4) method from near infrared absorbance, (5) microwave attenuation (6) method using the relationship between dielectric constant and moisture, (7) volumetric titration and
(8) Coulometric titration, (9) Mohr method using titration with silver nitrate solution, and (10) Measurement method using sodium ion or chloride ion meter for salt content measurement method can be applied. What is necessary is just to select suitably according to the quantity of a sample and the number of samples.
【0013】このようにして予め得た、水分及び塩分量
と同一又は同質の試料に対してマイクロ波照射装置によ
り一定の条件下にマイクロ波を照射し、その透過波を検
出し、位相変化及び減衰を測定する。このときの発信エ
ネルギーや検出感度は、使用する装置の仕様に従って行
って良いが、発信マイクロ波の周波数は、本発明の効果
に大きな影響を及ぼすため、100MHz〜10GH
z、好ましくは100MHz〜5GHzに調整する。こ
のとき、発信マイクロ波が100MHz以下の場合、ホ
ーンアンテナを大きくしなければならず、実用が困難に
なり、10GHz以上の場合には、被測定物への電磁波
の吸収が大きく、透過波の電圧が小さくなり、検出でき
なくなって、位相変化に対する被測定物の厚みの影響が
大きくなる。A sample previously obtained in this way and having the same or the same moisture and salt content is irradiated with microwaves by a microwave irradiation device under a certain condition, the transmitted wave is detected, and the phase change and Measure the attenuation. The transmission energy and detection sensitivity at this time may be determined according to the specifications of the device to be used, but the frequency of the transmission microwave has a great effect on the effect of the present invention.
z, preferably adjusted to 100 MHz to 5 GHz. At this time, if the transmitted microwave is 100 MHz or less, the horn antenna must be enlarged, which makes practical use difficult. If the transmitted microwave is 10 GHz or more, the electromagnetic wave is greatly absorbed by the DUT, and the voltage of the transmitted wave is large. Becomes smaller and cannot be detected, and the influence of the thickness of the DUT on the phase change increases.
【0014】予め水分及び塩分を測定するのに、試料は
容器中に入れて測定するが、オンライン測定を行うこと
も可能である。この測定において、15検体以上の試料
の透過波の減衰と位相差を求め、予め測定しておいた従
来の方法によって測定した水分及び塩分濃度を基に、重
回帰分析を行い、重回帰式の(I)及び(II)を立て
る。この重回帰式を求めた後は、食品に電磁波を回帰式
を求めたと同様の条件で照射し、透過波を検出し、この
透過波の減衰と位相差を先に求めた重回帰式に代入し、
目的とする食品中の水分及び塩分を同時に求めることが
できる。なお、この重回帰式の算出と、測定試料による
透過波の減衰と位相差を代入し演算する手順は、予めコ
ンピュータにプログラムしておき、測定と同時に塩分及
び水分を同時に表示することもできるので、本発明では
測定結果を製造工程にフィードバックすることによりリ
アルタイムで製造条件を制御することが可能となった。
重回帰分析は、測定試料の水分及び塩分の濃度の範囲が
変化する毎に行うことにより、測定精度を向上させるこ
とができる。本発明においては、水分の測定は、0〜4
0%、40〜80%、80%以上の範囲で重回帰分析の
結果を適用することができ、特に、0〜20%、20〜
40%、40〜60%、60〜80%、80%以上のそ
れぞれの範囲で重回帰分析を行うことが好ましい。ま
た、塩分のときは、対象とする物質によって異なるが、
食品のように微量の塩分変化を把握したい場合には、0
%から5%きざみで重回帰分析を行っておくことが好ま
しく、特に0%から1.5%きざみで重回帰分析を行っ
て、回帰式を求めておくことが好ましい。なお、化成品
においても、塩分の高濃度試料においては、10%きざ
みの重回帰分析を行って得られた回帰式によって、目的
の範囲の濃度を正しく求めることができる。以下に実施
例を示し、本発明をさらに詳細に説明するが、本発明の
範囲はこれらの実施例に限定されるものではない。In order to measure the water content and the salt content in advance, the sample is put in a container and measured, but it is also possible to carry out online measurement. In this measurement, the attenuation and phase difference of the transmitted wave of 15 or more samples are obtained, and based on the water and salt concentration measured by the conventional method, which has been measured in advance, a multiple regression analysis is performed. Set up (I) and (II). After obtaining the multiple regression equation, the food is irradiated with electromagnetic waves under the same conditions as for the regression equation, the transmitted wave is detected, and the attenuation and phase difference of the transmitted wave are substituted into the previously determined multiple regression equation. And
The water and salt content in the target food can be determined simultaneously. The procedure of calculating this multiple regression equation and substituting and calculating the attenuation and phase difference of the transmitted wave by the measurement sample can be programmed in a computer in advance, and the salt content and the moisture can be displayed simultaneously with the measurement. In the present invention, it is possible to control the manufacturing conditions in real time by feeding back the measurement results to the manufacturing process.
The multiple regression analysis is performed every time the range of the water and salt concentrations of the measurement sample changes, thereby improving the measurement accuracy. In the present invention, the measurement of moisture is from 0 to 4
The results of the multiple regression analysis can be applied in the range of 0%, 40 to 80%, 80% or more, and in particular, 0 to 20%, 20 to 20%.
Multiple regression analysis is preferably performed in the respective ranges of 40%, 40 to 60%, 60 to 80%, and 80% or more. In addition, when salt content varies depending on the target substance,
If you want to understand a small amount of salt change like food,
The multiple regression analysis is preferably performed in increments of 5% to 5%, and it is particularly preferable to perform the multiple regression analysis in increments of 0% to 1.5% to obtain a regression equation. In addition, chemical products
Also , in the case of the sample having a high concentration of salt, the concentration in the target range can be correctly obtained by the regression equation obtained by performing the multiple regression analysis in increments of 10%. Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to these Examples.
【0015】[0015]
【実施例1】バターの製造工程において、バター連続製
造装置のノズル部にホーンアンテナを設置し、1GHz
から5.8GHzの周波数を含む電磁波をバター製造中
に照射し、その透過波の中から1GHzの周波数の電磁
波のエネルギー減衰と位相差を測定した。減衰と位相差
の測定には、市販のマイクロ波水分測定装置(上記ベル
トホルド社製マイクロモイスト水分計)を使用した。こ
の測定装置は、発信用ホーンアンテナと、受信用ホーン
アンテナからなり、発信部のエネルギーと位相に対する
受信部のエネルギーと位相を求め、その差を表示するこ
とが可能となっている。この装置のホーンアンテナの設
置部の断面図及び構成を図1に示す。この装置の使用に
当っては、電磁波の反射が測定に影響を与えないよう、
ホーンアンテナとバターの間を図1に示すように、ポリ
プロピレン板で仕切る必要があった。照射エネルギーは
1μWにし、減衰と位相差はコンピューター(日本電気
社製)を用いて経時的に測定した。この測定時と同一の
時間に、別にノズルから試料を採取した。採取した試料
の水分の測定法は、厚生省令に定める公定法に従った。
公定法による水分の測定に当っては、まず、10g の試料
をアルミカップに入れ、全重量を測定した。電熱器上で
試料を入れたアルミカップを軽く振りながら加熱し、試
料がきつね色になった段階で加熱を終了し、デシケータ
ー中で恒温になるまで保存した。最後に試料を入れたア
ルミカップを秤量して加熱前の重量から差し引いて蒸発
した水の重量を求め、加熱前の試料の重量で除して水分
を求めた。また、塩分はモール法(林 弘通 監修、
「乳業技術綜典」上巻、357〜358頁、1977
年、酪農技術普及学会刊行)に従って測定した。上記テ
ストを20検体について行なった。測定結果を下記の表
1に示した。[Embodiment 1] In a butter manufacturing process, a horn antenna was installed at a nozzle of a continuous butter manufacturing apparatus, and a 1 GHz
An electromagnetic wave having a frequency of 5.8 GHz to 5.8 GHz was irradiated during the production of butter, and the energy attenuation and phase difference of the electromagnetic wave having a frequency of 1 GHz were measured from the transmitted waves. For the measurement of the attenuation and the phase difference, a commercially available microwave moisture meter (the above-mentioned Micromoist moisture meter manufactured by Belthold) was used. This measuring device is composed of a transmitting horn antenna and a receiving horn antenna, and is capable of calculating the energy and phase of the receiving unit with respect to the energy and phase of the transmitting unit, and displaying the difference therebetween. FIG. 1 shows a cross-sectional view and a configuration of a horn antenna installation portion of this device. When using this device, make sure that the reflection of electromagnetic waves does not affect the measurement.
As shown in FIG. 1, the horn antenna and the butter had to be separated by a polypropylene plate. The irradiation energy was 1 μW, and the attenuation and the phase difference were measured over time using a computer (manufactured by NEC Corporation). At the same time as this measurement, a sample was separately taken from the nozzle. The method of measuring the moisture of the collected sample was in accordance with the official method specified by the Ordinance of the Ministry of Health and Welfare.
First, 10 g of a sample was placed in an aluminum cup, and the total weight was measured. The aluminum cup containing the sample was heated on an electric heater while shaking lightly. When the sample turned brown, the heating was stopped and the sample was stored in a desiccator until the temperature became constant. Finally, the aluminum cup containing the sample was weighed and subtracted from the weight before heating to obtain the weight of the evaporated water, and then divided by the weight of the sample before heating to obtain the moisture. In addition, salt content is calculated by the Mall Law (supervised by Hiromichi Hayashi,
The Dairy Industry Technical Guide, Volume 1, pages 357-358, 1977
Year, published by Dairy Technology Promotion Association). The above test was performed on 20 samples. The measurement results are shown in Table 1 below.
【0016】[0016]
【表1】 [Table 1]
【0017】上記の測定結果について、重回帰分析を行
い、以下の数3、数4の関係を得た。A multiple regression analysis was performed on the above measurement results, and the following equations 3 and 4 were obtained.
【0018】[0018]
【数3】 (Equation 3)
【0019】[0019]
【数4】 (Equation 4)
【0020】上記回帰式を用いて、有塩バターの製造工
程中で、水分及び塩分を同時測定した。さらにこの製造
中に、随時、試料を採取し、この採取した試料の公定法
によって水分を、モール法によって塩分をそれぞれ測定
し、本発明による測定値と対比した結果を下記表2に示
した。Using the above regression equation, water and salinity were simultaneously measured during the production of salted butter. Further, during this production, a sample was collected at any time, and the obtained sample was measured for water by the official method and salt content by the Mohr method, and the results of comparison with the measured values according to the present invention are shown in Table 2 below.
【0021】[0021]
【表2】 [Table 2]
【0022】上記測定結果を、本発明方法を縦軸に、従
来方法を横軸にプロットし、水分(図2)、塩分(図
3)についてそれぞれの従来方法と本発明方法の相関関
係を見た。図2によれば、殆どの測定結果が、水分値±
0.2%の範囲に入っており、バターの連続製造を目的
とした場合に充分な精度で測定できることが確認でき
た。また、図3によれば、殆どの測定結果がこの塩分値
±0.1%の範囲に入っており、バターの連続製造を目
的とした場合に、塩分は充分な精度で測定できることが
確認できた。以上の結果、バタ−の製造工程での連続的
な水分及び塩分の同時測定が、照射した電磁波の透過波
の減衰と位相差を測定することで可能なことが明らかと
なった。また、この発明の測定方法は、オンライン連続
測定に適用することも可能であることが確められた。The above measurement results are plotted on the vertical axis for the method of the present invention and on the horizontal axis for the conventional method, and the correlation between water (FIG. 2) and salinity (FIG. 3) between the conventional method and the present method is shown. Was. According to FIG. 2, most of the measurement results are indicated by the moisture value ±
It was within the range of 0.2%, and it was confirmed that the measurement could be performed with sufficient accuracy when the purpose was continuous production of butter. According to FIG. 3, most of the measurement results fall within the range of this salt content ± 0.1%, and it can be confirmed that the salt content can be measured with sufficient accuracy when the purpose is to produce butter continuously. Was. As a result, it has been clarified that continuous simultaneous measurement of water and salt in the manufacturing process of butter is possible by measuring the attenuation and phase difference of the transmitted electromagnetic wave. It has also been confirmed that the measurement method of the present invention can be applied to online continuous measurement.
【0023】[0023]
【実施例2】本実施例においては、多様な水分含量と塩
分含量を示す食品としてマーガリンやファットスプレッ
ドを取り上げ、このような油脂の乳化物の水分及び塩分
を同時に測定した。脂肪率を変え、食塩を添加した水中
油型乳化物を調製し、その水分と塩分の同時測定を試み
た(水分45%〜75%、塩分0〜1.5%の範囲)。
ポンプ、乳化機、タンクを用いて循環系を構成し、内径
50mmのステンレス配管に市販のマイクロ波水分計
(Belthold社製のフローセル)を設置した。このフロー
セルの構造の模式図を図6に示した。この構造の特徴
は、内径約50mmのセラミックスの配管に電磁波が透
過するようにアンテナを配管と一体化させたことであ
る。マイクロ波のエネルギーは1μWとし、実施例1と
同様の周波数のマイクロ波を照射し、1GHzの波数の
減衰と位相差を測定した。なお、検出測定は実施例1と
同じく、マイクロモイスト水分計を用いて測定した。Example 2 In this example, margarine and fat spread were taken as foods having various water contents and salt contents, and the water content and the salt content of such an emulsion of fats and oils were measured simultaneously. An oil-in-water emulsion was prepared by changing the fat percentage and adding salt, and the simultaneous measurement of the water content and the salt content was attempted (range of water content: 45% to 75%, salt content: 0 to 1.5%).
A circulation system was configured using a pump, an emulsifier, and a tank, and a commercially available microwave moisture meter (a flow cell manufactured by Belthold) was installed in a stainless steel pipe having an inner diameter of 50 mm. FIG. 6 shows a schematic diagram of the structure of this flow cell. The feature of this structure is that the antenna is integrated with the piping so that electromagnetic waves can pass through the ceramic piping having an inner diameter of about 50 mm. The energy of the microwave was 1 μW, and a microwave having the same frequency as in Example 1 was irradiated to measure the attenuation and the phase difference of the wave number of 1 GHz. In addition, the detection measurement was performed using the micromoist moisture meter similarly to Example 1.
【0024】上記の水中油型乳化物の脂肪率及び塩分を
変えて調製した試料30検体の減衰、位相差と調整水
分、調整塩分との関係式を重回帰分析を用いて求めた。
その結果、以下の数5、数6を得た。The relational expressions between the attenuation, the phase difference, the adjusted water content, and the adjusted salt content of 30 samples prepared by changing the fat percentage and the salt content of the above oil-in-water emulsion were determined using multiple regression analysis.
As a result, the following Expressions 5 and 6 were obtained.
【0025】[0025]
【数5】 (Equation 5)
【0026】[0026]
【数6】 (Equation 6)
【0027】上記関係式を用いて、適宜の塩分及び水分
濃度に調製した水中油型乳化物の水分及び塩分を同時測
定した。本発明方法と、採取した試料の水分及び塩分と
の各相関をそれぞれ図4、図5に示す。図4に示すよう
に、精度良く水分を測定できることがわかった。図5
は、塩分に関する相関を示す。図5によれば、0〜1.5
%の塩分濃度範囲で精度良く、水中油型乳化物の塩分を
測定可能であった。この測定からオンライン連続測定が
可能であることが確められた。Using the above relational expressions, the water content and the salt content of the oil-in-water emulsion prepared to an appropriate salt content and water concentration were simultaneously measured. FIGS. 4 and 5 show the correlation between the method of the present invention and the moisture and salt content of the collected sample, respectively. As shown in FIG. 4, it was found that water could be measured with high accuracy. FIG.
Indicates a correlation with respect to salinity. According to FIG.
%, The salinity of the oil-in-water emulsion could be measured accurately. From this measurement, it was confirmed that online continuous measurement was possible.
【0028】[0028]
【発明の効果】本発明の実施により、電磁波を用いた水
分及び塩分の同時測定が可能となった。また、本測定方
法により、従来技術では困難であった、水分及び塩分の
同時オンライン測定及び連続測定を行うことが可能とな
った。また、本発明方法の実施によって食品の水分及び
塩分の測定のばらつきがなくなり、測定時間も短縮でき
る。さらに、試料測定センサーと測定試料を接触させる
必要はなく、微生物汚染等の品質面の問題も発生するこ
とがない。According to the present invention, simultaneous measurement of water and salt using electromagnetic waves becomes possible. In addition, the present measurement method enables simultaneous on-line measurement and continuous measurement of water and salt, which were difficult in the prior art. In addition, by implementing the method of the present invention, there is no variation in the measurement of water and salt content of food, and the measurement time can be shortened. Furthermore, there is no need to bring the sample measurement sensor and the measurement sample into contact, and there is no quality problem such as microbial contamination.
【図1】電磁波発生装置及び透過波検出装置の断面図及
び装置構成を示す。FIG. 1 shows a cross-sectional view and a device configuration of an electromagnetic wave generator and a transmitted wave detector.
【図2】バター製造における電磁波を利用して測定した
水分と公定法による水分との相関を示す。FIG. 2 shows a correlation between moisture measured using electromagnetic waves in butter production and moisture by an official method.
【図3】バター製造における電磁波を利用し測定した塩
分とモール法による塩分との相関を示す。FIG. 3 shows the correlation between the salinity measured using electromagnetic waves in butter production and the salinity according to the Mohr method.
【図4】水中油型乳化物の電磁波を利用して測定した水
分と調整水分との相関を示す。FIG. 4 shows a correlation between water measured using electromagnetic waves of an oil-in-water emulsion and adjusted water.
【図5】水中油型乳化物の電磁波を利用して測定した塩
分と調整塩分との相関を示す。FIG. 5 shows the correlation between the salt content of an oil-in-water emulsion and the adjusted salt content measured using electromagnetic waves.
【図6】実施例2で採用したフローセルの概念図を示
す。FIG. 6 shows a conceptual diagram of a flow cell adopted in Example 2.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 健介 東京都小平市回田町238−6 (56)参考文献 特開 平4−140660(JP,A) 特開 平3−221851(JP,A) 特開 昭52−109995(JP,A) 特開 昭61−17051(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kensuke Ito 238-6 Haritacho, Kodaira-shi, Tokyo (56) References JP-A-4-140660 (JP, A) JP-A-3-221185 (JP, A) JP-A-52-109995 (JP, A) JP-A-61-17051 (JP, A)
Claims (3)
下でマイクロ波の周波数を有している電磁波を食品に照
射し、該照射電磁波の透過波又は反射波を検出し、この
検出電磁波の位相差変化と減衰を測定することにより、
予め実測値から求めた回帰式に基づいて食品中の水分及
び塩分を同時に測定することを特徴とする食品中の水分
及び塩分の同時測定方法。1. The frequency is 100 MHz or more and 10 GHz or less.
By irradiating the food with an electromagnetic wave having a microwave frequency below, detecting a transmitted wave or a reflected wave of the irradiated electromagnetic wave, and measuring the phase difference change and attenuation of the detected electromagnetic wave. ,
A simultaneous measurement method of water and salt in food, wherein the method simultaneously measures water and salt in food based on a regression equation previously obtained from actually measured values.
下でマイクロ波の周波数を有している電磁波を食品に照
射し、該照射電磁波の透過波又は反射波を検出し、食品
中の水分及び塩分を測定する方法において、この検出電
磁波の位相差変化と減衰の実測値と水分及び塩分の実測
値から重回帰分析により、回帰式を求め、この回帰式に
測定した電磁波の透過後又は反射後の位相変化と減衰の
値を代入することにより食品中の水分及び塩分を同時に
求めることを特徴とする請求項1記載の同時測定方法。2. The frequency is 100 MHz or more and 10 GHz or less.
Irradiation <br/> refers to electromagnetic waves having a frequency of the microwave under the food, detects the transmitted wave or a reflected wave of the electromagnetic wave for irradiation, food
In the method of measuring water and salt content, a regression equation is obtained by a multiple regression analysis from the measured value of the phase difference change and attenuation of the detected electromagnetic wave and the measured value of water and salt, and the transmission of the electromagnetic wave measured by the regression equation is determined. 2. The simultaneous measurement method according to claim 1 , wherein the water content and the salt content in the food are determined simultaneously by substituting the values of the phase change and the attenuation after or after reflection.
下でマイクロ波の周波数を有している電磁波を食品に照
射し、該照射電磁波の透過波又は反射波を検出し、この
検出電磁波の位相差変化と減衰の実測値と水分及び塩分
の実測値から重回帰分析により、回帰式を求め、この回
帰式に測定した電磁波の透過後又は反射後の位相変化と
減衰の値を代入することにより食品中の塩分を求めるこ
とを特徴とする測定方法。3. The frequency is not less than 100 MHz and not more than 10 GHz.
An electromagnetic wave having a microwave frequency below is irradiated on the food, a transmitted wave or a reflected wave of the irradiated electromagnetic wave is detected, and the phase difference change and attenuation of the detected electromagnetic wave are measured and the moisture is detected. The regression equation is determined by multiple regression analysis from the measured values of salinity and salinity, and the salinity in the food is determined by substituting the measured values of the phase change and attenuation after transmission or reflection of the electromagnetic wave into this regression equation. Measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06263224A JP3087939B2 (en) | 1994-10-03 | 1994-10-03 | Simultaneous measurement of food moisture and salt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06263224A JP3087939B2 (en) | 1994-10-03 | 1994-10-03 | Simultaneous measurement of food moisture and salt |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08105845A JPH08105845A (en) | 1996-04-23 |
JP3087939B2 true JP3087939B2 (en) | 2000-09-18 |
Family
ID=17386510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06263224A Expired - Fee Related JP3087939B2 (en) | 1994-10-03 | 1994-10-03 | Simultaneous measurement of food moisture and salt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3087939B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2359630A (en) * | 2000-02-26 | 2001-08-29 | Frank Thompson | Measurement of moisture content using microwave radiation |
SE517701C2 (en) * | 2000-08-31 | 2002-07-02 | October Biometrics Ab | Device, method and system for measuring distrubution of selected properties in a material |
SE527898C2 (en) * | 2004-12-22 | 2006-07-04 | Astrazeneca Ab | Procedure for drug preparation |
SE527900C2 (en) * | 2004-12-22 | 2006-07-04 | Astrazeneca Ab | Spectroscopic procedure |
WO2009041252A1 (en) * | 2007-09-25 | 2009-04-02 | Meiji Dairies Corporation | Method of producing butter and method of measuring butter components |
DE102009047300A1 (en) * | 2009-11-30 | 2011-06-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Measuring device i.e. multi-colored table radar, for mobile phone for transillumination of food to estimate physiological calorific value of food, has analyzing device analyzing food based on reflected radiation |
JP6253096B2 (en) * | 2014-02-27 | 2017-12-27 | 国立研究開発法人産業技術総合研究所 | Electromagnetic wave characteristic evaluation equipment |
JP2019178847A (en) * | 2018-03-30 | 2019-10-17 | Jfeエンジニアリング株式会社 | Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method |
JP2019178846A (en) * | 2018-03-30 | 2019-10-17 | Jfeエンジニアリング株式会社 | Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method |
CN109613026B (en) * | 2019-01-24 | 2021-11-09 | 吉林大学 | Device for detecting water content of granular solid sample by utilizing microwave |
-
1994
- 1994-10-03 JP JP06263224A patent/JP3087939B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08105845A (en) | 1996-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6253096B2 (en) | Electromagnetic wave characteristic evaluation equipment | |
US8530239B2 (en) | Sample combination for NMR measurements of fats and oils | |
JP3087939B2 (en) | Simultaneous measurement of food moisture and salt | |
Masot et al. | Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy | |
Isengard | Rapid water determination in foodstuffs | |
RT et al. | Microwave dielectric spectroscopy A versatile methodology for online, non-destructive food analysis, monitoring and process control | |
Henning et al. | In-line concentration measurement in complex liquids using ultrasonic sensors | |
RU2564382C2 (en) | Spectral analysis of fluid non-uniform substance in middle infrared range | |
EP1696228A1 (en) | Electronic moisture tester | |
Fulladosa et al. | Estimation of dry-cured ham composition using dielectric time domain reflectometry | |
Telis‐Romero et al. | Temperature and water content influence on thermophysical properties of coffee extract | |
JP2019100912A (en) | Identification device of substance using electromagnetic wave and identification method | |
JP3090302B2 (en) | How to measure moisture and salt | |
Feng et al. | Evaluation of properties in different casings modified by surfactants and lactic acid using terahertz spectroscopy–A feasibility study | |
Omer et al. | EM measurements of glucose-aqueous solutions | |
Ávila et al. | Determination of solids and fat contents in bovine milk using a phase-locked resonant cavity sensor | |
Khalid | The application of microstrip sensors for determination of moisture content in Hevea Rubber Latex | |
Ng et al. | Determination of added fat in meat paste using microwave and millimetre wave techniques | |
Kang et al. | Determination of the concentration of alum additive in deep-fried dough sticks using dielectric spectroscopy | |
Di Caro et al. | Using a SVD-based algorithm for T 2 spectrum calculation in TD-NMR application to detect hidden defects in hazelnuts | |
HORI | Effects of rennet treatment and water content on thermal conductivity of skim milk | |
US7220591B2 (en) | Method and apparatus for rapid fat content determination | |
Li et al. | Analysis of Near Infrared Spectra of Apple Soluble Solids Content Based on BP Neural Network | |
Huong et al. | Non-destructive prediction of moisture content of lime (Citrus aurantifolia Swingle'Paan') by multiple regression analysis of its electrical and physical properties | |
Slyva et al. | Application of the impedance method for determination of monosodium glutamate in food products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |