JPH08254244A - Composite damping metal plate - Google Patents

Composite damping metal plate

Info

Publication number
JPH08254244A
JPH08254244A JP5885395A JP5885395A JPH08254244A JP H08254244 A JPH08254244 A JP H08254244A JP 5885395 A JP5885395 A JP 5885395A JP 5885395 A JP5885395 A JP 5885395A JP H08254244 A JPH08254244 A JP H08254244A
Authority
JP
Japan
Prior art keywords
plate
damping
ratio
metal
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5885395A
Other languages
Japanese (ja)
Inventor
Takahiro Fujimoto
隆裕 藤本
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5885395A priority Critical patent/JPH08254244A/en
Publication of JPH08254244A publication Critical patent/JPH08254244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To provide a composite damping metal plate which improves the strength and flexural rigidity of a main plate and is super-light-weight without reducing damping property. CONSTITUTION: This is a composite damping metal plate 11 which nips both faces of a main plate 12 by auxiliary plates 13 and connects these main plate 12 and auxiliary plates 13 partially. The main plate 12 is in the shape of waves or recessed and protruded parts like hat in the longitudinal direction or in the lateral direction or in the shape of recessed and protruded parts like hat in the longitudinal direction and in the lateral direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機物を使用すること
なく、複数枚の金属板を積重結合した軽量な複合型の制
振金属板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight composite vibration-damping metal plate in which a plurality of metal plates are stacked and joined without using an organic substance.

【0002】[0002]

【従来の技術】制振材料として一般に使用されている制
振合金や、高分子樹脂を2枚の金属板で挟んだ樹脂サン
ドイッチ型の複合制振金属板は、いずれも溶接による接
続が困難であったり、例え溶接が可能であっても溶接後
の制振性能が著しく低下するといった欠点を有する。こ
の欠点を解消したのが金属板を直接積重して部分的に接
合した複合制振金属板である(例えば特開昭61−37
316号公報、特開昭61−37317号公報、特開昭
61−119390号公報、特開昭61−182820
号公報、特開平1−114432号公報、特開平5−1
96091号公報、特開平5−208212号公報、特
願平5−89413号公報)。
2. Description of the Related Art Damping alloys commonly used as damping materials and resin sandwich type composite damping metal plates in which a polymer resin is sandwiched between two metal plates are difficult to connect by welding. However, even if welding is possible, there is a drawback that the vibration damping performance after welding is significantly reduced. This drawback is solved by a composite vibration-damping metal plate in which metal plates are directly stacked and partially joined (for example, JP-A-61-37).
316, JP-A 61-37317, JP-A 61-119390, and JP-A 61-182820.
Japanese Patent Application Laid-Open No. 1-114432, Japanese Patent Application Laid-Open No. 5-1
96091, Japanese Patent Application Laid-Open No. 5-208212, Japanese Patent Application No. 5-89413).

【0003】この種の複合制振金属板は、図16に示す
ように、強度部材としての主板1の両面を、制振性を発
現するための補助板2で挟み、主板1と補助板2からな
る3枚以上の金属板を一定以上の間隔をあけてできるだ
け均等に分散配置した複数箇所で点溶接したものであ
り、複合型であるにもかかわらず有機物を必要としない
ので、溶接性や耐久性,耐火性にも優れており、例えば
船舶の床材や壁材等の構造材料として近年大きな注目を
集めている。なお、図16中の3は点溶接した溶接部を
示す。
As shown in FIG. 16, this type of composite vibration-damping metal plate sandwiches both sides of a main plate 1 as a strength member with auxiliary plates 2 for exerting vibration-damping properties, and the main plate 1 and the auxiliary plate 2 are sandwiched. It is made by spot welding 3 or more metal plates consisting of 3 or more metal plates at even intervals apart from each other at a certain distance, and even if it is a composite type, it does not require organic matter. It is also excellent in durability and fire resistance, and has recently attracted a great deal of attention as a structural material such as floor materials and wall materials for ships. In addition, 3 in FIG. 16 indicates a spot welded portion.

【0004】このような複合制振金属板では、振動が生
じたときに各金属板の振動モードが相違することによ
り、相互干渉作用が生じ、その結果、金属板同士が直接
擦れ合うことによって発生する摩擦による減衰作用によ
り、優れた制振性が得られることになる。しかも、有機
物を必要としないので、端面を突き合わせ溶接すること
も可能である。さらには、金属板の成分組成に対する制
限がないので、強度,靱性等の確保も容易である。
In such a composite vibration-damping metal plate, when the vibrations occur, the vibration modes of the metal plates are different from each other, so that mutual interference occurs, and as a result, the metal plates directly rub against each other. Due to the damping action due to friction, excellent vibration damping property can be obtained. Moreover, since no organic matter is required, the end faces can be butt-welded together. Further, since there is no limitation on the component composition of the metal plate, it is easy to secure strength, toughness and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た複合制振金属板は、主板,補助板とも金属板であるの
で、複合制振金属板全体の重量が重たくなるという問題
を内在している。従って、従来は補助板の板厚を主板の
板厚に対してできるだけ薄くするという方法で重量増を
抑えていたが、この方法でも主板の板厚に対して1:1
6程度が十分な制振性を発現させる限界であり、これ以
上は補助板を薄くできないので、主板の板厚が厚くなっ
てくると重量増が無視できなくなってくる。
However, since the composite vibration-damping metal plate described above is a metal plate for both the main plate and the auxiliary plate, there is an inherent problem that the weight of the composite vibration-damping metal plate becomes heavy. Therefore, conventionally, the weight increase is suppressed by reducing the thickness of the auxiliary plate to the thickness of the main plate as much as possible, but even with this method, the weight of the main plate is 1: 1.
Around 6 is the limit for exhibiting sufficient vibration damping properties, and since the auxiliary plate cannot be made thinner than this, an increase in the weight of the main plate cannot be ignored.

【0006】また、複合制振金属板は構造材料として用
いられるので曲げ剛性が求められる。従って、この曲げ
剛性によって主板の厚みが決定される。必要な曲げ剛性
を得るためには、主板の厚みは通常10mm以上必要と
なり、このことが重量を増加させるもう一つの要因とな
っている。
Further, since the composite vibration-damping metal plate is used as a structural material, bending rigidity is required. Therefore, the bending rigidity determines the thickness of the main plate. In order to obtain the required bending rigidity, the thickness of the main plate is usually 10 mm or more, which is another factor that increases the weight.

【0007】本発明は、上記した従来の問題点に鑑みて
なされたものであり、必要な主板の強度及び曲げ剛性を
得るとともに、制振性を損なうことなく軽量な複合制振
金属板を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and provides a lightweight composite vibration-damping metal plate that obtains necessary strength and bending rigidity of the main plate and does not impair the vibration-damping property. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の複合制振金属板は、主板の両面を補助
板で挟み、これら主板と補助板とを部分的に結合した複
合制振金属板であって、主板の形状を、長さ方向又は幅
方向に波形又はハット状の凹凸形、若しくは長さ方向及
び幅方向にハット状の凹凸形となしているのであり、ま
た、必要に応じて波形又はハット状の凹凸形部分の適所
に金属棒又は金属管を挿入するのである。
In order to achieve the above object, the composite vibration-damping metal plate of the present invention is a composite plate in which both sides of a main plate are sandwiched by auxiliary plates and the main plate and the auxiliary plate are partially connected. The vibration-damping metal plate, the shape of the main plate is a wavy or hat-shaped uneven shape in the length direction or the width direction, or a hat-shaped uneven shape in the length direction and the width direction, If necessary, a metal rod or metal tube is inserted into the corrugated or hat-shaped concavo-convex portion at an appropriate position.

【0009】本発明において、主板の両面を挟む補助板
は、それぞれの面に一枚づつ配置するのが軽量化をはか
るためには最も好ましいが、軽量の補助板を使用した場
合は若干重量増にはなるものの、曲げ剛性や制振性が向
上するので、それぞれの面に二枚以上配置してもよい。
In the present invention, it is most preferable to arrange one auxiliary plate sandwiching both sides of the main plate for each surface in order to reduce the weight, but when the lightweight auxiliary plate is used, the weight is slightly increased. However, since the bending rigidity and the vibration damping property are improved, two or more sheets may be arranged on each surface.

【0010】また、本発明においては、主板と補助板の
材料は金属系のものであれば殆ど適用可能である。具体
的には、鋼材,ステンレス,アルミニウム,銅等であ
る。また、本発明においては、主板と補助板の材料の組
み合わせについても特に限定されず、どのような組み合
わせであってもよい。
Further, in the present invention, most of the materials for the main plate and the auxiliary plate can be applied as long as they are made of metal. Specifically, it is steel, stainless steel, aluminum, copper or the like. Further, in the present invention, the combination of materials for the main plate and the auxiliary plate is not particularly limited, and may be any combination.

【0011】なお、長さ方向と幅方向の曲げ剛性を良く
するためには、本発明の複合制振金属板のなかでは、主
板の形状を長さ方向及び幅方向にハット状の凹凸形とな
したものが最も良いが、これは長さ方向又は幅方向にハ
ット状の凹凸形となしたものよりも主板と補助板の接触
面積が小さくなるので、制振性の点では長さ方向又は幅
方向にハット状の凹凸形となしたものよりも劣る。
In order to improve the bending rigidity in the length direction and the width direction, in the composite vibration-damping metal plate of the present invention, the shape of the main plate is made into a hat-shaped uneven shape in the length direction and the width direction. It is best done, but this is because the contact area of the main plate and the auxiliary plate is smaller than that of the hat-shaped concavo-convex shape in the length direction or the width direction, so in terms of vibration damping property It is inferior to the one with a hat-shaped concavo-convex shape in the width direction.

【0012】[0012]

【作用】本発明の複合制振金属板は、主板の両面を補助
板で挟み、これら主板と補助板とを部分的に結合した複
合制振金属板であって、主板の形状を、長さ方向又は幅
方向に波形又はハット状の凹凸形、若しくは長さ方向及
び幅方向にハット状の凹凸形となしているので、必要な
主板の強度や曲げ剛性が得られるとともに、制振性を損
なうことなく複合制振金属板の軽量化が図れる。この
時、波形又はハット状の凹凸形部分の適所に金属棒又は
金属管を挿入すれば、複合制振金属板全体の強度が更に
向上する。
The composite vibration-damping metal plate of the present invention is a composite vibration-damping metal plate in which both sides of the main plate are sandwiched by the auxiliary plates, and the main plate and the auxiliary plate are partially connected to each other. The wavy or hat-shaped uneven shape in the width direction or the width direction, or the hat-shaped uneven shape in the length direction and the width direction, provides the necessary strength and bending rigidity of the main plate and impairs the vibration damping property. The weight of the composite vibration-damping metal plate can be reduced without any effort. At this time, if a metal rod or a metal tube is inserted into the corrugated or hat-shaped concavo-convex portion at appropriate positions, the strength of the entire composite vibration-damping metal plate is further improved.

【0013】すなわち、図9に示すような矩形状の平板
4の曲げ剛性Dは、平板4の縦弾性係数をE、ポアソン
比をν、板厚をhとすると、下記1式で表される。
That is, the flexural rigidity D of the rectangular flat plate 4 as shown in FIG. 9 is expressed by the following formula 1 where E is the longitudinal elastic coefficient of the flat plate 4, ν is the Poisson's ratio, and h is the plate thickness. .

【0014】[0014]

【数1】D=(E×h3 )/12(1−ν2 ## EQU1 ## D = (E × h 3 ) / 12 (1-ν 2 ).

【0015】これに対して図10に示すような形状をし
た波板5の曲げ剛性D1 は、波板の断面係数をI1 、波
のピッチ長さをb、波板の一波長分の板に沿った長さを
Wとすると、波に対して直角方向では下記2式で表さ
れる。
On the other hand, the bending rigidity D 1 of the corrugated plate 5 having the shape shown in FIG. 10 is I 1 as the section modulus of the corrugated plate, b as the pitch length of the wave, and one wavelength of the corrugated plate. When the length along the plate is b W , it is expressed by the following two equations in the direction perpendicular to the wave.

【0016】[0016]

【数2】 [Equation 2]

【0017】この数式1及び数式2において、〔E/1
2(1−ν2 )〕×(I1 /b)>(E×h3 )/12
(1−ν2 )となるので、波板の曲げ剛性D1 >平板の
曲げ剛性Dとなる。また、図11は板厚h及び波のピッ
チ長さbが等しいが波の高さbh が異なる波板5におい
て、波の高さbh の変化に対する曲げ剛性の比D1 /D
の変化を表した図である。この図11から、板厚h及び
波のピッチ長さbが等しい場合には、波の高さbh が高
くなればなるほど曲げ剛性の比D1 /Dが大きくなるの
が判る。
In the equations 1 and 2, [E / 1
2 (1-ν 2 )] × (I 1 / b)> (E × h 3 ) / 12
Since it is (1-ν 2 ), the bending rigidity D 1 of the corrugated plate> the bending rigidity D of the flat plate. Further, FIG. 11 is the plate thickness h and the corrugated plate 5 the pitch length b equal to the height b h waves different waves, the bending rigidity with respect to the change of the wave height b h ratio D 1 / D
It is a figure showing the change of. It can be seen from FIG. 11 that when the plate thickness h and the wave pitch length b are equal, the bending rigidity ratio D 1 / D increases as the wave height b h increases.

【0018】波板5の場合、波の高さbh によって波板
5の一波長分の板に沿った長さbWが決まり、このbW
が決まれば数式2によって波板5の曲げ剛性D1 を求め
ることができる。従って、この波板5の曲げ剛性D1
数式1における平板の曲げ剛性Dとして代入すれば、そ
の時の波板と等しい曲げ剛性を有する平板4の板厚hα
(以下、「相当板厚」という)を求めることができる。
図12は板厚h及び波のピッチ長さbが等しい場合にお
ける、波の高さbh の変化に対する相当板厚と実際の板
厚との比(以下、「相当板厚比」という)を表した図で
ある。この図12から、板厚h及び波のピッチ長さbが
等しい場合には、波の高さbh を大きくすると相当板厚
比、つまり相当板厚hαが大きくなるのが判る。
[0018] When the wave plate 5, determines the length b W along the plates of one wavelength of the wave plate 5 by the waves of height b h, the b W
Then, the bending rigidity D 1 of the corrugated plate 5 can be obtained by the mathematical formula 2. Therefore, by substituting the bending rigidity D 1 of the corrugated plate 5 as the bending rigidity D of the flat plate in Formula 1, the plate thickness hα of the flat plate 4 having the same bending rigidity as the corrugated plate at that time is obtained.
(Hereinafter, referred to as “equivalent plate thickness”) can be obtained.
FIG. 12 shows the ratio of the equivalent plate thickness to the actual plate thickness (hereinafter, referred to as “equivalent plate thickness ratio”) with respect to the change in the wave height b h when the plate thickness h and the wave pitch length b are equal. FIG. From FIG. 12, when the pitch length b of the plate thickness h and wave are equal, it corresponds the thickness ratio A larger height b h of the wave, is that is the equivalent thickness hα increases seen.

【0019】また、図13に示すように、波板5に金属
棒17を挿入した場合の曲げ剛性も上記した数式2と同
様に表すことができる。しかし、この場合の曲げ剛性を
2とすると波の形状zが異なるので、D2 >D1 とな
る。この値は挿入する金属棒17の断面直径cによって
決まり、断面直径cが大きくなればその比D2 /D1
大きくなる。
Further, as shown in FIG. 13, the bending rigidity when the metal rod 17 is inserted into the corrugated plate 5 can also be expressed in the same manner as in the above-mentioned mathematical formula 2. However, assuming that the bending rigidity in this case is D 2 , the wave shape z is different, and thus D 2 > D 1 . This value is determined by the sectional diameter c of the metal rod 17 to be inserted, and the ratio D 2 / D 1 increases as the sectional diameter c increases.

【0020】図14は金属棒17の断面直径cの波のピ
ッチ長さbに対する比c/bと剛性比D2 /D1 の関係
を表した図であり、この図14から、挿入する金属棒1
7の断面直径cを大きくすれば剛性比D2 /D1 が大き
くなることが判る。
FIG. 14 is a diagram showing the relationship between the ratio c / b of the sectional diameter c of the metal rod 17 to the pitch length b of the wave and the rigidity ratio D 2 / D 1. From FIG. Stick 1
It can be seen that the rigidity ratio D 2 / D 1 increases as the cross-sectional diameter c of 7 increases.

【0021】また、図15は板厚h及び波のピッチ長さ
b、波の高さbh が等しい時、金属棒17の断面直径c
と等しい曲げ剛性になる平板4の板厚ha(以下、「相
当板厚」という)と実際の板厚との比(以下、「相当板
厚比」という)を表した図である。この図15から、金
属棒17の断面直径cを大きくすると相当板厚haが大
きくなることが判る。しかし、金属棒17を挿入するこ
とによって鋼板の総重量も増加するので、挿入する金属
棒17の断面直径cと波のピッチ長さbに対する比c/
bを1/10以下に抑え、挿入間隔も数波毎にする必要
がある。
Further, FIG. 15 shows that when the plate thickness h, the wave pitch length b, and the wave height bh are equal, the cross-sectional diameter c of the metal rod 17 is shown.
It is a figure showing the ratio (henceforth "equivalent plate thickness ratio") of the plate thickness ha (henceforth "equivalent plate thickness") and the actual plate thickness of the flat plate 4 which becomes bending rigidity equal to. It can be seen from FIG. 15 that the equivalent plate thickness ha increases as the sectional diameter c of the metal rod 17 increases. However, since the total weight of the steel plate is also increased by inserting the metal rod 17, the ratio of the cross-sectional diameter c of the metal rod 17 to be inserted and the pitch length b of the wave c /
It is necessary to suppress b to 1/10 or less and also to insert at intervals of several waves.

【0022】さらに、金属棒17を挿入する代わりに、
金属管を挿入すればより軽量な制振性に優れた超軽量複
合金属板を得ることができる。
Further, instead of inserting the metal rod 17,
By inserting a metal tube, it is possible to obtain a lighter weight, super lightweight composite metal plate having excellent vibration damping properties.

【0023】[0023]

【実施例】以下、本発明の複合制振金属板を図1〜図8
に示す1実施例に基づいて説明する。図1は請求項1に
対応する本発明の複合制振金属板の実施例を示す斜視図
で、(a)はその第1実施例、(b)は第2実施例,
(c)は第3実施例、図2は請求項2に対応する本発明
の複合制振金属板の実施例を示す斜視図で、(a)はそ
の第1実施例、(b)は第2実施例,(c)は第3実施
例、図3は本発明の効果を示す実験に用いた請求項1に
対応する本発明の複合制振金属板の実施例を示す斜視図
で、(a)はその第1実施例、(b)は第2実施例,
(c)は第3実施例、図4は本発明の効果を示す実験に
用いた治具の斜視図、図5は請求項1に対応する本発明
の効果を示す実験の結果を示す図で、実施例及び従来例
における減衰比と相当板厚比との関係図、図6は請求項
1に対応する本発明の効果を示す実験の結果を示す図
で、実施例及び従来例における剛性値と平板での剛性値
との比と、相当板厚比との関係図、図7は請求項2に対
応する本発明の効果を示す実験の結果を示す図で、実施
例及び従来例における減衰比と相当板厚比との関係図、
図8は請求項2に対応する本発明の効果を示す実験の結
果を示す図で、実施例及び従来例における剛性値と平板
での剛性値との比と、相当板厚比との関係図である。
EXAMPLE A composite vibration-damping metal plate of the present invention will be described below with reference to FIGS.
A description will be given based on an example shown in FIG. 1 is a perspective view showing an embodiment of a composite vibration-damping metal plate of the present invention corresponding to claim 1, (a) is the first embodiment, (b) is the second embodiment,
(C) is a third embodiment, FIG. 2 is a perspective view showing an embodiment of the composite vibration-damping metal plate of the present invention corresponding to claim 2, (a) is the first embodiment, (b) is the first embodiment. 2 embodiment, (c) is a third embodiment, FIG. 3 is a perspective view showing an embodiment of the composite vibration-damping metal plate of the present invention corresponding to claim 1 used in an experiment showing the effect of the present invention. a) is the first embodiment, (b) is the second embodiment,
(C) is a third embodiment, FIG. 4 is a perspective view of a jig used in the experiment showing the effect of the present invention, and FIG. 5 is a diagram showing the result of the experiment showing the effect of the present invention corresponding to claim 1. FIG. 6 is a diagram showing the relationship between the damping ratio and the equivalent plate thickness ratio in the example and the conventional example, and FIG. 6 is a diagram showing the results of an experiment showing the effect of the present invention corresponding to claim 1, and the rigidity values in the example and the conventional example. Fig. 7 is a diagram showing the relationship between the ratio of the rigidity value of the flat plate and the equivalent plate thickness, and the equivalent plate thickness ratio. Fig. 7 is a diagram showing the results of an experiment showing the effect of the present invention corresponding to claim 2. Diagram of the ratio and equivalent plate thickness ratio,
FIG. 8 is a diagram showing a result of an experiment showing an effect of the present invention corresponding to claim 2, and is a relational diagram of a ratio between a rigidity value in a working example and a conventional example and a rigidity value in a flat plate, and an equivalent plate thickness ratio. Is.

【0024】図1において、11は主板12の両面を補
助板13で挟みんだ請求項1に対応する本発明の複合制
振金属板であり、主板12の形状を、(a)に示すよう
に例えば長さ方向に波形となしたり、また、(b)に示
すように例えば長さ方向にハット状の凹凸形となした
り、また、(c)に示すように長さ方向及び幅方向にハ
ット状の凹凸形となしたりしているのである。
In FIG. 1, 11 is a composite vibration-damping metal plate of the present invention corresponding to claim 1 in which both sides of the main plate 12 are sandwiched by auxiliary plates 13. The shape of the main plate 12 is as shown in FIG. For example, as shown in (b), for example, a wavy corrugated shape is formed in the length direction, or as shown in (c), in the length direction and the width direction. It has a hat-shaped concavo-convex shape.

【0025】上記した請求項1に対応する本発明の複合
制振金属板11の効果を確認するために、長さ2000
mm、幅1000mm、厚さ4mmの鋼板を、幅方向
にピッチが100mmで、高さが10,20,30,4
0mmの波形に形成したもの〔図3(a)〕、幅方向
にピッチが100mmで、高さが10,20,30,4
0mmのハット状の凹凸形に形成したもの〔図3
(b)〕、幅及び長さ方向にピッチが100mmで、
高さが10,20,30,40mmのハット状の凹凸形
に形成したもの〔図3(c)〕、を主板12とし、これ
らの主板12の両面をそれぞれ厚さ0.3mmの1枚の
補助板13で挟み、その周囲4点を点溶接して複合制振
金属板11を作成した。比較として、長さ2000m
m、幅1000mm、厚さ4mmの鋼板を平板のまま主
板とし、これの両面をそれぞれ厚さ0.3mmの1枚の
補助板で挟み、その周囲4点を点溶接して従来の複合制
振金属板を作成した。
In order to confirm the effect of the composite vibration damping metal plate 11 of the present invention corresponding to the above-mentioned claim 1, the length 2000
mm, width 1000 mm, thickness 4 mm, steel plate with a pitch of 100 mm and a height of 10, 20, 30, 4 in the width direction.
Formed in a waveform of 0 mm [Fig. 3 (a)], with a pitch of 100 mm in the width direction and heights of 10, 20, 30, 4
Formed in 0 mm hat-shaped concavo-convex shape [Fig. 3
(B)], with a pitch of 100 mm in the width and length directions,
What is formed in a hat-shaped concavo-convex shape having a height of 10, 20, 30, 40 mm [Fig. 3 (c)] is used as a main plate 12, and both sides of each of the main plates 12 have a thickness of 0.3 mm. The composite vibration-damping metal plate 11 was created by sandwiching the auxiliary plate 13 and spot welding four points around the auxiliary plate 13. For comparison, length 2000m
A steel plate of m, width of 1000 mm, and thickness of 4 mm is used as a main plate as a flat plate, both sides of which are sandwiched by one auxiliary plate of thickness 0.3 mm, and four points around the same are spot-welded to form a conventional composite vibration control. I made a metal plate.

【0026】上記したそれぞれの複合制振金属板を、図
4に示すように、長さ方向の両端を治具14で固定した
後に裏面側中央部を加振機15で定常状態になるまで加
振した後加振を止め、その後、非接触変位計16を用い
て表面側中央部の減衰波形を測定した。そして、得られ
た減衰波形から対数減衰比を求め、さらに減衰比を計算
した。また、同時に各複合制振金属板の曲げ剛性も測定
した。得られた減衰比と相当板厚比との関係を図5に、
また、得られた剛性値と平板での剛性値との比と相当板
厚比との関係を図6に示す。なお、図5、図6における
測定点に記載した括弧内の数字は波形,ハット状の凹凸
形の高さである。
As shown in FIG. 4, each of the above-described composite vibration-damping metal plates is fixed at both ends in the lengthwise direction by jigs 14, and then the center portion on the back surface side is shaken by a vibrator 15 until a steady state is reached. After shaking, the vibration was stopped, and thereafter, the damping waveform of the central portion on the front surface side was measured using the non-contact displacement meter 16. Then, the logarithmic damping ratio was obtained from the obtained damping waveform, and the damping ratio was calculated. At the same time, the flexural rigidity of each composite damping metal plate was also measured. The relationship between the obtained damping ratio and the equivalent plate thickness ratio is shown in FIG.
Further, FIG. 6 shows the relationship between the ratio of the obtained rigidity value and the rigidity value of the flat plate and the equivalent plate thickness ratio. The numbers in parentheses described at the measurement points in FIGS. 5 and 6 are the heights of corrugated and hat-shaped concavo-convex shapes.

【0027】図5より明らかなように、減衰比は従来例
と比較してやや減少するが、単板(図5中の一点鎖線)
よりは十分高く、十分な制振性能を有していることが判
る。また、図6より明らかなように、曲げ剛性は従来例
より大幅に高くなることが判る。これより、等しい強度
を持たせるためにはより薄い金属板を主板として使用す
ることが可能であることが明らかである。また、主板を
薄くできることから補助板の板厚も薄くできるので、軽
量化を図りつつ高い制振性能を持つ複合制振金属板を得
ることが可能となる。なお、図6に示すように、曲げ剛
性は図3(b)(c)に示す実施例ともに同じ値である
が、これは本実験では一方向(幅方向)からの曲げ剛性
のみ測定した結果だからである。
As is apparent from FIG. 5, the damping ratio is slightly reduced as compared with the conventional example, but a single plate (dashed line in FIG. 5)
It can be seen that it has a sufficiently high vibration damping performance. Further, as is clear from FIG. 6, it is found that the bending rigidity is significantly higher than that of the conventional example. From this, it is clear that a thinner metal plate can be used as the main plate in order to have equal strength. Further, since the main plate can be made thin, the plate thickness of the auxiliary plate can also be made thin, so that it is possible to obtain a composite vibration-damping metal plate having high vibration-damping performance while achieving weight reduction. As shown in FIG. 6, the flexural rigidity has the same value in the examples shown in FIGS. 3B and 3C, but this is the result of measuring only the flexural rigidity from one direction (width direction) in this experiment. That's why.

【0028】図2において、11’は請求項2に対応す
る本発明の複合制振金属板であり、図2(a)〜(c)
はそれぞれ図1(a)〜(c)に示す請求項1に対応す
る本発明の複合制振金属板11における、結合部に金属
棒17を挿入したものである。
In FIG. 2, 11 'is the composite vibration-damping metal plate of the present invention corresponding to claim 2, and is shown in FIGS.
Is a composite vibration-damping metal plate 11 of the present invention corresponding to claim 1 shown in FIGS.

【0029】上記した請求項2に対応する本発明の複合
制振金属板11’の効果を確認するために、長さ200
0mm、幅1000mm、厚さ4mmの鋼板を使用して
幅方向にピッチが100mmで、高さが10mmの波形
に形成し、断面半径が5,10,20,40,60mm
の金属棒17を長さ方向に250mmピッチで幅方向に
2波毎に挿入し、溶接したものを主板12とし、これら
の主板12の両面をそれぞれ厚さ0.3mmの1枚の補
助板13で挟み、その周囲4点を点溶接して複合制振金
属板11’を作成した。比較として、金属棒を挿入しな
い上記した波板を主板12とし、その両面をそれぞれ厚
さ0.3mmの1枚の補助板13で挟み、その周囲4点
を点溶接した請求項1に対応する複合制振金属板や、長
さ2000mm、幅1000mm、厚さ4mmの鋼板を
平板のまま主板とし、これの両面をそれぞれ厚さ0.3
mmの1枚の補助板で挟み、その周囲4点を点溶接して
従来の複合制振金属板を作成した。
In order to confirm the effect of the composite damping metal plate 11 'of the present invention corresponding to the above-mentioned claim 2, the length 200
A steel plate having a width of 0 mm, a width of 1000 mm, and a thickness of 4 mm is used to form a corrugation having a pitch of 100 mm in the width direction and a height of 10 mm, and a cross-sectional radius of 5, 10, 20, 40, 60 mm.
The metal rods 17 are inserted into the lengthwise direction at a pitch of 250 mm every two waves in the widthwise direction and welded to form the main plate 12, and both sides of these main plates 12 are one auxiliary plate 13 each having a thickness of 0.3 mm. The composite vibration damping metal plate 11 ′ was prepared by sandwiching and sandwiching four points around it. For comparison, it corresponds to claim 1 in which the above-mentioned corrugated plate into which a metal rod is not inserted is used as a main plate 12, both surfaces thereof are sandwiched by one auxiliary plate 13 having a thickness of 0.3 mm, and four points around the auxiliary plate 13 are spot-welded. A composite vibration-damping metal plate or a steel plate having a length of 2000 mm, a width of 1000 mm, and a thickness of 4 mm is used as a flat plate as a main plate, and both surfaces thereof have a thickness of 0.3.
It was sandwiched by one mm auxiliary plate, and four points around the auxiliary plate were spot-welded to produce a conventional composite vibration-damping metal plate.

【0030】上記したそれぞれの複合制振金属板を、図
4に示すように、長さ方向の両端を治具14で固定した
後に裏面側中央部を加振機15で定常状態になるまで加
振した後加振を止め、その後、非接触変位計16を用い
て表面側中央部の減衰波形を測定した。そして、得られ
た減衰波形から対数減衰比を求め、さらに減衰比を計算
した。また、同時に各複合制振金属板の曲げ剛性も測定
した。得られた減衰比と相当板厚比との関係を図7に、
また、得られた剛性値と平板での剛性値との比と相当板
厚比との関係を図8に示す。
As shown in FIG. 4, each of the above-described composite vibration-damping metal plates is fixed at both ends in the lengthwise direction by jigs 14, and then the center portion on the back surface side is shaken by a vibrator 15 until a steady state is reached. After shaking, the vibration was stopped, and thereafter, the damping waveform of the central portion on the front surface side was measured using the non-contact displacement meter 16. Then, the logarithmic damping ratio was obtained from the obtained damping waveform, and the damping ratio was calculated. At the same time, the flexural rigidity of each composite damping metal plate was also measured. The relationship between the obtained damping ratio and the equivalent plate thickness ratio is shown in FIG.
FIG. 8 shows the relationship between the ratio of the obtained rigidity value and the rigidity value of a flat plate and the equivalent plate thickness ratio.

【0031】図7より明らかなように、減衰比は従来例
と比較してやや減少するが、単板(図7中の一点鎖線)
よりは十分高く、さらに金属棒を挿入することによって
減衰比は請求項1に対応する複合制振金属板よりも従来
例に近くなっていることが判る。また、図8より明らか
なように、曲げ剛性は従来例より大幅に高くなり、また
請求項1に対応する複合制振金属板よりもさらに高くな
ることが判る。これより、等しい強度を持たせるために
はより薄い金属板を主板として使用することが可能であ
ることが明らかである。また、主板を薄くできることか
ら補助板の板厚も薄くできるので、軽量化を図りつつ高
い制振性能を持つ複合制振金属板を得ることが可能とな
る。さらに、金属棒を予め挿入しておくことにより、3
枚の鋼板を点接合することが容易になるという利点も確
認できた。
As is clear from FIG. 7, the damping ratio is slightly reduced as compared with the conventional example, but a single plate (dashed line in FIG. 7)
It is found that the damping ratio is much higher than that of the conventional example and the damping ratio is closer to that of the conventional vibration damping metal plate by inserting the metal rod. Further, as is clear from FIG. 8, it is understood that the bending rigidity is significantly higher than that of the conventional example, and is even higher than that of the composite damping metal plate corresponding to claim 1. From this, it is clear that a thinner metal plate can be used as the main plate in order to have equal strength. Further, since the main plate can be made thin, the plate thickness of the auxiliary plate can also be made thin, so that it is possible to obtain a composite vibration-damping metal plate having high vibration-damping performance while achieving weight reduction. Furthermore, by inserting a metal rod in advance,
It was also confirmed that the advantage of facilitating spot welding of one steel plate was obtained.

【0032】なお、金属棒17に代えて金属管を挿入し
た場合にはより軽量化をはかることができることはいう
までもない。この場合、金属管を金属棒と同様に溶接し
てもよいが、ボルト等を用いて取り付けてもよい。
Needless to say, when a metal tube is inserted instead of the metal rod 17, the weight can be further reduced. In this case, the metal tube may be welded in the same manner as the metal rod, but may be attached using bolts or the like.

【0033】[0033]

【発明の効果】以上説明したように、本発明の複合制振
金属板は、その両面を補助板で挟んだ主板の形状を、長
さ方向又は幅方向に波形又はハット状の凹凸形、若しく
は長さ方向及び幅方向にハット状の凹凸形となしている
ので、同一厚さの主板を用いた場合、複合制振金属板の
曲げ剛性を大きくすることが可能となる。この効果よ
り、等しい曲げ剛性を有する複合制振金属板を作成する
場合には、主板や補助板の板厚を薄くでき、軽量化が図
れる。
As described above, in the composite vibration-damping metal plate of the present invention, the shape of the main plate whose both sides are sandwiched by the auxiliary plates has a corrugated or hat-shaped concavo-convex shape in the length direction or the width direction, or Since the hat-shaped concavo-convex shape is formed in the length direction and the width direction, when the main plate having the same thickness is used, the bending rigidity of the composite vibration-damping metal plate can be increased. Due to this effect, in the case of producing a composite vibration-damping metal plate having the same bending rigidity, the plate thickness of the main plate and the auxiliary plate can be reduced, and the weight can be reduced.

【0034】また、結合部に金属棒を挿入したり、ま
た、結合部に金属管を挿入し、ボルトを用いて結合した
りすれば、複合制振金属板の作成が容易になるとともに
複合制振金属板全体の強度が更に向上する。
If a metal rod is inserted into the joint portion or a metal tube is inserted into the joint portion and they are joined with bolts, the composite vibration-damping metal plate can be easily manufactured and the composite damping metal plate can be manufactured. The strength of the entire vibration metal plate is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は請求項1に対応する本発明の複合制振金
属板の実施例を示す斜視図で、(a)はその第1実施
例、(b)は第2実施例,(c)は第3実施例である。
FIG. 1 is a perspective view showing an embodiment of a composite vibration damping metal plate of the present invention corresponding to claim 1, (a) is the first embodiment, (b) is the second embodiment, c) is the third embodiment.

【図2】請求項2に対応する本発明の複合制振金属板の
実施例を示す斜視図で、(a)はその第1実施例、
(b)は第2実施例,(c)は第3実施例である。
2 is a perspective view showing an embodiment of a composite vibration-damping metal plate of the present invention corresponding to claim 2, (a) is the first embodiment thereof, FIG.
(B) is the second embodiment, and (c) is the third embodiment.

【図3】本発明の効果を示す実験に用いた請求項1に対
応する本発明の複合制振金属板の実施例を示す斜視図
で、(a)はその第1実施例、(b)は第2実施例,
(c)は第3実施例である。
FIG. 3 is a perspective view showing an embodiment of the composite vibration-damping metal plate of the present invention corresponding to claim 1, which is used in an experiment showing the effect of the present invention, wherein (a) is the first embodiment and (b) thereof. Is the second embodiment,
(C) is a third embodiment.

【図4】本発明の効果を示す実験に用いた治具の斜視図
である。
FIG. 4 is a perspective view of a jig used in an experiment showing the effect of the present invention.

【図5】請求項1に対応する本発明の効果を示す実験の
結果を示す図で、実施例及び従来例における減衰比と相
当板厚比との関係図である。
FIG. 5 is a diagram showing a result of an experiment showing an effect of the present invention corresponding to claim 1, and is a relationship diagram between the damping ratio and the equivalent plate thickness ratio in the example and the conventional example.

【図6】請求項1に対応する本発明の効果を示す実験の
結果を示す図で、実施例及び従来例における剛性値と平
板での剛性値との比と、相当板厚比との関係図である。
FIG. 6 is a diagram showing a result of an experiment showing an effect of the present invention corresponding to claim 1, showing a relationship between a ratio of a rigidity value in a working example and a conventional example and a rigidity value of a flat plate, and an equivalent plate thickness ratio. It is a figure.

【図7】請求項2に対応する本発明の効果を示す実験の
結果を示す図で、実施例及び従来例における減衰比と相
当板厚比との関係図である。
FIG. 7 is a diagram showing a result of an experiment showing an effect of the present invention corresponding to claim 2, and is a relationship diagram between the damping ratio and the equivalent plate thickness ratio in the example and the conventional example.

【図8】請求項2に対応する本発明の効果を示す実験の
結果を示す図で、実施例及び従来例における剛性値と平
板での剛性値との比と、相当板厚比との関係図である。
FIG. 8 is a diagram showing the results of an experiment showing the effect of the present invention corresponding to claim 2, and showing the relationship between the ratio of the rigidity value of the example and the conventional example and the rigidity value of the flat plate, and the equivalent plate thickness ratio. It is a figure.

【図9】矩形状の平板の斜視図である。FIG. 9 is a perspective view of a rectangular flat plate.

【図10】(a)は波板の斜視図、(b)は波板端面の
拡大図である。
10A is a perspective view of a corrugated plate, and FIG. 10B is an enlarged view of an end face of the corrugated plate.

【図11】板厚h及び波のピッチ長さbが等しいが波の
高さbh が異なる波板において、波の高さbh の変化に
対する曲げ剛性の比D1 /Dの変化を表した図である。
[11] In although plate thickness h and wave pitch length b equal corrugated plate height b h of the wave are different, the table changes the ratio D 1 / D of the bending stiffness with respect to a change in the height b h of the wave FIG.

【図12】板厚h及び波のピッチ長さbが等しい場合に
おける、波の高さbh の変化に対する相当板厚と実際の
板厚との比(相当板厚比)を表した図である。
[Figure 12] when the plate thickness h and wave pitch length b are equal, a diagram showing the ratio (equivalent plate thickness ratio) between the actual plate thickness and the corresponding thickness to changes in wave height b h is there.

【図13】(a)は金属棒を挿入した波板の斜視図、
(b)は金属棒を挿入した波板端面の拡大図である。
FIG. 13A is a perspective view of a corrugated plate into which a metal rod is inserted,
(B) is an enlarged view of an end face of a corrugated plate into which a metal rod is inserted.

【図14】板厚h、波のピッチ長さb及び波の高さbh
が等しい波板において、金属棒の断面直径cの波のピッ
チ長さbに対する比c/bの変化に対する曲げ剛性の比
2 /D1 の変化を表した図である。
FIG. 14 is a plate thickness h, a wave pitch length b, and a wave height b.h
In a corrugated plate with equal
B Ratio of bending rigidity to change in ratio c / b to length b
D 2/ D1It is a figure showing the change of.

【図15】板厚h、波のピッチ長さb及び波の高さbh
が等しい波板において、金属棒の断面直径cの波のピッ
チ長さbに対する比c/bの変化に対する相当板厚と実
際の板厚との比(相当板厚比)を表した図である。
FIG. 15: Plate thickness h, wave pitch length b, and wave height b h
FIG. 6 is a diagram showing a ratio (corresponding plate thickness ratio) between an equivalent plate thickness and an actual plate thickness with respect to a change in a ratio c / b of a cross-sectional diameter c of a metal rod to a pitch length b of a wave in a corrugated plate having the same value. .

【図16】従来の複合制振金属板の斜視図である。FIG. 16 is a perspective view of a conventional composite vibration damping metal plate.

【符号の説明】[Explanation of symbols]

11 複合制振金属板 12 主板 13 補助板 17 金属棒 11 Composite Vibration Control Metal Plate 12 Main Plate 13 Auxiliary Plate 17 Metal Rod

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主板の両面を補助板で挟み、これら主板
と補助板とを部分的に結合した複合制振金属板であっ
て、主板の形状を、長さ方向又は幅方向に波形又はハッ
ト状の凹凸形、若しくは長さ方向及び幅方向にハット状
の凹凸形となしたことを特徴とする複合制振金属板。
1. A composite vibration-damping metal plate in which both sides of a main plate are sandwiched by auxiliary plates, and the main plate and the auxiliary plate are partially connected to each other, and the shape of the main plate is corrugated or hated in a length direction or a width direction. A composite vibration-damping metal plate characterized by having a concave-convex shape or a hat-shaped uneven shape in the length direction and the width direction.
【請求項2】 波形又はハット状の凹凸形部分の適所に
金属棒又は金属管を挿入することを特徴とする請求項1
記載の複合制振金属板。
2. A metal rod or a metal tube is inserted into an appropriate place of the corrugated or hat-shaped concavo-convex portion.
The composite vibration damping metal plate described.
JP5885395A 1995-03-17 1995-03-17 Composite damping metal plate Pending JPH08254244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5885395A JPH08254244A (en) 1995-03-17 1995-03-17 Composite damping metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5885395A JPH08254244A (en) 1995-03-17 1995-03-17 Composite damping metal plate

Publications (1)

Publication Number Publication Date
JPH08254244A true JPH08254244A (en) 1996-10-01

Family

ID=13096253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5885395A Pending JPH08254244A (en) 1995-03-17 1995-03-17 Composite damping metal plate

Country Status (1)

Country Link
JP (1) JPH08254244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1861616A1 (en) * 2005-03-14 2007-12-05 Robert Bosch Gmbh Intermediate element for a fuel injection valve
US20140367999A1 (en) * 2011-12-20 2014-12-18 Nippon Steel & Sumitomo Metal Corporation Front floor panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1861616A1 (en) * 2005-03-14 2007-12-05 Robert Bosch Gmbh Intermediate element for a fuel injection valve
JP2008533374A (en) * 2005-03-14 2008-08-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Intermediate element for fuel injection valve
US20140367999A1 (en) * 2011-12-20 2014-12-18 Nippon Steel & Sumitomo Metal Corporation Front floor panel
US9296430B2 (en) * 2011-12-20 2016-03-29 Nippon Steel & Sumitomo Metal Corporation Front floor panel

Similar Documents

Publication Publication Date Title
US9090288B2 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
GB2133819A (en) Reinforced elongate support member
US6419302B2 (en) Channel member for constructing elongated wall portion of vehicle body
RU2520633C2 (en) Structured metal heatshield
JPH08254244A (en) Composite damping metal plate
JP3242343B2 (en) Chassis support beam and method of manufacturing the same
Patton et al. Causes of weight reduction effects of material substitution on constant stiffness components
Sonti et al. Equivalent forces and wavenumber spectra of shaped piezoelectric actuators
JP2821163B2 (en) Railcar roof structure
JP3082461B2 (en) Lower body structure
JP2006281926A (en) Panel structure for vehicle trunk lid
JP7173940B2 (en) structural member
JPS6240092B2 (en)
JPH11201226A (en) Compound metallic damping plate
JPS61157427A (en) Reinforcing beam member for door panel of car
JPH09291928A (en) Connecting rod made of steel plate
Lee et al. Automotive box section design under torsion Part 2: behaviour and implications on weight reduction
JPH06106662A (en) Soldered laminated panel and production thereof
JP3278691B2 (en) Honeycomb structure made of intermetallic compound Ni3Al
JPH07100171B2 (en) Composite damping steel plate
JPH10138388A (en) Sandwich type damping metal plate
JP4182742B2 (en) Front body structure of automobile
Tripathy et al. Analytical studies for buckling and vibration of weld-bonded beam shells of rectangular cross-section
US20230149999A1 (en) Spacer structure, sandwich construction with a spacer structure of this kind and method for producing a spacer structure of this kind
JPS5854241A (en) Leaf spring of fiber reinforced plastics

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A02