JPH08253711A - Powder coating material - Google Patents

Powder coating material

Info

Publication number
JPH08253711A
JPH08253711A JP8458195A JP8458195A JPH08253711A JP H08253711 A JPH08253711 A JP H08253711A JP 8458195 A JP8458195 A JP 8458195A JP 8458195 A JP8458195 A JP 8458195A JP H08253711 A JPH08253711 A JP H08253711A
Authority
JP
Japan
Prior art keywords
powder
oxide fine
fine powder
powder coating
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8458195A
Other languages
Japanese (ja)
Other versions
JP2996604B2 (en
Inventor
Yuichi Moriya
祐一 守屋
Kiyoshi Nishida
潔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP7084581A priority Critical patent/JP2996604B2/en
Publication of JPH08253711A publication Critical patent/JPH08253711A/en
Application granted granted Critical
Publication of JP2996604B2 publication Critical patent/JP2996604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a powder coating material which has a particle size small enough to form a thin coating film, can moderate the inverse ionization when applied with a corona-charge spray gun, and can be used for a wide range of film thickness. CONSTITUTION: This powder coating material is formed by attaching or fixing a fine zinc oxide or titanium oxide powder having a vol. resistivity of 1×10<4> ΘWcm or lower to the surfaces of particles which at least contain a binder resin and a curative and have a vol. average particle size of 5-20μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜塗装に適した粉体塗
料に関する。
FIELD OF THE INVENTION The present invention relates to a powder coating suitable for thin film coating.

【0002】[0002]

【従来の技術】粉体塗料は、溶剤塗料に比べ揮発分、臭
気とも少なく、公害対策および環境規制の面で非常に有
益であることは周知である。従来一般的用途として上市
されている粉体塗料は、平均粒子径が30μm前後であ
り、厳密な分級がなされていないため、粒子径分布は非
常にブロードなものであった。粉体塗装後の塗面の均一
性を得るためには均一な粉体付着層を形成させることが
必須であるが、そのためには粒子径の2〜3倍の塗膜の
厚さを必要とする。そのため、従来の粉体塗料では塗膜
の厚さを60μm以上にしなければ良好な塗面が得られ
なかった。一方、市場ニーズとしては塗面の均一性の向
上、塗膜の薄膜化による作業効率の向上とトータルコス
トダウン等が要望されており、溶剤塗料並の30〜60
μm程度の膜厚が望まれている。
2. Description of the Related Art It is well known that powder coating materials have less volatile components and odors than solvent coating materials and are very useful in terms of pollution control and environmental regulations. The powder coatings that have hitherto been put on the market for general use have an average particle diameter of about 30 μm and have not been strictly classified, so that the particle diameter distribution is very broad. In order to obtain a uniform coating surface after powder coating, it is essential to form a uniform powder adhesion layer, but for that purpose, a coating film thickness of 2 to 3 times the particle diameter is required. To do. Therefore, in the conventional powder coating material, a good coating surface could not be obtained unless the thickness of the coating film was 60 μm or more. On the other hand, as market needs, there is a demand for improvement of coating surface uniformity, improvement of work efficiency by thinning coating film, and total cost reduction.
A film thickness of about μm is desired.

【0003】従来一般的に使用されてきた粉体塗料の塗
装方式としてはコロナ帯電方式スプレーガンがある。こ
の方式では、スプレーガンの先端に設けられたコロナ電
極から生成されたコロナイオンによって帯電された粉体
塗料が、導電体である被塗物と電極との間に形成された
電界及び空気流に沿って飛翔し、被塗物に付着する。こ
のようなコロナ帯電方式では、逆電離現象(あるいは静
電反発)と呼ばれる問題があることが知られている。逆
電離現象とは、被塗物上に堆積された粉体塗料及び遊離
コロナイオンの蓄積電荷が大きくなりすぎて火花放電を
生じ、塗装面にクレータ状の不良箇所を生じる現象であ
る。この逆電離現象は被塗物に多層の塗料層を形成させ
ようとした場合、大きな障害になる。
A corona charging type spray gun has been conventionally used as a coating method for powder coating. In this method, the powder coating material charged by corona ions generated from the corona electrode provided at the tip of the spray gun is applied to the electric field and air flow formed between the object to be coated which is a conductor and the electrode. It flies along and adheres to the object to be coated. It is known that such a corona charging method has a problem called a reverse ionization phenomenon (or electrostatic repulsion). The reverse ionization phenomenon is a phenomenon in which the accumulated charge of the powder coating material and free corona ions deposited on the object to be coated becomes too large to cause spark discharge, resulting in a crater-like defective portion on the coated surface. This reverse ionization phenomenon becomes a major obstacle when it is attempted to form a multi-layered paint layer on an object to be coated.

【0004】また、コロナ帯電方式スプレーガンによる
塗装では、被塗物が凹凸を有する場合、凸部に電界が集
中し凹部には有効な電界が形成されないため、凹部には
粉体塗料が付着し難くなる。この現象はファラデーケー
ジ効果と呼ばれるが、この現象のため、凹部近傍に補正
塗装を行うことにより目標とする塗膜厚を得ているのが
現状である。
Further, in the case of coating with a corona charging type spray gun, when the object to be coated has unevenness, the electric field concentrates on the convexes and an effective electric field is not formed on the concaves, so that powder coating adheres to the concaves. It will be difficult. This phenomenon is called the Faraday cage effect, but because of this phenomenon, the target coating film thickness is currently obtained by performing correction coating near the recess.

【0005】なお、このような補正塗装を行ったとして
も、凹部と凸部の膜厚差は大きく、膜厚30μmを目標
としても凸部であるエッジ部分などでは100μm近く
の厚膜となってしまうことがあり、エッジ部分での逆電
離現象がしばしば認められる。
Even if such correction coating is performed, the film thickness difference between the concave portion and the convex portion is large, and even if the film thickness is 30 μm, the edge portion which is the convex portion has a thick film close to 100 μm. In some cases, the reverse ionization phenomenon at the edge is often observed.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は上記の
問題を改善し、塗膜の薄膜化を可能とし、コロナ帯電ス
プレーガンを用いて塗装しても逆電離現象の発生を抑え
ることのできる粉体塗料を提供することにある。
The object of the present invention is to solve the above problems, to enable thinning of the coating film, and to suppress the occurrence of the reverse ionization phenomenon even when coating with a corona charging spray gun. It is to provide a powder coating material that can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも結
着樹脂および硬化剤からなり体積平均粒子径が5〜20
μmである粉体粒子の表面に、体積固有抵抗が1×10
4 Ω・cm以下である導電性酸化亜鉛微粉末あるいは導
電性酸化チタン微粉末が付着あるいは固着されているこ
とを特徴とする粉体塗料である。
The present invention comprises at least a binder resin and a curing agent and has a volume average particle size of 5 to 20.
The volume resistivity is 1 × 10 on the surface of powder particles of μm.
The powder coating material is characterized in that conductive zinc oxide fine powder or conductive titanium oxide fine powder of 4 Ω · cm or less is adhered or fixed.

【0008】以下、本発明を詳細に説明する。本発明の
粉体塗料は、少なくとも結着樹脂および硬化剤からなる
粉体粒子からなる。該結着樹脂としてはポリエステル樹
脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、キ
シレン樹脂、ユリア樹脂、メラミン樹脂等が使用でき
る。前記硬化剤としてはイソシアネート、アミン、ポリ
アミド、酸無水物、ポリスルフィド、三フッ化ホウ素
酸、酸ジヒドラジド、イミダゾール等が挙げられる。ま
た、粉体粒子には、アクリルオリゴマー、シリコーン等
の流展剤、あるいは発泡防止剤等を適宜添加してもよ
い。
The present invention will be described in detail below. The powder coating material of the present invention comprises powder particles containing at least a binder resin and a curing agent. As the binder resin, polyester resin, epoxy resin, acrylic resin, phenol resin, xylene resin, urea resin, melamine resin and the like can be used. Examples of the curing agent include isocyanate, amine, polyamide, acid anhydride, polysulfide, trifluoroboric acid, acid dihydrazide, and imidazole. In addition, a leveling agent such as an acrylic oligomer or silicone, or a foaming inhibitor may be appropriately added to the powder particles.

【0009】本発明に使用される粉体塗料は、上記の粉
体粒子の組成物を乾式混合し、熱溶融混練後、粉砕、分
級して得るか、または上記組成物を懸濁重合法、乳化重
合法等の重合法により得てもよい。この場合、得られる
粉体粒子の粒子径は、コールターカウンターTAII型
で測定される体積平均粒子径、すなわち体積50%径が
5〜20μmという範囲のものでなければならない。体
積50%径が5μm未満の粉体粒子はファンデルワール
ス力などに起因する粒子間力が大きくなり、よって凝集
しやすく、粉体としての流動性が悪化するため粉体塗料
として実用的でない。さらに、このような小粒径の粉体
粒子を一般的な溶融混練、粉砕分級方法で製造しようと
すると、粉砕分級工程で大きなエネルギーを必要とする
ため製造コストがかなり高くなる。また、体積50%径
が20μmを越えて大きいと、薄く均一な粉体付着層を
被塗布面に形成することができず、従って良好な薄膜が
得られない。
The powder coating material used in the present invention is obtained by dry-mixing the composition of the above-mentioned powder particles, hot-melt kneading, and then pulverizing and classifying, or by subjecting the composition to a suspension polymerization method, It may be obtained by a polymerization method such as an emulsion polymerization method. In this case, the particle diameter of the obtained powder particles must be such that the volume average particle diameter measured by Coulter Counter TAII type, that is, the volume 50% diameter is in the range of 5 to 20 μm. Powder particles having a volume 50% diameter of less than 5 μm have a large inter-particle force due to van der Waals forces and the like, and are apt to agglomerate, which deteriorates the fluidity of the powder and is not practical as a powder coating material. Further, when it is attempted to manufacture such powder particles having a small particle diameter by a general melt-kneading and pulverizing and classifying method, a large amount of energy is required in the pulverizing and classifying step, so that the manufacturing cost becomes considerably high. If the volume 50% diameter is larger than 20 μm, a thin and uniform powder adhesion layer cannot be formed on the surface to be coated, and a good thin film cannot be obtained.

【0010】また、本発明では逆電離現象を緩和するた
めに体積固有抵抗が1×104 Ω・cm以下である導電
性酸化亜鉛微粉末あるいは導電性酸化チタン微粉末を前
記粉体粒子の表面に付着あるいは固着することを特徴と
する。この場合顔料などに一般的に使用されている酸化
亜鉛微粉末あるいは酸化チタン微粉末は体積固有抵抗が
1×104 Ω・cmを超えるものであり、これら高抵抗
の微粉末を粉体粒子に付着あるいは固着しても逆電離現
象の緩和は望めない。
Further, in the present invention, in order to alleviate the reverse ionization phenomenon, conductive zinc oxide fine powder or conductive titanium oxide fine powder having a volume resistivity of 1 × 10 4 Ω · cm or less is applied to the surface of the powder particles. It is characterized in that it adheres to or sticks to. In this case, the zinc oxide fine powder or titanium oxide fine powder generally used for pigments has a volume resistivity of more than 1 × 10 4 Ω · cm. Even if it adheres or sticks, it cannot be expected to reduce the reverse ionization phenomenon.

【0011】本発明に使用される導電性酸化チタン及び
導電性酸化亜鉛の体積固有抵抗は以下のようにして測定
する。まず、内径25mmのシリンダー型電極に10g
の試料を入れ、100kg/cm2 の圧力をかける。そ
して加圧下での試料の厚さと電気抵抗値を測定し、下記
式によって体積固有抵抗値を算出する。 体積固有抵抗(Ω・cm)=S・R/L ただし L:試料の厚さ(cm) S:シリンダー断面積(cm2 ) R:電気抵抗(Ω)
The volume resistivity of conductive titanium oxide and conductive zinc oxide used in the present invention is measured as follows. First, 10g for a cylinder type electrode with an inner diameter of 25mm
The sample is put and a pressure of 100 kg / cm 2 is applied. Then, the thickness and electric resistance value of the sample under pressure are measured, and the volume resistivity value is calculated by the following formula. Volume resistivity (Ω · cm) = S · R / L where L: sample thickness (cm) S: cylinder cross-sectional area (cm 2 ) R: electrical resistance (Ω)

【0012】本発明に使用される導電性酸化亜鉛微粉末
は、アンチモンをドープした酸化錫で酸化亜鉛微粉末を
表面処理することによって得られる。また、導電性酸化
チタン微粉末はアンチモンをドープした酸化錫によって
酸化チタン微粉末を表面処理することによって得られ
る。導電性酸化亜鉛微粉末あるいは導電性酸化チタン微
粉末を粉体粒子の表面に付着あるいは固着することによ
って、被塗物に塗布された粉体塗料上の過剰な電荷が被
塗物側にリークし、被塗物上での電荷の蓄積が緩和され
る。なお導電性酸化亜鉛微粉末あるいは導電性酸化チタ
ン微粉末の付着あるいは固着量は粉体粒子に対し0.1
〜5.0重量%が好ましい。この場合0.1重量%未満
では被塗物上での電荷の蓄積を緩和できないし、5.0
重量%より多いと粉体塗料の帯電性が悪化し被塗物への
塗着効率が悪化する。
The conductive zinc oxide fine powder used in the present invention is obtained by surface-treating the zinc oxide fine powder with antimony-doped tin oxide. The conductive titanium oxide fine powder can be obtained by surface-treating the titanium oxide fine powder with antimony-doped tin oxide. By attaching or fixing conductive zinc oxide fine powder or conductive titanium oxide fine powder on the surface of the powder particles, excess electric charge on the powder coating applied to the coating object leaks to the coating object side. , The accumulation of charges on the object to be coated is mitigated. The amount of the conductive zinc oxide fine powder or conductive titanium oxide fine powder adhering or adhering to the powder particles was 0.1.
˜5.0 wt% is preferred. In this case, if it is less than 0.1% by weight, the accumulation of electric charge on the article to be coated cannot be relaxed,
If it is more than 5% by weight, the chargeability of the powder coating material is deteriorated and the coating efficiency on the object is deteriorated.

【0013】本発明に使用される導電性酸化亜鉛微粉末
あるいは導電性酸化チタン微粉末の粒子径は0.1μm
以下であることが望ましい。0.1μm超えて大きいと
粉体塗料粒子への付着あるいは固着が十分でなくなり、
粉体塗料粒子から脱落し易くなる。粉体塗料粒子から導
電性酸化亜鉛微粉末あるいは導電性酸化チタン微粉末が
脱落すると、目的とする逆電離現象の緩和が望めない。
The conductive zinc oxide fine powder or conductive titanium oxide fine powder used in the present invention has a particle size of 0.1 μm.
The following is desirable. If it is larger than 0.1 μm, the adhesion or sticking to the powder coating particles becomes insufficient,
It becomes easy to fall off from powder coating particles. If the conductive zinc oxide fine powder or the conductive titanium oxide fine powder falls off from the powder coating particles, it is not possible to expect the intended relaxation of the reverse ionization phenomenon.

【0014】本発明に使用される導電性酸化亜鉛微粉末
あるいは導電性酸化チタン微粉末は白色であり、前述の
とおり粒子径が小さいため、焼付後の塗面の色目に影響
を与えない。なお、本発明でいう微粉末の付着とは、粉
体粒子の表面に微粉末がまぶされて付着した状態をい
い、一方固着とは下記に述べる装置により生じた粉体粒
子と微粉末との混合の際の発熱もしくは機械的な摩擦
力、圧縮力により粉体粒子の表面に該微粒子の少なくと
も一部が埋没して固着した状態をいうものとする。
The conductive zinc oxide fine powder or conductive titanium oxide fine powder used in the present invention is white and has a small particle size as described above, and therefore does not affect the color of the coated surface after baking. Incidentally, the adhesion of the fine powder in the present invention means a state in which the fine powder is sprinkled and adhered to the surface of the powder particles, while the fixing means the fine particles and the powder particles generated by the device described below. At least a part of the fine particles are embedded and fixed on the surface of the powder particles due to heat generation, mechanical frictional force, or compressive force during the mixing.

【0015】本発明に使用される導電性酸化亜鉛微粉末
あるいは導電性酸化チタン微粉末を粉体塗料表面に付着
させるには、三井三池社製のヘンシェルミキサー、川田
製作所社製のスーパーミキサー等の高速ミキサーにて両
者を乾式混合することにより行われる。また、固着させ
るには、奈良機械製作所製のナラ・ハイブリダイゼーシ
ョン・システムやホソカワミクロン社製のメカノフュー
ジョンシステム、あるいは日本ニューマチック社製のサ
ーフュージングシステムなどを使用することにより行わ
れる。
To deposit the conductive zinc oxide fine powder or the conductive titanium oxide fine powder used in the present invention on the surface of the powder coating material, a Henschel mixer manufactured by Mitsui Miike Co., a super mixer manufactured by Kawada Seisakusho, or the like can be used. It is performed by dry-mixing both with a high-speed mixer. Further, the fixation is performed by using a Nara hybridization system manufactured by Nara Machinery Co., Ltd., a mechanofusion system manufactured by Hosokawa Micron Co., or a surfusing system manufactured by Nippon Pneumatic Co., Ltd.

【0016】本発明の粉体粒子には、流動性改良などの
目的で疎水性シリカ、疎水性アルミナなどの無機微粒子
をその表面に付着させてもよい。無機微粒子を粉体粒子
の表面に付着させるには、三井三池社製のヘンシェルミ
キサー、川田製作所社製のスーパーミキサー等の高速ミ
キサーにて両者を乾式混合することにより行なわれる。
Inorganic fine particles such as hydrophobic silica and hydrophobic alumina may be attached to the surface of the powder particles of the present invention for the purpose of improving fluidity. To adhere the inorganic fine particles to the surface of the powder particles, they are dry-mixed with a high speed mixer such as a Henschel mixer manufactured by Mitsui Miike Co., Ltd. or a super mixer manufactured by Kawata Manufacturing Co., Ltd.

【0017】[0017]

【実施例】以下、実施例に基づき本発明を説明する。 <実施例1> 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーで120℃で熱溶融混練後、ジェット
ミルで粉砕し、その後乾式気流分級機で体積50%径が
13μmとなるように分級し粉体粒子を作成した。この
粉体粒子100重量部に対し、疎水性シリカ0.4重量
部及び導電性酸化亜鉛微粉末(体積固有抵抗1×103
Ω・cm、一次粒子径0.08μm)0.4重量部をヘ
ンシェルミキサーで攪拌混合して本発明による粉体塗料
を得た。上記粉体塗料を、コロナ帯電方式スプレーガン
(ランズバーグ社製)に適用し、印加電圧−30kV、
吐出量70g/min、被塗物−スプレーガン間の距離
200mmの条件で、ブライト仕上げされたリン酸亜鉛
処理鋼板(SPCC−SB板)に吹き付けを行った後、
200℃で焼き付けを行った。
EXAMPLES The present invention will be described below based on examples. <Example 1> The raw materials having the above mixing ratios are mixed in a super mixer, melted and kneaded at 120 ° C. in a pressure kneader, pulverized in a jet mill, and then classified by a dry air classifier to have a volume of 50% and a diameter of 13 μm. Powder particles were created. With respect to 100 parts by weight of the powder particles, 0.4 parts by weight of hydrophobic silica and conductive zinc oxide fine powder (volume resistivity 1 × 10 3
0.4 parts by weight (Ω · cm, primary particle diameter 0.08 μm) was mixed by stirring with a Henschel mixer to obtain a powder coating material according to the present invention. The powder coating material was applied to a corona charging type spray gun (manufactured by Lansberg Co.), and an applied voltage of -30 kV,
After spraying the zinc phosphate-treated steel plate (SPCC-SB plate) bright-finished under the conditions of a discharge amount of 70 g / min and a distance between the coating object and the spray gun of 200 mm,
Baking was performed at 200 ° C.

【0018】<実施例2>実施例1と同一の塗料粒子1
00重量部に対し、疎水性シリカ0.4重量部及び導電
性酸化チタン微粉末(体積固有抵抗2×102 Ω・c
m、一次粒子径0.05μm)0.4重量部をヘンシェ
ルミキサーで攪拌混合して本発明の粉体塗料を得た。上
記粉体塗料を、実施例1と同一の条件でブライト仕上げ
されたリン酸亜鉛処理鋼板(SPCC−SB板)に吹き
付けを行った後、200℃で焼き付けを行った。
<Example 2> The same paint particles 1 as in Example 1
0.4 parts by weight of hydrophobic silica and conductive titanium oxide fine powder (volume resistivity 2 × 10 2 Ω · c)
m, primary particle diameter 0.05 μm) 0.4 part by weight was mixed by stirring with a Henschel mixer to obtain a powder coating material of the present invention. The powder coating composition was sprayed on a zinc phosphate-treated steel plate (SPCC-SB plate) bright-finished under the same conditions as in Example 1, and then baked at 200 ° C.

【0019】<実施例3>実施例1と同一の粉体粒子1
00重量部に対し、導電性酸化亜鉛微粉末(体積固有抵
抗1×103 Ω・cm、一次粒子径0.08μm)0.
4重量部をヘンシェルミキサーで混合し、ナラ・ハイブ
リダイゼーション・システム(NHS−1型)に投入し
てローター回転数6000rpmで2分間処理し、導電
性酸化亜鉛微粉末を粉体粒子の表面に固着させた。さら
に、この粉体100重量部に対し、疎水性シリカ0.4
重量部をヘンシェルミキサーで攪拌混合して本発明の粉
体塗料を得た。上記粉体塗料を、実施例1と同一の条件
でブライト仕上げされたリン酸亜鉛処理鋼板(SPCC
−SB板)に吹き付けを行った後、200℃で焼き付け
を行った。
<Example 3> The same powder particles 1 as in Example 1
For 100 parts by weight, conductive zinc oxide fine powder (volume resistivity 1 × 10 3 Ω · cm, primary particle diameter 0.08 μm).
4 parts by weight are mixed with a Henschel mixer, put into a Nara hybridization system (NHS-1 type), and treated for 2 minutes at a rotor rotation speed of 6000 rpm to fix conductive zinc oxide fine powder to the surface of the powder particles. Let Furthermore, for 100 parts by weight of this powder, 0.4 parts of hydrophobic silica was used.
By mixing parts by weight with a Henschel mixer, the powder coating material of the present invention was obtained. A zinc phosphate-treated steel sheet (SPCC) obtained by brightly finishing the above powder coating under the same conditions as in Example 1.
-SB plate) was sprayed and then baked at 200 ° C.

【0020】<比較例1>実施例1と同一の配合比から
なる原料をスーパーミキサーで混合し、加圧ニーダーで
120℃で熱溶融混練後、ジェットミルで粉砕し、その
後乾式気流分級機で体積50%径が4.8μmとなるよ
うに分級し比較用の粉体粒子を得た。この粉体粒子10
0重量部に対し、疎水性シリカ0.4重量部及び導電性
酸化亜鉛微粉末(体積固有抵抗1×103 Ω・cm、一
次粒子径0.08μm)0.4重量部をヘンシェルミキ
サーで攪拌混合して比較用の粉体塗料を得た。上記粉体
塗料を、実施例1と同一の条件で、ブライト仕上げされ
たリン酸亜鉛処理鋼板(SPCC−SB板)に吹き付け
を行った後、200℃で焼き付けを行った。
<Comparative Example 1> Raw materials having the same blending ratio as in Example 1 were mixed in a supermixer, melted and kneaded at 120 ° C. in a pressure kneader, pulverized in a jet mill, and then in a dry airflow classifier. The powder was classified so as to have a volume 50% diameter of 4.8 μm to obtain powder particles for comparison. This powder particle 10
0.4 parts by weight of hydrophobic silica and 0.4 parts by weight of conductive zinc oxide fine powder (volume specific resistance 1 × 10 3 Ω · cm, primary particle size 0.08 μm) were stirred with a Henschel mixer, relative to 0 parts by weight. A powder coating for comparison was obtained by mixing. The above powder coating material was sprayed on a zinc phosphate-treated steel sheet (SPCC-SB board) that had been bright-finished under the same conditions as in Example 1, and then baked at 200 ° C.

【0021】<比較例2>実施例1と同一の配合比から
なる原料をスーパーミキサーで混合し、加圧ニーダーで
120℃で熱溶融混練後、ジェットミルで粉砕し、その
後乾式気流分級機で体積50%径が26.0μmとなる
ように分級し比較用の粉体粒子を得た。この粉体粒子1
00重量部に対し、疎水性シリカ0.4重量部及び導電
性酸化亜鉛微粉末(体積固有抵抗1×103 Ω・cm、
一次粒子径0.08μm)0.4重量部をヘンシェルミ
キサーで攪拌混合して比較用の粉体塗料を得た。上記粉
体塗料を、実施例1と同一の条件で、ブライト仕上げさ
れたリン酸亜鉛処理鋼板(SPCC−SB板)に吹き付
けを行った後、200℃で焼き付けを行った。
<Comparative Example 2> Raw materials having the same blending ratio as in Example 1 were mixed in a super mixer, hot melt kneaded at 120 ° C. in a pressure kneader, pulverized in a jet mill, and then in a dry air stream classifier. The powder was classified so that the 50% volume diameter was 26.0 μm to obtain powder particles for comparison. This powder particle 1
0.4 parts by weight of hydrophobic silica and conductive zinc oxide fine powder (volume specific resistance 1 × 10 3 Ω · cm,
0.4 parts by weight of primary particle diameter (0.08 μm) was mixed by stirring with a Henschel mixer to obtain a powder coating material for comparison. The above powder coating material was sprayed on a zinc phosphate-treated steel sheet (SPCC-SB board) that had been bright-finished under the same conditions as in Example 1, and then baked at 200 ° C.

【0022】<比較例3>導電性酸化亜鉛微粉末を使用
しない以外は実施例1と同一にして比較用の粉体塗料を
得た。上記粉体塗料を、実施例1と同一の条件で、ブラ
イト仕上げされたリン酸亜鉛処理鋼板(SPCC−SB
板)に吹き付けを行った後、200℃で焼き付けを行っ
た。
Comparative Example 3 A powder coating for comparison was obtained in the same manner as in Example 1 except that the conductive zinc oxide fine powder was not used. The above powder coating was bright-finished under the same conditions as in Example 1 and treated with zinc phosphate-treated steel sheet (SPCC-SB).
After spraying on the plate, baking was performed at 200 ° C.

【0023】<比較例4>体積固有抵抗が高い酸化亜鉛
微粉末(体積固有抵抗3.5×109 Ω・cm、一次粒
子径0.08μm)を使用した以外は実施例1と同様に
して比較用の粉体塗料を得た。上記粉体塗料を、実施例
1と同一の条件で、ブライト仕上げされたリン酸亜鉛処
理鋼板(SPCC−SB板)に吹き付けを行った後、2
00℃で焼き付けを行った。
Comparative Example 4 The same procedure as in Example 1 was carried out except that zinc oxide fine powder having a high volume resistivity (volume resistivity 3.5 × 10 9 Ω · cm, primary particle diameter 0.08 μm) was used. A powder coating for comparison was obtained. After spraying the powder coating material on a zinc phosphate-treated steel plate (SPCC-SB plate) that has been bright-finished under the same conditions as in Example 1, 2
Baking was performed at 00 ° C.

【0024】上記実施例1〜3および比較例1〜4にて
得られた粉体塗料の被塗物上の塗装面の焼付以前の塗面
の状態、すなわち逆電離現象の発生の有無の評価結果を
表1に、焼き付け後の塗膜状態の評価結果を表2に示し
た。表1及び表2から明らかなように、本発明の粉体塗
料を使用することによって逆電離現象が緩和され、広い
塗膜厚範囲での設定が可能となる。また、本発明の粉体
塗料は焼付け後の塗膜面も良好であることが確認され
た。
Evaluation of the state of the coating surface before baking of the coating surface of the powder coating material obtained in Examples 1 to 3 and Comparative Examples 1 to 4, that is, the occurrence of the reverse ionization phenomenon The results are shown in Table 1, and the evaluation results of the coating film state after baking are shown in Table 2. As is clear from Tables 1 and 2, the use of the powder coating material of the present invention alleviates the reverse ionization phenomenon and enables setting in a wide coating thickness range. It was also confirmed that the powder coating material of the present invention had a good coating surface after baking.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】以上説明したように本発明では、粉体塗
料の平均粒子径が5〜20μmであるため塗膜の薄膜化
が可能であり、粉体粒子の表面に体積固有抵抗が1×1
4 Ω・cm以下である導電性酸化亜鉛微粉末あるいは
導電性酸化チタン微粉末を付着あるいは固着したことに
より、コロナ帯電方式スプレーガンに適用した場合に逆
電離現象を緩和することができ、広い塗膜厚範囲で使用
できる粉体塗料を得ることができる。
As described above, according to the present invention, since the average particle diameter of the powder coating material is 5 to 20 μm, the coating film can be made thin and the surface of the powder particles has a volume resistivity of 1 ×. 1
By applying or fixing conductive zinc oxide fine powder or conductive titanium oxide fine powder of 0 4 Ω · cm or less, it is possible to reduce the reverse ionization phenomenon when applied to a corona charging type spray gun, and it is wide. It is possible to obtain a powder coating material that can be used within the coating thickness range.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも結着樹脂および硬化剤からな
り体積平均粒子径が5〜20μmである粉体粒子の表面
に体積固有抵抗が1×104 Ω・cm以下である導電性
酸化亜鉛微粉末あるいは導電性酸化チタン微粉末が付着
あるいは固着されていることを特徴とする粉体塗料。
1. A conductive zinc oxide fine powder having a volume resistivity of 1 × 10 4 Ω · cm or less on the surface of powder particles having a volume average particle diameter of 5 to 20 μm and comprising at least a binder resin and a curing agent. Alternatively, a powder coating material in which conductive titanium oxide fine powder is adhered or fixed.
【請求項2】 導電性酸化亜鉛微粉末あるいは導電性酸
化チタン微粉末の含有量が0.1〜5.0重量%である
ことを特徴とする請求項1記載の粉体塗料。
2. The powder coating composition according to claim 1, wherein the content of the conductive zinc oxide fine powder or the conductive titanium oxide fine powder is 0.1 to 5.0% by weight.
【請求項3】 導電性酸化亜鉛微粉末あるいは導電性酸
化チタン微粉末の一次粒子径が1.0μm以下であるこ
とを特徴とする請求項1記載の粉体塗料。
3. The powder coating composition according to claim 1, wherein the conductive zinc oxide fine powder or the conductive titanium oxide fine powder has a primary particle diameter of 1.0 μm or less.
JP7084581A 1995-03-17 1995-03-17 Powder paint Expired - Fee Related JP2996604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084581A JP2996604B2 (en) 1995-03-17 1995-03-17 Powder paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084581A JP2996604B2 (en) 1995-03-17 1995-03-17 Powder paint

Publications (2)

Publication Number Publication Date
JPH08253711A true JPH08253711A (en) 1996-10-01
JP2996604B2 JP2996604B2 (en) 2000-01-11

Family

ID=13834649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084581A Expired - Fee Related JP2996604B2 (en) 1995-03-17 1995-03-17 Powder paint

Country Status (1)

Country Link
JP (1) JP2996604B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition
KR20140146072A (en) * 2012-03-21 2014-12-24 발스파 소싱 인코포레이티드 Application package for powder coating
JP2018162346A (en) * 2017-03-24 2018-10-18 富士ゼロックス株式会社 Powdered paint and electrostatic powder coating method
US10745567B2 (en) 2017-03-21 2020-08-18 Fuji Xerox Co., Ltd. Powdered paint and electrostatic powder coating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001342A (en) * 2008-06-19 2010-01-07 Shin-Etsu Chemical Co Ltd Organic resin powder coating composition
KR20140146072A (en) * 2012-03-21 2014-12-24 발스파 소싱 인코포레이티드 Application package for powder coating
US10793723B2 (en) 2012-03-21 2020-10-06 The Sherwin Williams Company Application package for powder coatings
US10745567B2 (en) 2017-03-21 2020-08-18 Fuji Xerox Co., Ltd. Powdered paint and electrostatic powder coating method
JP2018162346A (en) * 2017-03-24 2018-10-18 富士ゼロックス株式会社 Powdered paint and electrostatic powder coating method

Also Published As

Publication number Publication date
JP2996604B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5637136A (en) Triboelectric coating powder and process
JP2909881B2 (en) Powder paint
JP2996604B2 (en) Powder paint
JPH083480A (en) Powder coating material
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JPH1180612A (en) Powder coating and film forming method using it
CN115667422B (en) One-component powder coating composition and substrate coated with the powder coating composition
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JP2983868B2 (en) Powder coating and powder coating method using the same
JP2949561B2 (en) Powder coating and coating method using the same
JP2004210875A (en) Fluidizing agent for powder coating and powder coating composition
JP3325728B2 (en) Powder coating, production method thereof, and powder coating method using the same
JP3225198B2 (en) How to apply powder paint
JP2002105391A (en) Epoxy resin powder coating for frictional electrification type electrostatic coating
JP2010132794A (en) Epoxy resin powder coating
JP3157095B2 (en) Powder paint
JP2982112B2 (en) Powder coating and coating method using the same
JPH09279058A (en) Powder coating material and coating method using the same
JPH08302241A (en) Powdery coating material
JPH0714665A (en) Sheet-like heat generating body
JPH08176469A (en) Powder coating and method of coating therewith
JPH09310034A (en) Powdery coating material and coating method
JP3258256B2 (en) Powder coating suitable for electrostatic fluidized immersion method
JPH10231446A (en) Powder coating material and powder coating method
JPH11100534A (en) Powder coating material for electrostatic coating and method for coating therewith

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees